The present invention relates to flashlights and, more particularly, to flashlights with light focusing systems.
Some flashlights that use light-emitting diode (LED) light sources are configured with light-focusing mechanisms. However, these flashlights have drawbacks due to their focusing mechanisms that weaken the overall flashlight. For example, exemplary prior art light focusing flashlights include a head or head part that is moved relative to the main flashlight body by a twisting motion, which requires the use of two hands to perform the focus change, which makes the flashlight cumbersome and inconvenient. Furthermore, the movement of the head part or similar results in a flashlight which is more vulnerable to physical wear and tear and which is less resistant to rain, dust, saltwater and other elements than an ordinary flashlight. This is due to the fact that it is a main part of the flashlight housing which forms the actuating part in the focusing mechanisms, and hereby the focusing mechanism and flashlight as whole may potentially not be sealed sufficiently to eliminate the effect of such elements which may cause unsatisfactory long term issues.
Thus, there is a need in the art for a flashlight with a focusing mechanism that allows for the change of focus of the light without jeopardizing the durability of the structure and the resistance of the flashlight to moisture, dust, saltwater, mud, and other caustic or otherwise harmful elements.
According to the principle of the invention, a flashlight includes a housing having a hollow interior bound by a chamber wall having opposed inner and outer surfaces, a lens carried by the housing opposing the hollow interior, a light source supported by a light source support in the hollow interior, and a focusing assembly for moving the light source relative to the lens in a longitudinal motion including a button slidably arranged on the outer surface of the chamber wall in magnetic communication with an opposed sliding member connected to the light source support in the hollow interior and which is slidably arranged on the inner surface of the chamber wall. The light source is connected to an energy source carried by the housing with a flexible connection that yields between the energy source and the light source support in response to movement of the light source support with the focusing assembly. The flexible connection is a flexible wire in a preferred embodiment, and the energy source is a battery in a preferred embodiment. A slide assembly is coupled between the inner surface of the chamber wall and the sliding member for guiding the sliding member, and the light source is preferably at least one light-emitting diode.
According to the principle of the invention, a flashlight includes a housing having a hollow interior bound by a chamber wall having opposed inner and outer surfaces, a lens carried by the housing opposing the hollow interior, a light source supported by a light source support in the hollow interior, and a focusing system or assembly for moving the light source relative to the lens in a longitudinal motion including a slidably arranged button in direct sliding contact with the outer surface of the chamber wall in magnetic communication with an opposed slidably arranged sliding member connected to the light source support in the hollow interior and which is in direct sliding contact with the inner surface of the chamber wall. The light source is connected to an energy source carried by the housing with a flexible connection that yields between the energy source and the light source support in response to movement of the light source support with the focusing assembly. The flexible connection is a flexible wire in a preferred embodiment, and the energy source is a battery in a preferred embodiment. A slide assembly is coupled between the inner surface of the chamber wall and the sliding member for guiding the sliding member, and the light source is preferably at least one light-emitting diode.
According to the principle of the invention, a flashlight includes a housing having a hollow interior bound by a chamber wall having opposed inner and outer surfaces. A lens is carried by the housing and opposes the hollow interior. The flashlight additionally includes a light source supported by a light source located in the hollow interior. The flashlight further includes a focusing system or assembly for moving the light source relative to the lens in a longitudinal motion which includes a slidably arranged first magnet in direct sliding contact with the outer surface of the chamber wall in magnetic communication with an opposed slidably arranged second magnet connected to the light source support in the hollow interior and which is in direct sliding contact with the inner surface of the chamber wall. The light source is connected to an energy source carried by the housing with a flexible connection that yields between the energy source and the light source support in response to movement of the light source support with the focusing assembly. In a preferred embodiment, the flexible connection is a flexible wire. A slide assembly is coupled between the inner surface of the chamber wall and the second magnet for guiding the second magnet, and the light source is preferably at least one light-emitting diode.
Referring to the drawings:
Turning now to the drawings, in which like reference characters indicate corresponding elements throughout the several views, attention is first directed to
Head part 6 of hollow interior 4 of housing 2 contains a light assembly consisting of a light source 11 arranged on and carried by a light source support 12. Light source support 12 is a circuit board that controls light source 11. Flashlight 1 is fashioned with a focusing system or assembly for moving light 11 source relatively to lens 8 in a longitudinal motion or otherwise in reciprocal backwards and forward directions with respect to lens 8. Light source support 12 is connected to opposed identical inner sliding members denoted generally at 13A and 13B, respectively, which form part of the focusing assembly of flashlight 1. Sliding members 13A and 13B are part of light source support 12 and are slidably arranged in that they are engaged in corresponding identical slide assemblies 14A and 14B formed between sliding members 13A and 13B and a chamber wall 15 of hollow interior 4 of head part 6. Sliding members 13A and 13B are identical, and only the specific details of sliding member 13A are discussed in the detail below with the understanding that the ensuing discussion of sliding member 13A applies in every respect to sliding member 13B. Slide assemblies 14A and 14B are also identical, and only the details of slide assembly 14A will be discussed with the understanding that the discussion below of slide assembly 14A applies in every respect to slide assembly 14B.
Chamber wall 15 of head part 6 is part of housing 2, and has an inner surface 15A facing hollow interior 4 and an opposed outer surface 15B. Slide assemblies 14A and 14B are positioned between chamber wall 15 and sliding members 13A and 13B, respectively, and sliding members 13A and 13B of light source support 12 are slidably arranged on inner surface 15A of chamber wall 15 with slide assemblies 14A and 14B in this preferred embodiment. In the present embodiment of flashlight 1, at least a part of inner sliding member 13A is a magnet 16. In flashlight 1, magnet 16 is in magnetic communication with an opposed outer button 17. Because at least a part of sliding member 13A is magnet 16 and because magnet 16 is a part of sliding member 13A, sliding member 13A is in magnetic communication with button 17. Button 17 is a magnet, and is slidably arranged on outer surface 3 of flashlight 1. Hollow interior 4 further includes a flexible connection or connector 18 for providing electrical contact between light source 11 and battery 10 via a connector plate 19 arranged about battery 10. Connector plate 19 is a circuit board in a preferred embodiment, and flexible connector 18 extends between and is electrically connected between, on the one hand, light source 11 and light source support 12, and, on the other hand, connector plate 19. Light source 11 is connected to the battery 10 energy source carried by housing 2 with flexible connection or connector 18 that, according to the invention, yields between the energy source formed by battery 10 in the preferred embodiment and light source support 12 in response to movement of light source support 12 with the focusing assembly of flashlight 1.
Looking to
Magnet 16 of sliding member 13A in hollow interior 4 opposes inner part 17B of button 17 and is in direct contact with inner surface 15A of chamber wall 15 of housing 2 opposing inner part 17B of button 17 in direct contact with outer surface 15B of chamber wall 15 of housing 2 thus magnetically coupling magnet 16 of sliding member 13A of light source support 12 to the inner part 17B of button 17 through chamber wall 15. Sliding members 13A and 13B engage slide assemblies 14A and 14B, respectively, and slide therealong to permit light source support 12 and light source 11 carried by light source support 12 to move backwards/forwards relatively to lens 8 in response to the backwards/forward motion of button 17 as indicated by double arrowed line A in
Magnet 16 is received in direct contact with inner surface 15A of chamber wall 15 of housing 2, and remains in direct contact with inner surface 15A of chamber wall 15 of housing 2 when stationary and also when light source support 12 is moved backwards/forward with the backwards/forward motion of button 17 as is indicated by double arrowed line A in
Looking to
According to the principle of the invention and referencing
In another aspect according to the principle of the invention and again referencing
In yet another aspect according to the principle of the invention and yet again with reference to
With continuing referencing
The word “button” is in the present application used for an actuator which does not form a part of the actual flashlight housing. Button 17 may have a variety of shapes and sizes e.g. a simple rectangular shape or a curved shape fitting on or around part of housing 2 of flashlight 1.
Button 17 can be arranged to ensure a minimum of friction with the movement of button 17. Button 17 can also be arranged with one, two, three or more selected positions wherein button 17 may be locked relatively to housing 2 of flashlight 1 whereby the focus of flashlight 1 is locked.
When button 17 of flashlight 1 is moved backwards or forwards along the longitudinal direction of flashlight 1, inner sliding member 13A of light source support 12, and thus also inner sliding member 13B of light source support 12, will follow motion together with light source 11. The motion of light source 11 towards and away from lens 8 thus induced by the motion of button 17, changes the focus and/or angle of the light cone from flashlight 1. Thus, when a user slides button 17 in a direction away from lens 8, as in
Inner sliding members 13A and 13B are connected to light source support 12, and form an integral part of light source support 12 in a particular embodiment.
In a preferred embodiment, button 17 is a magnet and is in a magnetic communication/coupling with inner sliding member 13A. When button 17 on the outside of housing 2 of flashlight 1 interacts with inner sliding member 13A by magnetic attraction, housing 2 has no, and need not have, perforations for elements providing physical communication between button 17 and inner sliding member 13A. When the provision of perforations is avoided, intrusion of damaging elements such as water, salt, mud, etc., into housing 2 of flashlight 1 is eliminated.
As button 17 and at least a part of inner sliding member 13A are each a magnet or consist of a magnet or otherwise a magnetisable material being characteristic of a magnet according to the teachings of invention, it is possible to move light source 11 back and forth relatively to lens 8 by sliding button 11 back and forth.
The magnetic communication between button 17 and light support 12 enables a flashlight wherein the focusing assembly does not compromise the resistance of flashlight 1 against e.g. fluids or dust as no openings in housing 2 of flashlight 1 for communication between button 17 and inner sliding member 13A are required. Embodiments with a magnetic button 17 are sturdy, durable and efficient alternatives to known focusing mechanisms where vulnerable seals may be required when the focus is achieved by movement of the head of the flashlight, if the flashlight is to be waterproof.
Slide assemblies 14A and 14B guide sliding members 13A and 13B and provide the stability of the focusing assembly and ensures a smooth change in focus of the light generated by light source 11. Inner sliding members 13A and 13B and hereby light source 11 are guided by slide assemblies 14A and 14B in its back-and-forth motion as button 17 is moved back-and-forwards to change the focus of flashlight 1.
Preferably, housing 1 and lens 8 are arranged to together form a waterproof unit. Such a waterproof unit is possible as lens 8 and housing 2 of flashlight 1 can be fixed relatively to each other as the focus of flashlight 1 is adjusted by movement of light source 11 in the at least partly hollow interior 4 induced by button 17, and this is in contrast to known flashlights where a part of the housing, e.g., a head part containing the lens, is moved relatively to the main body of the flashlight housing.
In advantageous embodiments, flashlight 1 is rechargeable, and waterproofing can be further enhanced since there is no or limited need for easy access to hollow interior 4 of housing 2 of flashlight 1, as required when traditional batteries needing regular change are used. Thus none or a minimum of parts, which may be potentially cause leakage of fluid or dust to hollow interior 4 of flashlight 1, are necessary.
Light source 11 is an LED in a preferred embodiment, as an LED has a very long lifetime and low energy consumption. Due to the long lifetime of an LED, there is no need for frequent access to the part of hollow interior 4 containing light source 11, and thus limited access opening is needed. In an alternate embodiment, light source 11 can be a plurality of LEDs without departing from the invention.
All in all, flashlight 1 which to a very high degree is waterproof is facilitated by the present invention. The magnetic control embodiment of the focusing assembly requires no openings in housing 2 of flashlight 1 to facilitate the communication between button 17 and inner sliding member 13A. Because access light source 11 and/or energy storage (such as battery 10) in hollow interior 4 of housing 2 is only rarely required, such access may be through specialized openings. Such specialized openings can be equipped with or form highly efficient seals. In some embodiments, parts which may form or provide the waterproofing of flashlight 1 may be arranged to be opened by trained persons and/or specialized tools only, in order to keep the waterproofing at a maximum at all times.
Thus according to the present invention, flashlight 1 which is efficiently waterproofed is provided and therefore flashlight 1 may advantageously be used as a diving light.
Flashlight 1 can also be used in other challenging situations where its excellent durability and sturdiness is an advantage. This may be in environments with mud, sand, salt, oil, etc., where the advantageous focusing assembly can ensure that the focus function of flashlight 1 may be maintained at all times as it may be easy to clean. Furthermore, magnet or magnetisable button 17 in magnetic communication with inner sliding member 13A provides ability to change focus of flashlight 1 without jeopardizing the waterproofing of flashlight 1.
Preferably, light source 11 is connected to an energy source arranged in hollow interior 4 with a flexible connection, namely, connector 18. Connector 18 provides the energy supply to light source 11 and is electrically connected between light source 11 and the energy source, namely, battery 10. Battery 10 is housed in the interior of housing 2 of flashlight 1 and only light source 11 with light source support 12 is moved to change the focus of flashlight 1 in response to the movement of button 17.
The flexible connection formed by connector 18 can e.g. be a spring, a soft and flexible wire or a moveable pin which allows the back and forth movement of light source 11. In a preferred embodiment, connector 18 is a soft and flexible and durable wire that provides a constant connection without the application of the force e.g. a spring may provide on the movement of light source 11. A soft wire forming connector 18 is preferably strong and of a material which does not get weakened by the back and forth movement of the light source and such soft wires are well-known to those skilled in the art and such electrical wires and are readily available.
A spring can be used advantageously if e.g. the most frequently used focus of flashlight 1 is achieved with light source 11 in its position where it is closest to lens 8. In this case, the focus may be changed from said frequently used focus, which is an unforced position (the spring is relaxed), by sliding button 17 and hereby inner sliding member 13A and light source 11 and light source support 12 in the direction away from lens 8 by application of a force strong enough to compress the spring until the needed focus is achieved. When the force on button 17 is released, light source 11 and hereby also light source support 12 and button 17 may be returned to the unforced position closest to lens 8 by the force of the compressed spring. The spring may be soft so that only a slight force is needed to compress it and that the movement back to the unforced position is slow and soft. The spring may also e.g. be harder requiring a stronger force and providing a fast repositioning to the unforced position. The spring can also e.g. be configured to that the relaxed state is achieved with light source 11 in its position where it is furthest away from lens 8.
A preferred lens 8 used in flashlight 1 according to the present invention may e.g. be various collimator lenses, “half moon” lenses, or can be designed according to the specific LED light source model as well as the specific output modes that needs to be achieved with each flashlight model.
The invention has been described above with reference to preferred embodiments. However, those skilled in the art will recognize that changes and modifications may be made to the embodiments without departing from the nature and scope of the invention. Various changes and modifications to the embodiments herein chosen for purposes of illustration will readily occur to those skilled in the art. To the extent that such modifications and variations do not depart from the spirit of the invention, they are intended to be included within the scope thereof.
Number | Date | Country | |
---|---|---|---|
61446527 | Feb 2011 | US |