This invention relates generally to a drive circuit for a pulsed radiation source and, more particularly (but not necessarily exclusively), to a flashlamp drive circuit including a storage capacitor which is selectively discharged in order to drive a flashlamp.
Pulsed flashlamps are used in a variety of applications, including optical cosmetology and dermatology applications. Such lamps normally operate at a comparatively high peak voltage, current and light intensity/power. In order to achieve such high values, power supplies or drives for such lamps typically employ a storage capacitor, which is charged between flashes or pulses, in series with an inductor and some kind of switch.
Thus, referring to
However, there are applications, particularly medical applications, where the shape of the optical pulses used to drive the flashlamp is important in order to achieve the desired therapeutic effect, and in particular to achieve such effect without damage to areas of the patient's body not being treated. For example, in optical dermatology, it may be desirable to rapidly heat a target chromophore to a selected temperature, and to then reduce applied energy so as to maintain the chromophore at the desired temperature. It is therefore highly desirable for the shape and duration of the optical pulses delivered to the flashlamp to be controllable.
Referring to
However, a major disadvantage of the partial discharge system described with reference to
It is an object of the present invention to provide flashlamp drive circuitry, and a corresponding method of driving a flashlamp, whereby the shape and duration of the current pulses delivered to the flashlamp is highly controllable, and the size of the storage capacitor required is significantly reduced relative to known arrangements.
In accordance with the present invention, there is provided a pulsed radiation source drive circuit for delivering an energy pulse to a radiation source, said circuit comprising a storage capacitor having a comparatively small capacitance so as to be capable of storing only a portion of the total energy of the energy pulse required to be delivered to said radiation source, said circuit further comprising means for selectively charging and discharging said storage capacitor at a comparatively high frequency so as to deliver to said radiation source said energy pulse in the form of a plurality of packets of energy within a predetermined time period.
Thus, the present invention is intended to provide a drive circuit, preferably for a flashlamp, which drive circuit effectively mimics the operation of the partial discharge system described above with reference to
Also in accordance with the present invention, there is provided a method of driving a pulsed radiation source, the method comprising providing a storage capacitor having a comparatively small capacitance so as to be capable of storing only a portion of the total energy of an energy pulse required to be delivered to said radiation source, and selectively charging and discharging said storage capacitor at a comparatively high frequency so as to deliver to said radiation source said energy pulse in the form of a plurality of packets of energy within a predetermined time period.
The present invention extends to a flashlamp unit comprising a flashlamp and including a drive circuit as defined above for driving said flashlamp.
The present invention extends still further to a digital signal processor for use in a drive circuit as defined above, the digital signal processor being arranged and configured to control the operation of switch means so as to selectively charge and discharge said storage capacitor at a comparatively high frequency so as to deliver to said radiation source an energy pulse in the form of a plurality of packets of energy within a predetermined time period.
Preferably, the pulsed radiation source comprises a flashlamp.
Beneficially, the means for selectively charging and discharging the capacitor comprises switch means, and drive means for selectively opening and closing said switch. The switch may, for example, comprise an insulated-gate transistor, such as an insulated-gate bipolar transistor (IGBT).
In a preferred embodiment, the storage capacitor is connected in parallel with the pulsed radiation source.
A flashlamp unit according to the invention may comprise a plurality of flashlamps, each having associated therewith a respective storage capacitor and respective means for selectively charging and discharging said storage capacitor. Means, such as a digital signal processor and microprocessor, are beneficially provided for controlling the plurality of means for selectively charging and discharging the respective storage capacitors.
These and other aspects of the present invention will be apparent from, and elucidated with reference to the embodiment described herein.
An embodiment of the present invention will now be described by way of example only and with reference to the accompanying drawings, in which:
Referring to
Associated with the or each flashlamp 106, there is provided a switch mechanism 110 comprised of an insulated-gate bipolar transistor (IGBT) 112 and a corresponding driver 114. The switch mechanism 110 also incorporates a secondary transistor 116, having a comparatively very small capacitance of (say) 10 μF. The capacitor 116 and the respective flashlamp 106 are connected in parallel with each other. A controller, comprising a digital signal processor (DSP) 118 and a microprocessor 120, is provided to control the operation of all of the flashlamps 106 in the bank via the respective switch mechanisms 110. It will be appreciated that the microprocessor can be programmed so as to cause the digital signal processor to run the bank of flashlamps in accordance with any one of a number of different programs, depending on the application.
A switch mode power supply 122 and a primary capacitor 124 are also provided.
In use, each drive pulse delivered to a flashlamp 106 is comprised of a plurality of smaller energy packets resulting from the high frequency, repeated charging and discharging of the respective capacitor 116, controlled by the DSP 118 via the respective driver 114. As a result, there is provided flashlamp drive circuitry, and a corresponding method of driving a flashlamp, whereby the shape and duration of the current pulses delivered to the flashlamp is highly controllable, and the size of the storage capacitor required is significantly reduced relative to known arrangements. Examples of the types of energy pulses which can be delivered using the drive circuit described above with reference to
It should be noted that the above-mentioned embodiments illustrate rather than limit the invention, and that those skilled in the art will be capable of designing many alternative embodiments without departing from the scope of the invention as defined by the appended claims. In the claims, any reference signs placed in parentheses shall not be construed as limiting the claims. The word “comprising” and “comprises”, and the like, does not exclude the presence of elements or steps other than those listed in any claim or the specification as a whole. The singular reference of an element does not exclude the plural reference of such elements and vice-versa. The invention may be implemented by means of hardware comprising several distinct elements, and by means of a suitably programmed computer. In a device claim enumerating several means, several of these means may be embodied by one and the same item of hardware. The mere fact that certain measures are recited in mutually different dependent claims does not indicate that a combination of these measures cannot be used to advantage.
Number | Date | Country | Kind |
---|---|---|---|
04 12 352.7 | Jun 2004 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB05/01977 | 5/20/2005 | WO | 12/4/2006 |