The present invention relates generally to firearms and, more particularly, to a flash hider muzzle device or muzzle brake for firearms that reduces the noise signature of the firearm, concussion, perceived recoil of the firearm, dust signature of the firearm, and muzzle flash.
When a firearm is discharged, the propellant gases that eject the projectile out of the muzzle of the firearm accumulate behind the projectile and, upon exiting the firearm, create a recoil force back towards the shooter. In higher-powered rifles this recoil force may cause discomfort and fatigue to the shooter. In certain cases, this perceived recoil force is sharp and heavy enough to affect the shooter's accuracy. It is desirable, therefore, to provide a firearm having the capability of reducing the recoil force perceived by the shooter.
This discharge of propellant gases may also cause the muzzle end of the barrel to undesirably rise up subsequent to firing. This rising up or climbing effect of the muzzle end of the barrel is commonly known as “muzzle rise” or “muzzle climb.” The primary reason for muzzle climb is the inherent configuration of most firearms. In the majority of firearms, the firing axis of the barrel is above the center of contact between the shooter and the firearm's grip and stock. The forces generated from the projectile being fired, and the propellant gases exiting the muzzle, act directly down the barrel/firing axis of the firearm, back toward the shooter. If this force is above the center of the shooter's contact point on the firearm, this creates a torque, which causes the firearm to rotate about the point of contact and the muzzle end of the barrel to rise upwards.
Muzzle climb is especially undesirable in instances where multiple rounds of ammunition are fired in quick succession, due to the tendency of the firearm to be completely misaligned with respect to the target. As a result of muzzle climb in such instances, the firearm must be re-aimed at the target after each shot as quickly as possible to ensure accuracy. As will be readily appreciated, such re-aiming can cost the shooter precious time. It is desirable, therefore, to provide a firearm where muzzle climb is substantially eliminated or directionally controlled so as to aid, rather than hamper, efficient and accurate rapid firing.
In addition to the above, other undesirable discharge effects are noise and muzzle flash. As a firearm is discharged and a projectile exits the muzzle end of the barrel, hot, high pressure gases are also released from the muzzle behind the projectile. This release of gases is known as muzzle blast. Muzzle flash is the term used to describe the light emitted during the muzzle blast, which can be both visible and infrared. The blast and flash are caused by the combustion products of the gunpowder, and any remaining unburned powder, mixing with ambient air. The size and shape of the muzzle flash is dependent on the type of ammunition being used and the individual characteristics of the firearm.
This discharge of combustion gases also results in a loud noise or concussion propagating in all directions. This noise may be injurious to the shooter and may also be heard by persons or listening devices around the shooter, thereby potentially giving away a shooter's position. It is desirable, therefore, to provide a firearm whose noise signature, concussion, and flash signature is substantially reduced.
To reduce the aforementioned undesirable effects of discharge, “muzzle devices” such as a muzzle brake, may be employed in combination with a firearm. Most known muzzle devices comprise an attachment secured to the muzzle end of a firearm to reduce recoil by redirecting and dissipating propellant gases radially away from the direction of the barrel of the firearm through a series of openings within the attachment. In redirecting the propellant gases to the side and upward from the barrel, some of the gases are directed to the side and rearward towards the shooter. Thus, firearms equipped with conventional muzzle devices can sound much louder to the shooter than the same firearm with no muzzle device. Hence, one must choose a either a firearm with substantial recoil force or firearm with a muzzle device that exhibits increased noise. What is needed, therefore, is a muzzle device that functions to reduce the recoil force felt by the shooter without a substantial increase in noise perceived by the shooter or concussion to those near the shooter.
In addition, while there are known muzzle devices that optimize flash suppression, such muzzle devices are not good for optimizing noise suppression or concussion. Likewise, while there are known muzzle devices that optimize noise suppression, such muzzle devices are not sufficient to optimize flash suppression. As will be readily appreciated by one of ordinary skill in the art, and as evidenced by existing muzzle devices, it is difficult to optimize both flash suppression, concussion, and noise suppression simultaneously. Accordingly, there is a need for an improved muzzle device that can accomplish these sometimes competing objectives simultaneously.
Finally, known firearms, and even firearms with muzzle devices, also tend to create a dust signature when fired, especially when fired in the prone position. As the pressure wave ahead of the projectile propagates in all directions, and as propellant gases behind the projectile exit the muzzle end of the barrel behind the bullet and combust, they impact the ground and kick up dust, dirt and other particulate matter, thereby potentially revealing and compromising the shooter's position. This is especially undesirable in military operations or other instances in which the shooter must remain concealed from the target or others around him.
In view of the problems associated with known firearms and known muzzle devices, there is a need for an improved muzzle device for use with a firearm that reduces the recoil, muzzle flash, noise signature, concussion, and dust signature of the firearm with which it is used.
In view of the foregoing, it is an object of the present invention to provide a muzzle device for use with a firearm that reduces the noise signature of the firearm.
It is another object of the present invention to provide a muzzle device for use with a firearm that reduces the perceived recoil of the firearm.
It is another object of the present invention to provide a muzzle device for use with a firearm that reduces muzzle climb.
It is another object of the present invention to provide a muzzle device for use with a firearm that reduces muzzle flash.
It is another object of the present invention to provide a muzzle device for use with a firearm that optimizes muzzle flash suppression, concussion, and noise suppression simultaneously.
It is another object of the present invention to provide a muzzle device for use with a firearm that reduces the dust signature of the firearm, especially when the firearm is fired from the prone position.
It is another object of the present invention to provide a muzzle device for use with a firearm that aids in protecting the operator when firing the firearm into glass or other material at close range.
According to one aspect of the preferred embodiment of the present invention, there is provided a muzzle device having a generally cylindrical housing adapted for attachment to the muzzle of a firearm. Alternatively, the muzzle device may be integrally formed with the barrel of the firearm. The housing generally defines at least one, but preferably two, internal chambers for permitting passage and exit of a projectile. The housing is further formed to define a plurality of vent ports which collectively define a desired chamber bleed off area.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure, and together with a general description of the disclosure given above, and the detailed description of the embodiments given below, serve to explain the principles of the disclosure.
Other features and advantages of the present disclosure will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, which illustrate, by way of example, the principals of the invention.
As used herein, the directional terms “front,” “forward,” “rear,” “rearward,” “upward,” “downward,” “right,” “left,” “top” and “bottom” refer to the firearm when held in the normal firing position, as would be understood by one of ordinary skill in the art.
A prior art muzzle device 100 for a M4/M16 line of rifles is shown in
Referring generally to
With reference to
As further shown in
Importantly, as discussed in detail below, and as best shown in
As shown in
As best shown in
Each chamber 16,18 has filleted edges 32 where the interior walls of the housing 12 meet the ends of each chamber 16,18. These filleted edges provide for increased strength of the muzzle device 10 as a whole and minimize areas of potential weakness.
As shown in
In operation, when the firearm is fired, the projectile passes through the thread relief 15 and the first chamber 16. The propellant gases behind and pushing the projectile enter the thread relief zone 15 and are disrupted to retard gas movement. The propellant gases then enter the first chamber 16 partially exit through the five ports 20 before the majority of gas enters the large tapered cone of the second chamber 18 where the five slot openings 30 disperse the majority of the remaining propellant gases upwards and to the sides of the muzzle device 10. In particular, the five ports 20 direct high pressure gas over the corresponding five slot openings 30 of the larger tapered cone of the second chamber 18, such that as the accumulation of hot gases and sound energy following the projectile enter the second chamber 18, such gases are further dispersed radially away from the firing axis 24 through slot openings 30. As will be readily appreciated, the slot openings 30 allow passage of powder gases such that they exit from the second chamber 18 upward and to the sides, but not at the bottom of the muzzle device.
Importantly, the ports 20 and slot openings 30 are configured and positioned substantially along the top half of the muzzle device 10 such that the gases are substantially prevented from exiting the muzzle device 10 in a downwards direction. Such a port configuration prevents a dust signature from being created by shooting the firearm close to the ground. In addition, venting the powder gases in a generally upward, vertical direction reduces the recoil of the firearm, as well as aids in reducing muzzle climb.
As noted above, the five oblique ports 20 in the first chamber 16 direct the initial high-pressure gases forward and over the top of the larger elongated slot openings 30 of the second chamber 18. This is done to bias the powder gases from the second chamber forward and upward, away from the shooter and away from anyone to the sides of the shooter, which reduces the noise signature for the shooter and concussion and noise for those to the side of the firearm. These five oblique ports 20 also disrupt the gases from the slot openings 30 and disperse them quicker than existing designs, thereby reducing the flash signature of the firearm and help prevent secondary flash or “blooming.”
Turning now to
Although this invention has been shown and described with respect to the detailed embodiments thereof, it will be understood by those of skill in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed in the above detailed description, but that the invention will include all embodiments falling within the scope of this disclosure.
This application claims the benefit of U.S. Provisional Application No. 61/410,043, filed Nov. 4, 2010, entitled “MUZZLE BRAKE”, the aforementioned application being hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2322370 | Lance | Jun 1943 | A |
3710683 | Kaltmann | Jan 1973 | A |
4392413 | Gwinn, Jr. | Jul 1983 | A |
4869151 | Chahin | Sep 1989 | A |
4893544 | Hawley et al. | Jan 1990 | A |
5063827 | Williamson | Nov 1991 | A |
5092223 | Hudson | Mar 1992 | A |
6425310 | Champion | Jul 2002 | B1 |
7059235 | Hanslick et al. | Jun 2006 | B2 |
7308967 | Hoel | Dec 2007 | B1 |
7870815 | Hung | Jan 2011 | B2 |
7905170 | Brittingham et al. | Mar 2011 | B1 |
8162100 | Shults et al. | Apr 2012 | B2 |
20040173403 | Shafer | Sep 2004 | A1 |
20100163336 | Presz et al. | Jul 2010 | A1 |
20120180352 | Addis | Jul 2012 | A1 |
Entry |
---|
Photograph (date unknown) illustrating a muzzle brake on a BSA Rifle. |
Number | Date | Country | |
---|---|---|---|
20120228052 A1 | Sep 2012 | US |
Number | Date | Country | |
---|---|---|---|
61410043 | Nov 2010 | US |