The present invention generally relates to flash memory devices and methods for fabricating flash memory devices, and more particularly relates to memory devices with increased channel mobility and methods for fabricating the same.
A type of commercially available flash memory product is a MirrorBit® memory device available from Spansion, LLC, located in Sunnyvale, Calif. A MirrorBit cell effectively doubles the intrinsic density of a flash memory array by storing two physically distinct bits on opposite sides of a memory cell. Each bit within a cell can be programmed with a binary unit of data (either a logic one or zero) that is mapped directly to the memory array.
An exemplary MirrorBit® memory device 10, illustrated in
A dual bit memory cell 34 is programmed utilizing a hot electron injection technique. More specifically, programming of the first bit 28 of memory cell 34 comprises injecting electrons into the charge trapping layer 20 while applying a bias between bit lines 14 and 16 and applying a high voltage to the control gate 26. In an exemplary embodiment, this may be accomplished by grounding bit line 16 and applying approximately 5 V to bit line 14 and approximately 10 V to the control gate 26. The voltage on the control gate 26 inverts a channel region 36 while the bias accelerates electrons from bit line 14 into the channel region 36 towards bit line 16. The 4.5 eV to 5 eV kinetic energy gain of the electrons is more than sufficient to surmount the 3.1 eV to 3.5 eV energy barrier at channel region 36/tunnel oxide layer 22 interface and, while the electrons are accelerated towards source/drain region 16, the field caused by the high voltage on control gate 26 redirects the electrons towards the charge trapping layer of first bit 28. Those electrons that cross the interface into the charge trapping layer remain trapped for later reading.
Similarly, programming the second bit 30 by hot electron injection into the charge trapping layer 20 comprises applying a bias between bit lines 16 and 14 while applying a high voltage to the control gate 26. This may be accomplished by grounding bit line 14 and applying approximately 5V to bit line 16 and approximately 10 V to the control gate 26. The voltage on the control gate 26 inverts the channel region 36 while the bias accelerates electrons from bit line 16 into the channel region 36 towards bit line 14. The field caused by the high voltage on control gate 26 redirects the electrons towards the charge trapping layer of second bit 30. Those electrons that cross the interface into charge trapping layer 20 of second bit 30 remain trapped for later reading.
With advances in semiconductor process technology, the trend is toward smaller semiconductor devices, including memory devices, that have increased performance and capabilities. As electronic devices approach the 45 nm size and even smaller sizes, devices with increased operating speed and increased operating range are desired. However, such advances should come without adding significant complexity to the manufacture of the devices and without adding significant cost to the manufacture of the devices.
Accordingly, it is desirable to provide a flash memory device with increased operating speed that can be scaled in size. In addition, it is desirable to provide a flash memory device with increased operating speed that can be fabricated without significant additional complexity and/or cost. It also is desirable to provide methods for fabricating such flash memory devices. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description of the invention and the appended claims, taken in conjunction with the accompanying drawings and this background of the invention.
In accordance with an exemplary embodiment of the invention, a method for fabricating a memory device comprises the steps of fabricating a first gate stack and a second gate stack overlying a P-type silicon substrate and implanting an impurity dopant into the substrate substantially between the first gate stack and the second gate stack to form an impurity-doped region of the substrate. A first channel region underlies the first gate stack adjacent to the impurity-doped region. An intrinsically tensile-stressed insulating member is formed between the first and the second gate stacks and overlying the impurity-doped region. The tensile-stressed insulating member causes a uniaxial lateral tensile stress to be transmitted to the first channel region. A word line is formed overlying the intrinsically tensile-stressed insulating member and in electrical contact with the first gate stack and the second gate stack.
In accordance with another exemplary embodiment of the invention, a method for enhancing the speed of a dual bit memory device comprises the steps of forming a charge trapping layer overlying a P-type silicon substrate, depositing a control gate material layer overlying the charge trapping layer, and etching the control gate material layer and the charge trapping layer to form a first gate stack and a second gate stack. An impurity-doped region is formed in the substrate substantially between the first gate stack and the second gate stack. An intrinsically tensile-stressed insulating member is fabricated between the first and the second gate stacks and overlying the impurity-doped region. The intrinsically tensile-stressed insulating member has an intrinsic tensile stress of at least about 0.5 GPa.
In accordance with a further exemplary embodiment of the present invention, a memory device comprises a P-type silicon substrate, a dielectric-charge trapping-dielectric stack disposed on the substrate, and an N+-doped impurity region disposed within the substrate. A channel region is disposed within the substrate underlying the dielectric-charge trapping-dielectric stack. An intrinsically tensile-stressed insulating member is disposed overlying the N+-doped impurity region. The tensile-stressed insulating member is configured to cause a uniaxial lateral tensile stress to be transmitted to the channel region.
The present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and wherein:
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention.
Referring to
An impurity-doped region 68, otherwise known as a bit line region, is disposed within substrate 56 substantially between first gate stack 52 and second gate stack 54. First memory cell 70 further comprises a first channel region 74 that is disposed in substrate 56 underlying first gate stack 52 and substantially between two bit line regions 68. Similarly, second memory cell 72 further comprises a second channel region 76 that is disposed in substrate 56 underlying second gate stack 54 and substantially between two bit line regions 68.
An intrinsically tensile-stressed insulating member 78 is disposed overlying the bit line regions 68 and between first gate stack 52 and second gate stack 54. The current carrying capability and hence the performance of a memory cell, such as cells 70 and 72, is proportional to the mobility of the majority carrier in the channel of the cell. The mobility of electrons, the majority carrier in a N-channel device, can be increased by imparting a uniaxial lateral tensile stress to the channel. Accordingly, intrinsically tensile-stressed insulating member 78 is fabricated to have a tensile stress, indicated by arrows 80, such that a compressive stress, indicated by arrows 82, is transmitted to the underlying bit line region 68. In turn, the compressive stress of underlying bit line region 68 transmits a uniaxial lateral tensile stress, indicated by arrows 84, to channel regions 74 and 76. This tensile stress causes a lateral stretching or tensile strain of the silicon crystal lattice of the channel regions. This in turn results in an increase in mobility of electrons through the channel regions 74 and 76 and, hence, an increase in speed of the memory cells 70 and 72. In an exemplary embodiment of the invention, the insulating member has an intrinsic tensile stress of at least about 0.5 GPa, preferably at least about 1.5 GPa.
The insulating member 78 may comprise any suitable insulating material, such as, for example, a silicon oxide or a silicon nitride, that has been deposited, treated, or otherwise fabricated to have an intrinsic tensile stress that is greater than a tensile stress that may result as a side effect of conventional oxidation, etch, deposition, or thermal steps. In other words, as used herein, the term “intrinsic tensile stress” means that stress that is intentionally induced in insulating member 78 to cause a tensile stress to be transmitted to channel regions 74 and 76. Memory device 50 further comprises a conductive word line 90 that overlies insulating member 78 and is in electrical communication with gate stacks 52 and 54 of memory cells 70 and 72, respectively.
In accordance with an exemplary embodiment of the present invention,
As illustrated in
A first insulating layer 64, a charge trapping layer 60, and a second insulating layer 62 of a multi-layer dielectric-charge trapping-dielectric stack 58 are formed overlying substrate 56. Preferably insulating layer 64 is a layer of silicon dioxide having a thickness of about 2-10 nanometers (nm), more preferably about 5 nm. Layer 64 can be a thermally grown layer of silicon dioxide or can be deposited, for example, by low pressure chemical vapor deposition (LPCVD). Charge trapping layer 60 can be deposited, for example, to a thickness of about 3 to 20 nm by chemical vapor deposition (CVD), plasma enhanced chemical vapor deposition (PECVD), low pressure chemical vapor deposition (LPCVD), or by atomic layer deposition (ALD). The silicon oxide layers can be deposited, for example, from either a tetraethylorthosilicate (TEOS) or SiH4 (silane) source or can be grown thermally from silicon oxide, silicon nitride, or silicon-rich silicon nitride. The silicon nitride or silicon-rich silicon nitride can be deposited, for example, from the reaction of dichlorosilane and ammonia.
A control gate material layer 86, preferably of polycrystalline silicon or, in the alternative, metal or other conductive material, is deposited overlying the multi-layer stack 58. The layer of polycrystalline silicon can be deposited as an impurity doped layer, but is preferably deposited as undoped polycrystalline silicon and is subsequently impurity doped by ion implantation. A layer 88 of antireflective coating material (ARC) such as silicon oxide, silicon nitride, or silicon oxynitride can be deposited onto the surface of the polycrystalline silicon layer 86 to aid in subsequently patterning the polycrystalline silicon. The polycrystalline material can be deposited to a thickness of about 300 angstroms to about 1400 angstroms by LPCVD by the hydrogen reduction of silane (SiH4). ARC layer 88 can be deposited to a thickness of about 50 nm, also by LPCVD. In an exemplary embodiment of the invention, the ARC layer 88 is patterned using conventional photolithography techniques to form an opening 92.
Referring to
The method in accordance with an embodiment of the invention continues with the formation of an intrinsically tensile-stressed insulating layer 96. As described above, the insulating layer 96 may comprise any suitable insulating material, such as, for example, a silicon oxide or a silicon nitride, that has been deposited, treated, or otherwise fabricated to have an intrinsic tensile stress that is greater than a tensile stress that may result as a side effect of oxidation, etch, deposition, or thermal steps. In other words, as used herein, the term “intrinsic tensile stress” means that stress that is intentionally induced in insulating layer 96 to cause a compressive stress to be transmitted to channel regions 74 and 76.
It will be appreciated that the level of the tensile stress in layer 96 can be controlled by controlling a number of factors including the relative reactant flow rates, deposition pressure, and temperature of the deposition process. For example, the insulating layer may be a nitride film, preferably including silicon nitride (e.g., SiN, SiXNY), a silicon oxide film (SiXOY), or silicon oxynitride film (e.g., SiXOYNZ), where the stoichiometric proportions x, y, and z may be selected according to CVD process variables as are known in the art to achieve a desired tensile stress in a deposited dielectric layer. In a preferred embodiment of the invention, the insulating member is fabricated to have an intrinsic tensile stress of at least about 0.5 GPa, preferably at least about 1.5 GPa.
As illustrated in
The method in accordance with one embodiment of the invention is continued by the removal of a portion of tensile-stressed insulating layer 96 that overlies the control gates 66 of gate stacks 52 and 54, as illustrated in
In another alternative embodiment of the invention, intrinsically tensile-stressed insulating elements 78 can be formed after the removal of portions of the insulating layer. In this regard, a layer of insulating material, such as any of the insulating materials described above for layer 96, is deposited overlying bit line region 68 and gate stacks 52 and 54. Portions of the insulating material layer overlying the control gates 66 are removed and the remaining portions are subjected to a treatment, such as, for example, a plasma or UVTP treatment, that induces the tensile stress in insulating members 78.
The method in accordance with one embodiment of the invention is continued by depositing a blanket layer 92 of polycrystalline silicon or other conductive material in electrical contact with control gates 66 and overlying insulating members 78. The blanket layer is preferably deposited as an impurity doped layer of polycrystalline silicon or can be deposited as a polycrystalline silicon that is subsequently doped by ion implantation. Although not seen in this cross sectional view, blanket layer 92 is photolithographically patterned and etched to form a word line 90 that is electrically coupled to control gates 66 and that is disposed perpendicular to bit line region 68.
Those of skill in the art will appreciate that a completed memory device 50 will include isolation such as shallow trench isolation between devices that need to be electrically isolated, electrical contacts to the bit line regions and to the word lines, bit line drivers, word line drivers, clock circuits, address decoding circuits and/or the like. Fabrication of such structural and circuit elements can be easily integrated with the method for fabricating the memory device structure that has been described herein to fabricate a complete semiconductor memory device.
Accordingly, dual bit memory devices and methods for fabricating dual bit memory devices have been provided. The devices and methods provide for scaled memory devices while enhanced operating speed. While at least one exemplary embodiment has been presented in the foregoing detailed description of the invention, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims and their legal equivalents.