Nonvolatile flash memory devices (e.g. 2D NAND Flash or 3D NAND) store information in the form of charge in a flash memory cell. A flash memory cell has a transistor with an additional floating metal gate between the substrate and the transistors gate or a trapping area or any other mechanism to allow charge storage. The charge is stored in the transistor and is injected during an operation known as programming. The charge may be removed during an operation known as an erase operation.
As the charge in the transistor may vary contiguously, it is possible to store more than just one bit per flash transistor by using several charge levels to symbolize different sequences of bits.
The voltage level distributions of
The 3 bit-per-cell (bpc) cell includes a most significant bit (MSB), a central significant bit (CSB) and a least significant bit (LSB). A physical page of flash memory module may store three logical pages. This physical page is programmed one logical page after the other. The programming includes various types of programming such as MSB programming, CSB programming and LSB programming. Alternatively, all 3 pages in a row may be programmed at once in either a single stage or in several stages. For example, 3 stages may be used for programming such that all page types are associated with each stage. The logical pages are read by applying various types of read operations such as MSB read (e.g. in which a MSB threshold 111 and 115 are used), CSB read (in which two CSB thresholds 112114 and 116 are used) and LSB read (in which four LSB thresholds 113 and 117 are used).
As mentioned, the lobe distributions are not constant throughout the life of the flash and change under various stress conditions. With retention, the distribution become larger and shift towards the erase level. The higher the distribution the larger the shift. This effectively shrinks the effective working window. Both the shrinkage of the window and the fattening of the distributions contribute to the increase in number of errors after performing a page read.
These effects become significantly worse as the block P/E cycles increase and as the NAND Flash memory technology node shrink.
These stress factors (Node shrink, number of layers in 3D NAND, endurance retention, read disturb) affect reliability due to errors incurred by overlap of lobes. To overcome these issues more advanced memory controllers use advanced ECC and DSP algorithms to overcome the errors incurred by these errors.
Each of the flash memory cells 420 of a string is associated with a different wordline which connects all of the corresponding flash memory cells in the other strings of the block. When a block is chosen, each string is connected to a corresponding bitline by turning on the Bit Line Select and the Ground Select transistors. When a read operation is performed, a sense amplifier 440 is connected to the bit-line and after allowing some time (say 40 uS) for the bit-line voltage to settle, the result is stored by a latch 450. Latch 450 is activated by latch enable (LE) signal.
In order to measure the charge in a certain cell within a string, all other cells are switched on by applying a high voltage on their gates (given by Vbias) and a comparison voltage, Vth, is applied to the gate of the selected cell. In
If the cell is charged and Vth is not high enough, the gate will not allow current to flow and the sense-amplifier will output a “0”. On the other hand, if the cell is not charge or Vth is high enough, current will flow and the sense-amplifier will output a “1”. Different schemes may exist where the cell being samples is biased with a constant voltage (say Vcc) but in the sense-simplifier a comparison against a reference string is performed which reference value may be determined by some external voltage, Vth.
The bit line and each flash memory cells have certain impedance and capacitance that need to be charged in order to converge to a desired voltage level. This is illustrated in
The above sampling technique holds when a bit may be obtained only through a single threshold comparison. When more than a single threshold comparison is required, the above procedure may be performed for each threshold and the results may then be combined.
According to an embodiment of the invention there may be provided a non-transitory computer readable medium that stores instructions that once executed by a computer cause the computer to sample a flash memory cell that belongs to a die, by attempting, during a gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first value to a second value; sampling, by a sampling circuit that belongs to the die, an output signal of the flash memory cell multiple times during the voltage gate change period to provide multiple samples; defining a given sample of the multiple samples as a data sample that represents data stored in the flash memory cell; and determining, by a processor that belongs to the die, a reliability of the data sample based on one or more samples of the multiple samples that differ from the given sample. The processor may belong to the sampling circuit or may not belong to the sampling circuit.
According to an embodiment of the invention there may be provided a semiconductor die that may include a processor, a sampling circuit and a flash memory array; wherein the sampling circuit is configured to (a) attempt, during a gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first value to a second value; and (b) sample an output signal of the flash memory cell multiple times during the voltage gate change period to provide multiple samples; wherein the processor is configured to define a given sample of the multiple samples as a data sample that represents data stored in the flash memory cell; and to determine a reliability of the data sample based on one or more samples of the multiple samples that differ from the given sample.
According to an embodiment of the invention there may be provided a method for sampling a flash memory cell that belongs to a die, the method may include attempting, during a gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first value to a second value; sampling, by a sampling circuit that belongs to the die, an output signal of the flash memory cell multiple times during the voltage gate change period to provide multiple samples; defining a given sample of the multiple samples as a data sample that represents data stored in the flash memory cell; and determining, by a processor that belongs to the die, a reliability of the data sample based on one or more samples of the multiple samples that differ from the given sample.
The determining of the reliability may include searching for a difference between the multiple samples.
The determining of the reliability may include assigning a reliability score that is responsive to an order, within the multiple samples, of a first sample that differs from a preceding sample.
The method may include assigning a reliability score that represent a decrease in reliability with an increase in the order of the first sample.
The determining of the reliability may include assigning a first reliability score when all the samples have a same value; and assigning a second reliability score when one of the multiple samples differs from another sample; wherein the second reliability score is indicative of a lower reliability than the first reliability score.
The method further may include outputting, to a flash memory controller located outside the die, information about the reliability of the data sample.
The method may include decoding, by the processor, the data sample; wherein the decoding may include utilizing information, generated by the processor, related to the reliability of the data sample.
The method may include receiving, by the processor error correction information that was generated outside the die and relates to the data sample; and decoding, by the processor, the data sample; wherein the decoding may include (a) utilizing information, generated by the processor, related to the reliability of the data sample and (b) utilizing the error correction information.
The method may include controlling an execution of operations applied on the data sample in response to the reliability of the data sample.
The method may include preventing a copyback operation when the reliability of the data sample is below a reliability threshold.
The method may include selecting between an execution of a copyback operation and a provision of the data sample to an external flash memory controller based upon the reliability of the data sample.
The method may include determining an allocation of the flash memory cell based upon the reliability of the data sample.
According to an embodiment of the invention there may be provided a method for sampling a flash memory cell that belongs to a die, the method may include performing a first attempt, during a first gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first value to a second value; sampling, by a sampling circuit that belongs to the die, an output signal of the flash memory cell multiple times during the first voltage gate change period to provide multiple first samples; defining a first given sample of the first multiple samples as a first data sample that represents data stored in the flash memory cell; determining, by a processor that belongs to the die, a reliability of the first data sample based on one or more samples of the first multiple samples that differ from the first given sample; performing a second attempt, during a second gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first intermediate value to a third value; wherein the second attempt starts before a completion of the first attempt and when the gate voltage of the flash memory cell reached the first intermediate value; defining a second given sample of the second multiple samples as a second data sample that represents the data stored in the flash memory cell; and determining, by the processor, a reliability of the second data sample based on one or more samples of the second multiple samples that differ from the second given sample.
According to an embodiment of the invention there may be provided a non-transitory computer readable medium that stores instructions that once executed by a computer cause the computer to perform a first attempt, during a first gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first value to a second value; sample an output signal of the flash memory cell multiple times during the first voltage gate change period to provide multiple first samples; define a first given sample of the first multiple samples as a first data sample that represents data stored in the flash memory cell; determine a reliability of the first data sample based on one or more samples of the first multiple samples that differ from the first given sample; perform a second attempt, during a second gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first intermediate value to a third value; wherein the second attempt starts before a completion of the first attempt and when the gate voltage of the flash memory cell reached the first intermediate value; define a second given sample of the second multiple samples as a second data sample that represents the data stored in the flash memory cell; and determine a reliability of the second data sample based on one or more samples of the second multiple samples that differ from the second given sample.
According to an embodiment of the invention there may be provided a semiconductor die that may include a processor, a sampling circuit and a flash memory array; wherein the sampling circuit is configured to (a) perform a first attempt, during a first gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first value to a second value; (b) sample an output signal of the flash memory cell multiple times during the first voltage gate change period to provide multiple first samples; wherein the processor is configured to (a) define a first given sample of the first multiple samples as a first data sample that represents data stored in the flash memory cell; (b) determine a reliability of the first data sample based on one or more samples of the first multiple samples that differ from the first given sample; (c) perform a second attempt, during a second gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first intermediate value to a third value; wherein the second attempt starts before a completion of the first attempt and when the gate voltage of the flash memory cell reached the first intermediate value; (d) define a second given sample of the second multiple samples as a second data sample that represents the data stored in the flash memory cell; and (e) determine a reliability of the second data sample based on one or more samples of the second multiple samples that differ from the second given sample.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the present invention.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings.
It will be appreciated that for simplicity and clarity of illustration, elements shown in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated relative to other elements for clarity. Further, where considered appropriate, reference numerals may be repeated among the figures to indicate corresponding or analogous elements.
Because the illustrated embodiments of the present invention may for the most part, be implemented using electronic components and circuits known to those skilled in the art, details will not be explained in any greater extent than that considered necessary as illustrated above, for the understanding and appreciation of the underlying concepts of the present invention and in order not to obfuscate or distract from the teachings of the present invention.
Any reference in the specification to a method should be applied mutatis mutandis to a system capable of executing the method and should be applied mutatis mutandis to a non-transitory computer readable medium that stores instructions that once executed by a computer result in the execution of the method.
Any reference in the specification to a system should be applied mutatis mutandis to a method that may be executed by the system and should be applied mutatis mutandis to a non-transitory computer readable medium that stores instructions that may be executed by the system.
Any reference in the specification to a non-transitory computer readable medium should be applied mutatis mutandis to a system capable of executing the instructions stored in the non-transitory computer readable medium and should be applied mutatis mutandis to method that may be executed by a computer that reads the instructions stored in the non-transitory computer readable medium.
The following invention presents a few schemes for obtaining more than a single bit sense output per cell, in order to allow soft information to be outputted. In addition, this invention also presents methods for internally utilizing this soft information to allow outputting only hard information from the NAND but with higher reliability.
The terms “sample”, “sampling point”, “latching point” and “latch” are used in an interchangeable manner.
The terms “process” and “method” are used in an interchangeable manner.
According to an embodiment of the invention a die that includes flash memory cells (such as NAND flash memory cells) includes a processor such as an internal sampling processor.
The processor may be configured to obtain “soft” samples regarding the state of the device. This enabling better reliability at the decoder.
The internal soft sampling schemes described below have advantages over external “soft” sampling scheme managed by a NAND controller ASIC.
It is shown that internal soft information can be generated without requiring additional threshold sampling times. This saves a considerable latency incurred by “soft” sampling in an external controller. For example, in an external controller “soft” sampling may incur 7 or 31 NAND read operations, each requiring 90 uS for the read operation and additional data transfer time. However, the suggested methods involve an internal soft sampling operation that is performed within a single read operation (90 uS) and then only relevant data need to be output (only equivalent to 3 or 5 reads).
Semi-Soft Sampling
In
Curve 510 of
Curve 710 of
The samples may be used to obtain semi-soft information. The sense amplifiers of a row may be latched several times prior to full stabilization.
Depending on the sampling time, the sampling point can be referenced to a different gate voltage, thus equivalent to sampling with different thresholds.
Regardless of the actual voltage that is being sampled, it is clear that NAND strings that are latched (change their value) early on to their final values are likely to be more reliable than those that were only latched (changed their value) during the final stages. Therefore, the method can assign different reliability values depending on when the latched signals reached their final values—when a change occurred (or at an absence of change—the first sample may be regarded as very reliable).
One method of doing this is by holding a number of latch buffers.
The buffers include an Initial Value Buffer (1001) that holds the data samples and Counter Buffers (1002-1003) that hold reliability information such as a reliability indicator. Each bit (bits 1001(1)-1001(K) of initial value buffer 1001; bits 1002(1)-1002(K) of counter buffer 1003 and bits 1003(1)-1003(K) of counter buffer 1003) in each of the buffers corresponds to a different NAND string and is intended to latch data which is a function of the corresponding NAND string sense amplifier value. The number of counter buffers is equal to the upper integer log 2 value of the number of sampling points. For example, if 4 sampling points are intended till gate stabilization, then we will use 2 counter buffers.
The latching procedure (1400) performed by the acquisition processor is illustrated in
Set Ref_Count to Max_Val and set target gate voltage. (1401).
On first latch occasion, the sense amplifier values are latched into the Initial Value Buffer (1401) and all Counter Buffers are set to Ref_Count. (1402).
Decrement Ref_Count. (1403).
On latch occasion compare corresponding sense amplifier with Initial Value Buffer and latch Ref_Count to Counter Buffers and the sense amplifier to the Initial Value Buffer only at locations corresponding to disagreeing values. (1404)
If Ref_Count>0 return to step 1403. (1405).
This latching procedure can be further extended to the case where more than a single threshold voltage is used. This is done by adding following steps:
Update a new set of buffers (Initial value buffer, new one for each threshold) intended to store intermediate threshold sampling results according to the Initial Value Buffer. (1406).
Set Ref_Count to Max_Val and next gate threshold. (1407).
On first latch occasion, the sense amplifier values are latched into the new Initial Value Buffer (1001). All Counter Buffers retain their previous value. (1408) Decrement Ref_Count. (1409).
On latch occasion compare corresponding sense amplifier with new Initial Value Buffer and latch minimum value of Ref_Count and current values of corresponding Counter Buffers to Counter Buffers and the sense amplifier to the new Initial Value Buffer only at locations corresponding to disagreeing values. (1410).
If Ref_Count>0 return to step 1409. (1411).
Update a new set of buffers intended to store intermediate threshold sampling results according to the Initial Value Buffer. (1412).
If another threshold needs to be updated, go to step 1407. (1413)
The procedure so far mainly considered the case where the final setting voltage of the gate is the same as the reference voltage. However, we can also set the final setting voltage of the gate to be above the actual reference voltage such that the gate voltage crosses the reference voltage, starting from below and ending at a higher point. In that case, it is no longer correct to say that the earlier the sense amplifier reads are stabilized the more reliable the read is. In fact, now, the furthest the voltages stabilize compared to the point in time the gate voltage reaches the reference voltage, the more reliable the read is.
Thus, the following latching procedure can be applied:
The latching procedure (1400′) performed by the acquisition processor is illustrated in
Set Ref_Count to Max_Val and set target gate voltage. (1401).
On first latch occasion, the sense amplifier values are latched into the Initial Value Buffer (1401) and all Counter Buffers are set to Ref_Count. (1402).
Decrement Ref_Count. (1403).
On latch occasion compare corresponding sense amplifier with Initial Value Buffer and latch Ref_Count-Cross_Value to Counter Buffers and the sense amplifier to the Initial Value Buffer only at locations corresponding to disagreeing values. (1404′)
If Ref_Count>0 return to step 1403. (1405).
Note that the latched value now has a sign which indicates the hard decision value of the read. This signed value replaces the need to use the initial Value buffer for obtaining the read result sign.
This latching procedure can be further extended to the case where more than a single threshold voltage is used. This is done by adding following steps:
a. Update a new set of buffers (Initial value buffer, new one for each threshold) intended to store intermediate threshold sampling results according to the Initial Value Buffer. (1406).
b. Set Ref_Count to Max_Val and next gate threshold. (1407).
c. On first latch occasion, the sense amplifier values are latched into the new Initial Value Buffer (1001). All Counter Buffers retain their previous value. (1408)
d. Decrement Ref_Count. (1409).
e. On latch occasion compare corresponding sense amplifier with new Initial Value Buffer and latch minimum value of Ref_Count and current values of corresponding Counter Buffers to Counter Buffers and the sense amplifier to the new Initial Value Buffer only at locations corresponding to disagreeing values. (1410).
f. If Ref_Count>0 return to step 1409. (1411).
g. Update a new set of buffers intended to store intermediate threshold sampling results according to the Initial Value Buffer. (1412).
h. If another threshold needs to be updated, go to step 1407. (1413)
i. Combine all Initial Value Buffers to a single Value buffer using a table (1414). For example, for reading the middle page in
It should be noted that here as well we can adapt the procedure to the case where the final gate voltage is set above the reference voltage. This is done by modifying step 10 such that we latch the minimum of Ref_Count−Cross_value and current counter buffers value only if abs(Ref_Count−Cross_value) is smaller than abs(current counter buffers). We need to save in the end the value of the sign that is latched
At the end of this process the bit value is stored in the new set of buffers intended to store intermediate threshold and the reliability score is stored at the Counter Buffers. These buffers can now be output to an external controller to be used during soft decoding.
In a nut shell, a data storing buffer such as initial value buffer 101 may store the data sampled from multiple flash memory cells during an initial sample (or any other selected sample) while one or more other buffers store reliability information such as a sample in which the value of a flash memory cell changed.
The die 900 includes flash memory array 940, sense amplifiers 930, latches 920, buffers 950 and processor 910.
Sense amplifiers 930, buffers 950 and latches 920 form a sampling circuit. The sampling circuit may include processor 920 but this is not necessarily so.
Processor 920 may be a sampling processor but may have other functionalities such as decoding (see decoder 912).
Processor 920 may determine the value of gate thresholds.
Buffers 950 may include buffers 1001, 1002 and 1003 of
Full Soft Sampling
The method can modify the NAND gate threshold values prior to gate voltage stabilization, while the voltage is still rising or dropping in a near linear manner.
By modifying the threshold (VT) voltage the method can keep the voltages continuously rising (dropping) nearly linearly in a region around the target threshold. Since the method can predict how the threshold change at each sample point we need to check whether the sense amplifier state changed from 0 to 1 and record the point at which it changed to 0 (or 1 if the voltages are dropping).
Thus, the flow (denoted 1500 in
Set Ref_Count to −Max_Val. (1501).
Set all counter buffers to Max_Val. (1502).
set target gate voltage. (1503).
On latch occasion, Counter buffers are set to (Sense Amplifier Value)*min(Counter Buffer value, Ref_Count)+(1−Sense Amplifier Value)*Counter Buffer value. (1504).
Increment Ref_Count. (1505).
If Need to set new gate target voltage, go to step 1503. (1506)
If Ref_Count<Max_Val return to step 1504. (1507).
The method can modify the NAND gate voltages values prior to gate voltage stabilization, while the gate voltage is still rising or dropping in a near linear manner.
By modifying the gate voltage the method can keep the voltages continuously rising (dropping) nearly linearly in a region around the target threshold. Since the method can predict how the threshold change at each sample point we need to check whether the sense amplifier state changed from 0 to 1 and record the point at which it changed to 0 (or 1 if the voltages are dropping).
If few thresholds (not including the soft threshold mentioned above) are involved in the page read, then above procedure follows for all those thresholds but we output only the closest value to 0 of all reads. Note that all procedures may share the same Counter Buffers.
The change of threshold voltage during the first attempt is denoted 811. The change of threshold voltage during the second attempt is denoted 812. The change of threshold voltage during the third attempt is denoted 813.
The sampling points included in the first attempt are denoted 821.
The sampling points included in the second attempt are denoted 822.
The sampling points included in the third attempt are denoted 823.
The time of convergence of the first attempt (it the first attempt was allowed to be completed) is denoted 851 and exceeds the beginning of the second attempt and even the beginning of the third attempt.
All procedures may be managed by processor 910 of
It is noted that the aggregate duration (DT1) of multiple (N1) attempts is smaller than the aggregate duration (DT2) of the same number (N1) of prior art read cycle (such as illustrated in
Internal Partial Decoding Capability
On top of performing internal soft decoding the method can utilize it to perform at least partial soft decoding capabilities. There can be provided a sharing of some of the ECC bits with the external controller. By utilizing soft information the method can perform more reliable decoding, even with part of the ECC bits. Thus, decoding can be done internally, in the NAND device, possibly while outputting a codeword, and output only Hard information from the NAND device. This way, not only did we perform fast soft sampling but also, we only output hard data, which requires less traffic on the NAND channel, and allow the controller to perform hard decoding based on much more reliable bits.
The external controller may utilize both A and B bits for decoding when using soft and hard bits. However, internal to the NAND device we may utilize only some of the ECC bits (say ECC A) in order to support less complex decoding at the NAND that could be performed while data is being outputted or sampled. In case of failures, the external controller could access the soft information of all bits and decode based on all ECC bits. One example of such an encoding scheme may be that of product codes where ECC A bits may be those of columns or rows. And full decoding based on both A and B bits and would be performed in iterative manner.
In addition codewords used internally to the NAND may be longer than codewords used at the controller level without penalty of transferring the extra data on the NAND channel.
Internal Reliability Detection
The method can also use the internally obtained soft information to understand the page read reliability. If more bits were detected as not reliable, the method can enable a status on the NAND device indicating that the operation was not reliable. For this purpose the method can also use some of the ECC bits as described in the previous section.
This information on reliable reads could be used to enable more efficient read flows at the controller. For example, going directly into soft decode flow instead of first going through hard decode flow.
In addition this could indicate that a copyback operation is not reliable (for example from SLC to TLC) and the data should first go to the controller, be decoded and then written back to NAND device.
For example, the die may receive a request (from a flash memory controller outside the die) to execute a copyback operation (during which data is copied within the flash memory array without exiting the die) and the processor may refuse to execute the copyback operation.
Redundant Pages/Rows/Planes
On some NAND devices, some blocks exhibit redundant rows or redundant planes or even page types within a row. These redundant pages/rows/planes are typically found at the edges of the block and no data is stored on them because they are less reliable. These pages are less reliable because they may suffer from higher distortion or higher interference or edge effects.
However, with the higher reliability due to internal soft, the method can return to use these pages to store data. The method can also use lower coding rates on these pages to overcome some of the reliability issues.
This is illustrated, for example, by step 1246 of
Furthermore, we may use these pages not to increase capacity but to increase the overall redundancy in the system. Thus, though capacity increase may be little, the reliability improvement may be great.
Method 1200 may start by steps 1210 and 1220.
Step 1210 may include attempting, during a gate voltage change period (such as voltage change period 550), to change a value of a gate voltage of the flash memory cell from a first value to a second value. For example, a gate voltage of the flash memory cell has to be changed to a second value (such as first target value 520 of
Step 1220 may include sampling, by a sampling circuit that belongs to the die, an output signal of the flash memory cell multiple times during the voltage gate change period to provide multiple samples. See, for example samples 541, 542, 543 and 544 of
Steps 1210 and 1220 may be followed by step 1230 of defining a given sample of the multiple samples as a data sample that represents data stored in the flash memory cell and determining, by a processor that belongs to the die, a reliability of the data sample based on one or more samples of the multiple samples that differ from the given sample.
Step 1230 may include at least one of the following:
a. Determining of the reliability comprises searching for a difference between the multiple samples.
b. Assigning a reliability score that is responsive to an order, within the multiple samples, of a first sample that differs from a preceding sample.
c. Assigning a reliability score that represents a decrease in a reliability with an increase in the order of the first sample.
d. Assigning a first reliability score when all the samples have a same value.
e. Assigning a second reliability score when one of the multiple samples differs from another sample. The second reliability score is indicative of a lower reliability than the first reliability score.
Step 1230 may be followed by steps 1210 and 1220—for reading another flash memory cell.
Alternatively, steps 1210, 1220 and 1230 are executed in parallel on multiple flash memory cells (such as but not limited to a page of flash memory cells). Accordingly, method 1200 may include:
a. Step 1210 may include attempting, during a gate voltage change period (such as voltage change period 550), to change values of gate voltages of multiple flash memory cells from a first value to a second value.
b. Step 1220 may include sampling, by a sampling circuit that belongs to the die, each output signal of multiple output signals of the multiple flash memory cells multiple times during the voltage gate change period to provide multiple samples per flash memory cell.
c. Step 1230 of defining, for each of the multiple flash memory cells, a given sample of the multiple samples (of the flash memory cell) as a data sample that represents data stored in the flash memory cell and determining, by a processor that belongs to the die, a reliability of the data sample (of each flash memory cell) based on one or more samples of the multiple samples that differ from the given sample.
Step 1230 may be followed by step 1240 of responding to the reliability of the data sample.
Step 1240 may include at least one of the following:
a. Decoding (1241), by the processor, the data sample. The decoding may include utilizing information, generated by the processor, related to the reliability of the data sample. The decoding usually takes place when multiple flash memory cells are read.
b. Receiving (1242), by the processor error correction information that was generated outside the die and relates to the data sample; and decoding, by the processor, the data sample. The decoding includes (a) utilizing information, generated by the processor, related to the reliability of the data sample and (b) utilizing the error correction information.
c. Controlling (1243) an execution of operations applied on the data sample in response to the reliability of the data sample.
Step 1243 may include at least one out of:
a. Preventing a copyback operation when the reliability of the data sample is below a reliability threshold. (1244)
b. Selecting between an execution of a copyback operation and a provision of the data sample to an external flash memory controller based upon the reliability of the data sample (1245).
c. Determining an allocation of the flash memory cell based upon the reliability of the data sample (1246).
Method 1300 may start by steps 1310 and 1320.
Step 1310 may include performing a first attempt, during a first gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first value to a second value. See, for example, an attempt to change the gate voltage to equal first target level 831 of
Step 1310 may be followed by steps 1320 and 1330.
Step 1320 may include sampling, by a sampling circuit that belongs to the die, an output signal of the flash memory cell multiple times during the first voltage gate change period to provide multiple first samples. See, for example sampling points 821 of
Steps 1310 and 1320 may be followed by step 1330 of defining a first given sample of the first multiple samples as a first data sample that represents data stored in the flash memory cell and determining, by a processor that belongs to the die, a reliability of the first data sample based on one or more samples of the first multiple samples that differ from the first given sample.
Steps 1310 and 1320 (or step 1330) may be followed by steps 1410 and 1420.
Step 1410 may include performing a second attempt, during a second gate voltage change period, to change a value of a gate voltage of the flash memory cell from a first intermediate value to a third value. The second attempt starts before a completion of the first attempt and when the gate voltage of the flash memory cell reached the first intermediate value. Referring to
Step 1420 may include sampling, by a sampling circuit that belongs to the die, an output signal of the flash memory cell multiple times during the second voltage gate change period to provide multiple second samples.
Steps 1410 and 1420 may be followed by step 1430 of defining a second given sample of the second multiple samples as a second data sample that represents the data stored in the flash memory cell and determining, by the processor, a reliability of the second data sample based on one or more samples of the second multiple samples that differ from the second given sample.
Steps 1410 and 1420 and/or step 1430 may be followed by steps 1410 and 1420 multiple times.
Step 1430 may be executed for multiple iterations of steps 1410 and 1420 after the completion of the multiple iterations or during the multiple iterations.
It is noted that step 1330 and/or step 1430 may be followed by step 1230 of responding to the reliability of the data sample taken during corresponding steps 1320 and 1420.
Method 1300 may be executed for multiple flash memory cells—in a sequential and/or parallel manner. For example—flash memory cells of a row of flash memory cells of a flash memory cell array may be undergo method 1300 at the same time.
Each one of steps 1330 and 1430 may include at least one out of:
1) Determining of the reliability comprises searching for a difference between the multiple samples.
2) Assigning a reliability score that is responsive to an order, within the multiple samples, of a first sample that differs from a preceding sample.
3) Assigning a reliability score that represents a decrease in reliability with an increase in the order of the first sample.
4) Assigning a first reliability score when all the samples have a same value. Assigning a second reliability score when one of the multiple samples differs from another sample. The second reliability score is indicative of a lower reliability than the first reliability score.
The invention may also be implemented in a computer program for running on a computer system, at least including code portions for performing steps of a method according to the invention when run on a programmable apparatus, such as a computer system or enabling a programmable apparatus to perform functions of a device or system according to the invention. The computer program may cause the storage system to allocate disk drives to disk drive groups.
A computer program is a list of instructions such as a particular application program and/or an operating system. The computer program may for instance include one or more of: a subroutine, a function, a procedure, an object method, an object implementation, an executable application, an applet, a servlet, a source code, an object code, a shared library/dynamic load library and/or other sequence of instructions designed for execution on a computer system.
The computer program may be stored internally on a non-transitory computer readable medium. All or some of the computer program may be provided on computer readable media permanently, removably or remotely coupled to an information processing system. The computer readable media may include, for example and without limitation, any number of the following: magnetic storage media including disk and tape storage media; optical storage media such as compact disk media (e.g., CD-ROM, CD-R, etc.) and digital video disk storage media; nonvolatile memory storage media including semiconductor-based memory units such as FLASH memory, EEPROM, EPROM, ROM; ferromagnetic digital memories; MRAM; volatile storage media including registers, buffers or caches, main memory, RAM, etc.
A computer process typically includes an executing (running) program or portion of a program, current program values and state information, and the resources used by the operating system to manage the execution of the process. An operating system (OS) is the software that manages the sharing of the resources of a computer and provides programmers with an interface used to access those resources. An operating system processes system data and user input, and responds by allocating and managing tasks and internal system resources as a service to users and programs of the system.
The computer system may for instance include at least one processing unit, associated memory and a number of input/output (I/O) devices. When executing the computer program, the computer system processes information according to the computer program and produces resultant output information via I/O devices.
In the foregoing specification, the invention has been described with reference to specific examples of embodiments of the invention. It will, however, be evident that various modifications and changes may be made therein without departing from the broader spirit and scope of the invention as set forth in the appended claims.
Moreover, the terms “front,” “back,” “top,” “bottom,” “over,” “under” and the like in the description and in the claims, if any, are used for descriptive purposes and not necessarily for describing permanent relative positions. It is understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the invention described herein are, for example, capable of operation in other orientations than those illustrated or otherwise described herein.
Those skilled in the art will recognize that the boundaries between logic blocks are merely illustrative and that alternative embodiments may merge logic blocks or circuit elements or impose an alternate decomposition of functionality upon various logic blocks or circuit elements. Thus, it is to be understood that the architectures depicted herein are merely exemplary, and that in fact many other architectures may be implemented which achieve the same functionality.
Any arrangement of components to achieve the same functionality is effectively “associated” such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality may be seen as “associated with” each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality.
Furthermore, those skilled in the art will recognize that boundaries between the above described operations merely illustrative. The multiple operations may be combined into a single operation, a single operation may be distributed in additional operations and operations may be executed at least partially overlapping in time. Moreover, alternative embodiments may include multiple instances of a particular operation, and the order of operations may be altered in various other embodiments.
Also for example, in one embodiment, the illustrated examples may be implemented as circuitry located on a single integrated circuit or within a same device. Alternatively, the examples may be implemented as any number of separate integrated circuits or separate devices interconnected with each other in a suitable manner.
Also for example, the examples, or portions thereof, may implemented as soft or code representations of physical circuitry or of logical representations convertible into physical circuitry, such as in a hardware description language of any appropriate type.
Also, the invention is not limited to physical devices or units implemented in non-programmable hardware but can also be applied in programmable devices or units able to perform the desired device functions by operating in accordance with suitable program code, such as mainframes, minicomputers, servers, workstations, personal computers, notepads, personal digital assistants, electronic games, automotive and other embedded systems, cell phones and various other wireless devices, commonly denoted in this application as ‘computer systems’.
However, other modifications, variations and alternatives are also possible. The specifications and drawings are, accordingly, to be regarded in an illustrative rather than in a restrictive sense.
In the claims, any reference signs placed between parentheses shall not be construed as limiting the claim. The word ‘comprising’ does not exclude the presence of other elements or steps then those listed in a claim. Furthermore, the terms “a” or “an,” as used herein, are defined as one or more than one. Also, the use of introductory phrases such as “at least one” and “one or more” in the claims should not be construed to imply that the introduction of another claim element by the indefinite articles “a” or “an” limits any particular claim containing such introduced claim element to inventions containing only one such element, even when the same claim includes the introductory phrases “one or more” or “at least one” and indefinite articles such as “a” or “an.” The same holds true for the use of definite articles. Unless stated otherwise, terms such as “first” and “second” are used to arbitrarily distinguish between the elements such terms describe. Thus, these terms are not necessarily intended to indicate temporal or other prioritization of such elements The mere fact that certain measures are recited in mutually different claims does not indicate that a combination of these measures cannot be used to advantage.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those of ordinary skill in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims priority from U.S. provisional patent Ser. No. 62/188,672, filed on Jul. 5, 2015, which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4430701 | Christian et al. | Feb 1984 | A |
4463375 | Macovski | Jul 1984 | A |
4584686 | Fritze | Apr 1986 | A |
4589084 | Fling et al. | May 1986 | A |
4777589 | Boettner et al. | Oct 1988 | A |
4866716 | Weng | Sep 1989 | A |
5003597 | Merkle | Mar 1991 | A |
5077737 | Leger et al. | Dec 1991 | A |
5297153 | Baggen et al. | Mar 1994 | A |
5305276 | Uenoyama | Apr 1994 | A |
5592641 | Doyle et al. | Jan 1997 | A |
5623620 | Alexis et al. | Apr 1997 | A |
5640529 | Hasbun | Jun 1997 | A |
5657332 | Auclair et al. | Aug 1997 | A |
5663901 | Harari et al. | Sep 1997 | A |
5724538 | Morris | Mar 1998 | A |
5729490 | Calligaro et al. | Mar 1998 | A |
5740395 | Wells | Apr 1998 | A |
5745418 | Hu et al. | Apr 1998 | A |
5778430 | Ish | Jul 1998 | A |
5793774 | Usui et al. | Aug 1998 | A |
5920578 | Zook et al. | Jul 1999 | A |
5926409 | Engh et al. | Jul 1999 | A |
5933368 | Hu et al. | Aug 1999 | A |
5956268 | Lee | Sep 1999 | A |
5956473 | Hu et al. | Sep 1999 | A |
5968198 | Balachandran | Oct 1999 | A |
5982659 | Irrinki et al. | Nov 1999 | A |
6011741 | Harari et al. | Jan 2000 | A |
6016275 | Han | Jan 2000 | A |
6038634 | Ji et al. | Mar 2000 | A |
6081878 | Estakhri | Jun 2000 | A |
6094465 | Stein et al. | Jul 2000 | A |
6119245 | Hiratsuka | Sep 2000 | A |
6182261 | Haller et al. | Jan 2001 | B1 |
6192497 | Yang et al. | Feb 2001 | B1 |
6195287 | Hirano | Feb 2001 | B1 |
6199188 | Shen et al. | Mar 2001 | B1 |
6209114 | Wolf et al. | Mar 2001 | B1 |
6259627 | Wong | Jul 2001 | B1 |
6272052 | Miyauchi | Aug 2001 | B1 |
6278633 | Wong et al. | Aug 2001 | B1 |
6279133 | Vafai et al. | Aug 2001 | B1 |
6301151 | Engh et al. | Oct 2001 | B1 |
6370061 | Yachareni et al. | Apr 2002 | B1 |
6374383 | Weng | Apr 2002 | B1 |
6504891 | Chevallier | Jan 2003 | B1 |
6532169 | Mann et al. | Mar 2003 | B1 |
6532556 | Wong et al. | Mar 2003 | B1 |
6553533 | Demura et al. | Apr 2003 | B2 |
6560747 | Weng | May 2003 | B1 |
6637002 | Weng et al. | Oct 2003 | B1 |
6639865 | Kwon | Oct 2003 | B2 |
6674665 | Mann et al. | Jan 2004 | B1 |
6675281 | Oh | Jan 2004 | B1 |
6704902 | Shinbashi et al. | Mar 2004 | B1 |
6751766 | Guterman et al. | Jun 2004 | B2 |
6772274 | Estakhri | Aug 2004 | B1 |
6781910 | Smith | Aug 2004 | B2 |
6792569 | Cox et al. | Sep 2004 | B2 |
6873543 | Smith et al. | Mar 2005 | B2 |
6891768 | Smith et al. | May 2005 | B2 |
6914809 | Hilton et al. | Jul 2005 | B2 |
6915477 | Gollamudi et al. | Jul 2005 | B2 |
6952365 | Gonzalez et al. | Oct 2005 | B2 |
6961890 | Smith | Nov 2005 | B2 |
6968421 | Conley | Nov 2005 | B2 |
6990012 | Smith et al. | Jan 2006 | B2 |
6996004 | Fastow et al. | Feb 2006 | B1 |
6999854 | Roth | Feb 2006 | B2 |
7010739 | Feng et al. | Mar 2006 | B1 |
7012835 | Gonzalez et al. | Mar 2006 | B2 |
7038950 | Hamilton et al. | May 2006 | B1 |
7068539 | Guterman et al. | Jun 2006 | B2 |
7079436 | Perner et al. | Jul 2006 | B2 |
7149950 | Spencer et al. | Dec 2006 | B2 |
7177977 | Chen et al. | Feb 2007 | B2 |
7188228 | Chang et al. | Mar 2007 | B1 |
7191379 | Adelmann et al. | Mar 2007 | B2 |
7196946 | Chen et al. | Mar 2007 | B2 |
7203874 | Roohparvar | Apr 2007 | B2 |
7212426 | Park | May 2007 | B2 |
7290203 | Emma et al. | Oct 2007 | B2 |
7292365 | Knox | Nov 2007 | B2 |
7301928 | Nakabayashi et al. | Nov 2007 | B2 |
7315916 | Bennett | Jan 2008 | B2 |
7388781 | Litsyn | Jun 2008 | B2 |
7395404 | Gorobets et al. | Jul 2008 | B2 |
7441067 | Gorobets et al. | Oct 2008 | B2 |
7443729 | Li | Oct 2008 | B2 |
7450425 | Aritome | Nov 2008 | B2 |
7454670 | Kim et al. | Nov 2008 | B2 |
7466575 | Shalvi et al. | Dec 2008 | B2 |
7533328 | Alrod et al. | May 2009 | B2 |
7558109 | Brandman et al. | Jul 2009 | B2 |
7593263 | Sokolov et al. | Sep 2009 | B2 |
7610433 | Randell et al. | Oct 2009 | B2 |
7613043 | Cornwell | Nov 2009 | B2 |
7619922 | Li | Nov 2009 | B2 |
7697326 | Sommer et al. | Apr 2010 | B2 |
7706182 | Shalvi et al. | Apr 2010 | B2 |
7716538 | Gonzalez | May 2010 | B2 |
7804718 | Kim | Sep 2010 | B2 |
7805663 | Brandman et al. | Sep 2010 | B2 |
7805664 | Yang et al. | Sep 2010 | B1 |
7844877 | Litsyn et al. | Nov 2010 | B2 |
7911848 | Eun | Mar 2011 | B2 |
7961797 | Yang et al. | Jun 2011 | B1 |
7975192 | Sommer | Jul 2011 | B2 |
8020073 | Emma et al. | Sep 2011 | B2 |
8108590 | Chow et al. | Jan 2012 | B2 |
8122328 | Liu et al. | Feb 2012 | B2 |
8159881 | Yang | Apr 2012 | B2 |
8190961 | Yang | May 2012 | B1 |
8250324 | Haas | Aug 2012 | B2 |
8300823 | Bojinov | Oct 2012 | B2 |
8305812 | Levy | Nov 2012 | B2 |
8327246 | Weingarten | Dec 2012 | B2 |
8407560 | Ordentlich | Mar 2013 | B2 |
8417893 | Khmelnitsky | Apr 2013 | B2 |
9411669 | Reddy | Aug 2016 | B2 |
20010034815 | Dugan et al. | Oct 2001 | A1 |
20020063774 | Hillis et al. | May 2002 | A1 |
20020085419 | Kwon et al. | Jul 2002 | A1 |
20020154769 | Petersen et al. | Oct 2002 | A1 |
20020156988 | Toyama | Oct 2002 | A1 |
20020174156 | Birru | Nov 2002 | A1 |
20030014582 | Nakanishi | Jan 2003 | A1 |
20030065876 | Lasser | Apr 2003 | A1 |
20030101404 | Zhao et al. | May 2003 | A1 |
20030105620 | Bowen | Jun 2003 | A1 |
20030177300 | Lee | Sep 2003 | A1 |
20030192007 | Miller et al. | Oct 2003 | A1 |
20040015771 | Lasser et al. | Jan 2004 | A1 |
20040030971 | Tanaka et al. | Feb 2004 | A1 |
20040059768 | Denk | Mar 2004 | A1 |
20040080985 | Chang et al. | Apr 2004 | A1 |
20040153722 | Lee | Aug 2004 | A1 |
20040153817 | Norman et al. | Aug 2004 | A1 |
20040181735 | Xin | Sep 2004 | A1 |
20040203591 | Lee | Oct 2004 | A1 |
20040210706 | In et al. | Oct 2004 | A1 |
20050013165 | Ban | Jan 2005 | A1 |
20050018482 | Cemea et al. | Jan 2005 | A1 |
20050083735 | Chen et al. | Apr 2005 | A1 |
20050117401 | Chen et al. | Jun 2005 | A1 |
20050120265 | Pline et al. | Jun 2005 | A1 |
20050128811 | Kato et al. | Jun 2005 | A1 |
20050138533 | Le-Bars et al. | Jun 2005 | A1 |
20050144213 | Simkins et al. | Jun 2005 | A1 |
20050144368 | Chung et al. | Jun 2005 | A1 |
20050169057 | Shibata et al. | Aug 2005 | A1 |
20050172179 | Brandenberger et al. | Aug 2005 | A1 |
20050213393 | Lasser | Sep 2005 | A1 |
20050243626 | Ronen | Nov 2005 | A1 |
20060059406 | Micheloni et al. | Mar 2006 | A1 |
20060059409 | Lee | Mar 2006 | A1 |
20060064537 | Oshima | Mar 2006 | A1 |
20060101193 | Murin | May 2006 | A1 |
20060195651 | Estakhri | Aug 2006 | A1 |
20060203587 | Li et al. | Sep 2006 | A1 |
20060221692 | Chen | Oct 2006 | A1 |
20060248434 | Radke et al. | Nov 2006 | A1 |
20060268608 | Noguchi et al. | Nov 2006 | A1 |
20060282411 | Fagin et al. | Dec 2006 | A1 |
20060284244 | Forbes | Dec 2006 | A1 |
20060294312 | Walmsley | Dec 2006 | A1 |
20070025157 | Wan et al. | Feb 2007 | A1 |
20070063180 | Asano et al. | Mar 2007 | A1 |
20070081388 | Joo | Apr 2007 | A1 |
20070098069 | Gordon | May 2007 | A1 |
20070103992 | Sakui et al. | May 2007 | A1 |
20070104004 | So et al. | May 2007 | A1 |
20070109858 | Conley et al. | May 2007 | A1 |
20070124652 | Litsyn et al. | May 2007 | A1 |
20070140006 | Chen | Jun 2007 | A1 |
20070143561 | Gorobets | Jun 2007 | A1 |
20070150694 | Chang et al. | Jun 2007 | A1 |
20070168625 | Cornwell et al. | Jul 2007 | A1 |
20070171714 | Wu et al. | Jul 2007 | A1 |
20070171730 | Ramamoorthy et al. | Jul 2007 | A1 |
20070180346 | Murin | Aug 2007 | A1 |
20070223277 | Tanaka et al. | Sep 2007 | A1 |
20070226582 | Tang et al. | Sep 2007 | A1 |
20070226592 | Radke | Sep 2007 | A1 |
20070228449 | Takano et al. | Oct 2007 | A1 |
20070253249 | Kang et al. | Nov 2007 | A1 |
20070253250 | Shibata et al. | Nov 2007 | A1 |
20070263439 | Cornwell et al. | Nov 2007 | A1 |
20070266291 | Toda et al. | Nov 2007 | A1 |
20070271494 | Gorobets | Nov 2007 | A1 |
20070297226 | Mokhlesi | Dec 2007 | A1 |
20080010581 | Alrod et al. | Jan 2008 | A1 |
20080028014 | Hilt et al. | Jan 2008 | A1 |
20080049497 | Mo | Feb 2008 | A1 |
20080055989 | Lee et al. | Mar 2008 | A1 |
20080082897 | Brandman et al. | Apr 2008 | A1 |
20080092026 | Brandman et al. | Apr 2008 | A1 |
20080104309 | Cheon et al. | May 2008 | A1 |
20080112238 | Kim | May 2008 | A1 |
20080116509 | Harari et al. | May 2008 | A1 |
20080126686 | Sokolov et al. | May 2008 | A1 |
20080127104 | Li et al. | May 2008 | A1 |
20080128790 | Jung | Jun 2008 | A1 |
20080130341 | Shalvi et al. | Jun 2008 | A1 |
20080137413 | Kong et al. | Jun 2008 | A1 |
20080137414 | Park et al. | Jun 2008 | A1 |
20080141043 | Flynn et al. | Jun 2008 | A1 |
20080148115 | Sokolov et al. | Jun 2008 | A1 |
20080158958 | Shalvi et al. | Jul 2008 | A1 |
20080159059 | Moyer | Jul 2008 | A1 |
20080162079 | Astigarraga et al. | Jul 2008 | A1 |
20080168216 | Lee | Jul 2008 | A1 |
20080168320 | Cassuto et al. | Jul 2008 | A1 |
20080181001 | Shalvi | Jul 2008 | A1 |
20080198650 | Shalvi et al. | Aug 2008 | A1 |
20080198652 | Shalvi et al. | Aug 2008 | A1 |
20080201620 | Gollub | Aug 2008 | A1 |
20080209114 | Chow et al. | Aug 2008 | A1 |
20080219050 | Shalvi et al. | Sep 2008 | A1 |
20080225599 | Chae | Sep 2008 | A1 |
20080250195 | Chow et al. | Oct 2008 | A1 |
20080263262 | Sokolov et al. | Oct 2008 | A1 |
20080270072 | Sukegawa | Oct 2008 | A1 |
20080282106 | Shalvi et al. | Nov 2008 | A1 |
20080285351 | Shlick et al. | Nov 2008 | A1 |
20080301532 | Uchikawa et al. | Dec 2008 | A1 |
20090024905 | Shalvi et al. | Jan 2009 | A1 |
20090027961 | Park | Jan 2009 | A1 |
20090043951 | Shalvi et al. | Feb 2009 | A1 |
20090046507 | Aritome | Feb 2009 | A1 |
20090072303 | Prall et al. | Mar 2009 | A9 |
20090091979 | Shalvi | Apr 2009 | A1 |
20090103358 | Sommer et al. | Apr 2009 | A1 |
20090106485 | Anholt | Apr 2009 | A1 |
20090113275 | Chen et al. | Apr 2009 | A1 |
20090125671 | Flynn et al. | May 2009 | A1 |
20090132755 | Radke | May 2009 | A1 |
20090144598 | Yoon | Jun 2009 | A1 |
20090144600 | Perlmutter et al. | Jun 2009 | A1 |
20090150599 | Bennett | Jun 2009 | A1 |
20090150748 | Egner et al. | Jun 2009 | A1 |
20090157964 | Kasorla et al. | Jun 2009 | A1 |
20090158126 | Perlmutter et al. | Jun 2009 | A1 |
20090168524 | Golov et al. | Jul 2009 | A1 |
20090187803 | Anholt et al. | Jul 2009 | A1 |
20090199074 | Sommer | Aug 2009 | A1 |
20090213653 | Perlmutter et al. | Aug 2009 | A1 |
20090213654 | Perlmutter et al. | Aug 2009 | A1 |
20090228761 | Perlmutter et al. | Sep 2009 | A1 |
20090240872 | Perlmutter et al. | Sep 2009 | A1 |
20090268517 | Murin | Oct 2009 | A1 |
20090282185 | Van Cauwenbergh | Nov 2009 | A1 |
20090282186 | Mokhlesi | Nov 2009 | A1 |
20090287930 | Nagaraja | Nov 2009 | A1 |
20090300269 | Radke et al. | Dec 2009 | A1 |
20090323942 | Sharon | Dec 2009 | A1 |
20100005270 | Jiang | Jan 2010 | A1 |
20100025811 | Bronner et al. | Feb 2010 | A1 |
20100030944 | Hinz | Feb 2010 | A1 |
20100058146 | Weingarten et al. | Mar 2010 | A1 |
20100064096 | Weingarten et al. | Mar 2010 | A1 |
20100088557 | Weingarten et al. | Apr 2010 | A1 |
20100091535 | Sommer et al. | Apr 2010 | A1 |
20100095186 | Weingarten | Apr 2010 | A1 |
20100110787 | Shalvi et al. | May 2010 | A1 |
20100115376 | Shalvi et al. | May 2010 | A1 |
20100122113 | Weingarten et al. | May 2010 | A1 |
20100124088 | Shalvi et al. | May 2010 | A1 |
20100131580 | Kanter et al. | May 2010 | A1 |
20100131806 | Weingarten et al. | May 2010 | A1 |
20100131809 | Katz | May 2010 | A1 |
20100131826 | Shalvi et al. | May 2010 | A1 |
20100131827 | Sokolov et al. | May 2010 | A1 |
20100131831 | Weingarten et al. | May 2010 | A1 |
20100146191 | Katz | Jun 2010 | A1 |
20100146192 | Weingarten et al. | Jun 2010 | A1 |
20100149881 | Lee et al. | Jun 2010 | A1 |
20100172179 | Gorobets et al. | Jul 2010 | A1 |
20100174853 | Lee | Jul 2010 | A1 |
20100180073 | Weingarten et al. | Jul 2010 | A1 |
20100199149 | Weingarten | Aug 2010 | A1 |
20100211724 | Weingarten | Aug 2010 | A1 |
20100211833 | Weingarten | Aug 2010 | A1 |
20100211856 | Weingarten | Aug 2010 | A1 |
20100241793 | Sugimoto | Sep 2010 | A1 |
20100246265 | Moschiano et al. | Sep 2010 | A1 |
20100251066 | Radke | Sep 2010 | A1 |
20100253555 | Weingarten et al. | Oct 2010 | A1 |
20100257309 | Barsky et al. | Oct 2010 | A1 |
20100269008 | Leggette | Oct 2010 | A1 |
20100293321 | Weingarten | Nov 2010 | A1 |
20100318724 | Yeh | Dec 2010 | A1 |
20110051521 | Levy et al. | Mar 2011 | A1 |
20110055461 | Steiner et al. | Mar 2011 | A1 |
20110093650 | Kwon et al. | Apr 2011 | A1 |
20110096612 | Steiner et al. | Apr 2011 | A1 |
20110099460 | Dusija et al. | Apr 2011 | A1 |
20110119562 | Steiner et al. | May 2011 | A1 |
20110153919 | Sabbag | Jun 2011 | A1 |
20110161775 | Weingarten | Jun 2011 | A1 |
20110194353 | Hwang | Aug 2011 | A1 |
20110209028 | Post | Aug 2011 | A1 |
20110214029 | Steiner et al. | Sep 2011 | A1 |
20110214039 | Steiner et al. | Sep 2011 | A1 |
20110246792 | Weingarten | Oct 2011 | A1 |
20110246852 | Sabbag | Oct 2011 | A1 |
20110252187 | Segal et al. | Oct 2011 | A1 |
20110252188 | Weingarten | Oct 2011 | A1 |
20110271043 | Segal et al. | Nov 2011 | A1 |
20110302428 | Weingarten | Dec 2011 | A1 |
20120001778 | Steiner et al. | Jan 2012 | A1 |
20120005554 | Steiner et al. | Jan 2012 | A1 |
20120005558 | Steiner et al. | Jan 2012 | A1 |
20120005560 | Steiner et al. | Jan 2012 | A1 |
20120008401 | Katz et al. | Jan 2012 | A1 |
20120008414 | Katz et al. | Jan 2012 | A1 |
20120017136 | Ordentlich et al. | Jan 2012 | A1 |
20120051144 | Weingarten et al. | Mar 2012 | A1 |
20120063227 | Weingarten et al. | Mar 2012 | A1 |
20120066441 | Weingarten | Mar 2012 | A1 |
20120110250 | Sabbag et al. | May 2012 | A1 |
20120124273 | Goss et al. | May 2012 | A1 |
20120246391 | Meir | Sep 2012 | A1 |
20150012802 | Avila | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
WO2009053963 | Apr 2009 | WO |
Entry |
---|
Search Report of PCT Patent Application WO 2009/118720 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/095902 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/078006 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/074979 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/074978 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/072105 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/072104 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/072103 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/072102 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/072101 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/072100 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/053963 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/053962 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/053961 A3, dated Mar. 4, 2010. |
Search Report of PCT Patent Application WO 2009/037697 A3, dated Mar. 4, 2010. |
Yani Chen, Kcshab K. Parhi, “Small Area Parallel Chien Search Architectures for Long BCH Codes”, Ieee Transactions on Very Large Scale Integration(VLSI) Systems, vol. 12, No. 5, May 2004. |
Yuejian Wu, “Low Power Decoding of BCH Codes”, Nortel Networks, Ottawa, Ont., Canada, in Circuits and systems, 2004. ISCAS '04. Proceeding of the 2004 International Symposium on Circuits and Systems, published May 23-26, 2004, vol. 2, pp. II-369-II372 vol. 2. |
Michael Purser, “Introduction to Error Correcting Codes”, Artech House Inc., 1995. |
Ron M. Roth, “Introduction to Coding Theory”, Cambridge University Press, 2006. |
Akash Kumar, Sergei Sawitzki, “High-Throughput and Low Power Architectures for Reed Solomon Decoder”, (a.kumar at tue.nl, Eindhoven University of Technology and sergei.sawitzki at philips.com), Oct. 2005. |
Todd K.Moon, “Error Correction Coding Mathematical Methods and Algorithms”, A John Wiley & Sons, Inc., 2005. |
Richard E. Blahut, “Algebraic Codes for Data Transmission”, Cambridge University Press, 2003. |
David Esseni, Bruno Ricco, “Trading-Off Programming Speed and Current Absorption in Flash Memories with the Ramped-Gate Programming Technique”, Ieee Transactions on Electron Devices, vol. 47, No. 4, Apr. 2000. |
Giovanni Campardo, Rino Micheloni, David Novosel, “VLSI-Design of Non-Volatile Memories”, Springer Berlin Heidelberg New York, 2005. |
John G. Proakis, “Digital Communications”, 3rd ed., New York: McGraw-Hill, 1995. |
J.M. Portal, H. Aziza, D. Nee, “EEPROM Memory: Threshold Voltage Built in Self Diagnosis”, ITC International Test Conference, Paper 2.1, Feb. 2005. |
J.M. Portal, H. Aziza, D. Nee, “EEPROM Diagnosis Based on Threshold Voltage Embedded Measurement”, Journal of Electronic Testing: Theory and Applications 21, 33-42, 2005. |
G. Tao, A. Scarpa, J. Dijkstra, W. Stidl, F. Kuper, “Data retention prediction for modern floating gate non-volatile memories”, Microelectronics Reliability 40 (2000), 1561-1566. |
T. Hirncno, N. Matsukawa, H. Hazama, K. Sakui, M. Oshikiri, K. Masuda, K. Kanda, Y. Itoh, J. Miyamoto, “A New Technique for Measuring Threshold Voltage Distribution in Flash EEPROM Devices”, Proc. IEEE 1995 Int. Conference on Microelectronics Test Structures, vol. 8, Mar. 1995. |
Boaz Eitan, Guy Cohen, Assaf Shappir, Eli Lusky, Amichai Givant, Meir Janai, Ilan Bloom, Yan Polansky, Oleg Dadashev, Avi Lavan, Ran Sahar, Eduardo Maayan, “4-bit per Cell NROM Reliability”, Appears on the website of Saifun.com , 2005. |
Paulo Cappelletti, Clara Golla, Piero Olivo, Enrico Zanoni, “Flash Memories”, Kluwer Academic Publishers, 1999. |
Jedec Standard, “Stress-Test-Driven Qualification of Integrated Circuits”, JEDEC Solid State Technology Association. JEDEC Standard No. 47F pp. 1-26, Dec. 2007. |
Dempster, et al., “Maximum Likelihood from Incomplete Data via the EM Algorithm”, Journal of the Royal Statistical Society. Series B (Methodological), vol. 39, No. 1 (1997), pp. 1-38. |
Mielke, et al., “Flash EEPROM Threshold Instabilities due to Charge Trapping During Program/Erase Cycling”, IEEE Transactions on Device and Materials Reliability, vol. 4, No. 3, Sep. 2004, pp. 335-344. |
Daneshbeh, “Bit Serial Systolic Architectures for Multiplicative Inversion and Division over GF (2)”, A thesis presented to the University of Waterloo, Ontario, Canada, 2005, pp. 1-118. |
Chen, Formulas for the solutions of Quadratic Equations over GF (2), IEEE Trans. Inform. Theory, vol. IT-28, No. 5, Sep. 1982, pp. 792-794. |
Berlekamp et al., “On the Solution of Algebraic Equations over Finite Fields”, Inform. Cont. 10, Oct. 1967, pp. 553-564. |
Number | Date | Country | |
---|---|---|---|
62188672 | Jul 2015 | US |