The invention relates to a flashback protector, and particularly, although not exclusively, to a magnetic flashback protector for a gas turbine engine.
A gas turbine engine comprises a compressor, a combustion chamber and a turbine. The compressor draws in air and pressurises it. This pressurised air is then fed to the combustion chamber where it is combusted with fuel. This causes the temperature and volume of the air to increase. The high-pressure, high-temperature air then expands through the turbine, thereby generating energy.
In the combustion chamber a flame is generated by the combustion of fuel supplied by a fuel-supply line from a fuel tank. It is rare, but possible, for flashback to occur. A flashback is when a flame travels down the fuel-supply line towards the fuel tank. This is obviously dangerous since if the flame reaches the fuel tank an explosion will occur. It is therefore known to use a safety device known as a flashback arrestor to prevent this.
A flashback arrestor is installed in the fuel-supply line between the area of combustion and the fuel tank and is arranged to prevent the flame propagating towards the fuel tank in the event of a flashback. Flashback arrestors can be broadly classified into two types according to the method of operation, these two types being known as active and passive.
One type of active flashback arrestor comprises a temperature-triggered valve located in the fuel-supply line. When a flashback occurs and the hot combustion gases and flame travel towards the fuel tank, the temperature in the region of the valve increases and causes the valve to shut. This prevents the flame from reaching the fuel tank causing an explosion. Active flashback arrestors are suitable for some circumstances but require maintenance since they have moving mechanical parts.
A known type of passive flashback arrestor comprises a metal or ceramic which absorbs heat from a flashback, thus preventing it from propagating towards the fuel tank. However, it is possible for a flame to become stable at the downstream face of the arrestor. This causes the arrestor to be heated. If the arrestor is sufficiently heated the upstream face of the arrestor becomes hot enough to ignite the upstream fuel. This allows the flashback to propagate towards the fuel tank. This is obviously undesirable.
Wet flashback arrestors also exist. These work by forcing the combustion gasses and flame of a flashback through a non-flammable liquid such as water. This works by extinguishing the flame before it reaches the fuel tank.
Prior art flashback arrestors are suitable for some applications. However, they may not be capable of arresting a very hot and violent flashback. They also inevitably place an undesirably large obstruction in the fuel-supply line which causes the fuel flow path to be restricted, thus impending fuel flow. The restricted flow path through the flashback arrestor can also result in the arrestor becoming clogged with gas-borne particles.
The present invention has been derived with these problems in mind.
It is therefore desirable to provide a flashback arrestor that requires little maintenance and that reliably stops a flashback.
According to a first aspect of the present invention there is provided a flashback protector for limiting the propagation of a flame towards a fuel supply, comprising: a downstream side and an upstream side defining a flow path between them; and a magnetic-field generator arranged to generate a magnetic field across the flow path; wherein when in use and a flashback occurs fluid flows in the flow path towards the fuel supply through the magnetic field, which then induces a flow of current in the fluid, thereby generating a force on the fluid in a direction away from the fuel supply. The force prevents the flashback from reaching the fuel supply and therefore prevents an explosion.
Preferably the magnetic-field generator comprises a first pole piece having a cavity within which a second pole piece is located in such a way that an opening is formed between the first and second pole pieces which in use provides the flow path for the fluid and across which the magnetic field is generated, wherein the flow path is in the form of a closed loop in a plane perpendicular to the flow direction such that in use the induced current can flow entirely within the fluid. Because the current flows entirely within the fluid it is not necessary to provide electrodes which would be susceptible to erosion and would need to be replaced periodically. The flow path may be generally annular in a plane perpendicular to the flow direction.
In one embodiment the magnetic-field generator comprises first and second electromagnets, each including a pole piece and a winding. This allows the strength of the magnetic field to be readily controlled.
The magnetic-field generator may comprises first and second permanent magnets. These require no maintenance and therefore may be preferred in some arrangements.
The magnetic-field generator may be arranged to generate a magnetic field that is stronger at a downstream side than an upstream side. This induces a current, and therefore a flashback opposing force, in the fluid at the downstream side.
The invention is also concerned with a gas turbine engine comprising a flashback protector according to any statement herein.
According to a second aspect of the present invention there is provided a method of limiting the propagation of a flame towards a fuel supply, comprising: generating a magnetic field across a flow path defined between a downstream side and an upstream side such that when a flashback occurs fluid flows towards the fuel supply through the magnetic field, which then induces a flow of current in the fluid, thereby generating a force on the fluid in a direction away from the fuel supply.
The fluid may flow in a closed loop in a plane perpendicular to the flow direction so that in use the induced current flows entirely within the fluid. The closed loop may be generally annular.
The magnetic field may be generated by electromagnets and/or permanent magnets. The magnetic field may be stronger at a downstream side than an upstream side.
The invention may comprise any combination of the features and/or limitations referred to herein, except combinations of such features as are mutually exclusive.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
Referring now to
The pole pieces 10, 20 may be made of any suitable material such as a low-loss magnetic material. Examples include laminated electric steels and high-resistivity magnetic materials such as ferrite. Spacers, struts or supports (not shown) may be provided in the gap between the inner pole piece 20 and the outer pole piece 10 in order to maintain the relative positions of the inner and outer pole pieces. The spacers, struts or supports may carry electrical connections to the windings 16, 26.
As shown in
When a flashback occurs, a flame travels from the combustion chamber down the fuel-supply line 80 towards the fuel tank in a second direction 84 opposite to the first direction 82. The flashback causes a mixture of gases comprising combustible fluid and products of combustion to be forced down the supply line 80 towards the fuel tank. The flame is considered to be a region where combustion of the combustible fluid occurs and can therefore be considered to be a flow of combusting fluid.
In essence, the flashback causes combustible, combusting and combusted fluid to flow towards the fuel tank in the second direction. The term ‘flashback fluid’ will be used to refer to a fluid flow towards the fuel tank that results from a flashback. As a result of the heat generated by combustion, the flashback fluid undergoes thermal ionization. This means that the flashback fluid is capable of conducting current.
When the flashback fluid reaches the flashback protector it flows through the annular opening 30 from the downstream side 34. With reference to
The flashback fluid flows perpendicularly through the magnetic field 40 in the annular gap 30. Since the flashback fluid is an ionized gas, a current 50 is induced in the fluid in a direction mutually perpendicular to the flow direction 84 (which is towards the fuel tank). As shown in
The annular current flows 50, 52 interact with the magnetic field to produce a Lorentz force on the flashback fluid. This force is perpendicular to the current flow 50 and to the magnetic field 40 and is in a direction away from the fuel tank. This Lorentz force 86 prevents the flashback from propagating towards the fuel tank and hence prevents an explosion from occurring.
The flashback protector 1 has a relatively large flow path through it created by the annular opening 30. The fuel flow through the protector is therefore not significantly impeded. Further, the size of the flow path means that the flashback protector is less vulnerable to clogging when compared to those of the prior art. Additionally, because no material is placed in the way of the fuel flow path the flashback protector 1 is more tolerant of high-temperature flashbacks.
The magnitude of the Lorentz force can be altered by changing the strength of the magnetic field 40 in the annular opening 30. This can be done by changing the current supplied to the windings 16, 26.
In order to simplify the electrical connections, electrical winding 26 may be omitted. This would overcome the difficulty of supplying electrical power to windings on the inner pole piece 20 via electrical connections that would have to pass through the gap between the outer pole piece 10 and the inner pole piece 20. The magnetic field between the outer pole piece 10 and the inner pole piece 20 would then rely upon the electrical winding 16 on the outer pole piece 10. Similarly, the electrical winding 16 on the outer pole piece 10 may be omitted if required. The magnetic field between the pole pieces 10, 20 would then rely upon the winding 26 on the inner pole piece 20.
In order to improve the electrical conductivity of the flashback fluid the combustible fluid may be seeded with easily ionisable materials such as alkali or alkaline-earth metals or their compounds.
The performance of the flashback protector 1 can also be improved by further ionisation of the flame, for example. This may be done by irradiating the flame with electromagnetic radiation such as microwaves, ultraviolet, X-rays or gamma rays, for example, or with corpuscular radiation such as alpha rays, beta rays, or beams of ions, for example. The flame may also be seeded with chemicals such as alkali metals or their compounds or with radioactive substances.
Referring now to
In
Alternatively, the embodiments may be simplified by omitting the electrical windings on the outer pole pieces and relying on the electrical windings on the inner pole piece to generate the magnetic field between the pole pieces.
The high-temperatures that the flashback protector 1 is exposed to during use may adversely affect its performance. One way of preventing the pole piece 10, 20 from overheating is to provide them with cooling ducts. These cooling ducts can then be supplied with a cooling fluid, such as air, which acts to cool the pole pieces. There are a number of other ways of mitigating overheating. These include: coating the surfaces with refractory materials such as thermal barrier coatings, using high-temperature insulation in the electrical windings such as glass fibre, applying similar techniques to those used in fire-resistance cables to protect the electrical windings, using high-temperature conductors such as tungsten for the windings.
It is not essential that the flow path defined by the opening 30 is annular. In other embodiments the flow path in a plane perpendicular to the flow direction may be a closed loop of any shape such that current can flow entirely in the flame.
However, with reference to
The flashback protector is particularly suitable for use in gas turbine aero engines but may be used in any situation where flashback protection is required. Examples include petrochemical and gas installations, appliances or pipelines, fuel cells, welding apparatus or any other application where a flammable or explosive gas is used.
Number | Date | Country | Kind |
---|---|---|---|
1012630.8 | Jul 2010 | GB | national |
Number | Date | Country |
---|---|---|
631162 | Nov 1978 | SU |
895448 | Jan 1982 | SU |
Entry |
---|
Rietjens, “The Future for MHD Power Generation”, Phys. Technol., 1979, pp. 216-221, vol. 10, The Institute of Physics, Great Britian. |
P. C. Stangeby, “A Review of the Status of MHD Power Generation Technology Including Suggestions for A Canadian MHD Research Program,” Institute for Aerospace Studies, Nov. 1974, UTIAS Review No. 39, University of Toronto. |
http://en.Wikipedia.org/wikiMHD—generator, “MHD Generator,” Wikipedia, Jun. 8, 2011, pp. 1-8. |
British Search Report issued in British Application No. GB1012630.8 dated Oct. 8, 2010. |
Number | Date | Country | |
---|---|---|---|
20120023890 A1 | Feb 2012 | US |