1. Technical Field
The present invention relates to a flashlight zooming structure. More particularly, the present invention relates to a flashlight zooming structure whereby a flashlight can project light to a distant or nearby target through adjustment of a zooming assembly provided at one end of a neck of the flashlight main body. By rotating the zooming assembly in the desired direction, the light emitted by a lighting unit at the end of the neck of the main body is projected outward through a transparent lamp cup in the zooming assembly either convergently or divergently to provide a clear view of the target.
2. Description of Related Art
A flashlight for illumination purposes typically includes a main body for receiving a battery pack and conductive components, a lighting unit provided at one end of a neck of the main body, and a cap screwed on the neck of the main body. To use the flashlight, a power switch provided on a lateral side or at one end of the main body is turned on, thereby driving the lighting unit to emit light for illuminating a target.
However, the lighting unit in such a flashlight usually has a single fixed focus, and in most cases the light emitted by the lighting unit can only be shed on a nearby target divergently. As the divergent light cannot reach a greater distance, the flashlight cannot be used to illuminate a distant target.
The present invention provides an improvement over the existing flashlights, particularly in terms of the capability to illuminate targets at different distances. It is desirable that a flashlight can project light to a faraway or nearby target through adjustment of a zooming assembly provided at one end of a neck of the flashlight main body, and that by manually rotating a cap in the zooming assembly, a transparent lamp cup received in a cup seat is moved forward or backward to increase or decrease the distance between the lamp cup and a lighting unit at the end of the neck of the flashlight main body, thus allowing the light emitted by the lighting unit to project outward through the lamp cup as a convergent or divergent light beam. In short, it is desirable that a flashlight can be flexibly adjusted to project light to different distances.
The primary object of the present invention is to provide a flashlight which includes a main body and a zooming assembly. The zooming assembly is threadedly connected to one end of a neck of the main body and includes a cap, a cup seat, a lamp cup, and a middle annular element. The cap has a predetermined inner section formed as a threaded section. The open end of the cap is peripherally provided with a plurality of inwardly extending projections. The cup seat has an outer periphery provided with at least two lugs, wherein each lug has an outer side formed as a threaded portion threadedly connected with the threaded section of the cap. The inner periphery of the cup seat tapers downward and therefore defines a relatively large opening and a relatively small opening at opposite ends. The relatively large opening of the cup seat is peripherally provided with a plurality of spaced and inwardly extending fasteners. The lamp cup is transparent, centrally formed with a convex lens, received in the cup seat, and thus limited in position by the fasteners of the cup seat. The middle annular element has one end extended with a receiving section, and the receiving section is peripherally provided with notches having a predetermined depth. The lugs on the outer periphery of the cup seat are respectively inserted into the notches and can be displaced therein. The inner periphery of the middle annular element is formed with threads threadedly connected with an externally threaded portion of the neck of the main body. In addition, the opposite end of the middle annular element is concavely provided with an annular groove with which the projections of the cap are engaged to limit the middle annular element and the cap in position. To operate the zooming assembly mounted at one end of the flashlight, the cap is rotated as appropriate so that the cup seat in the zooming assembly is displaced upward or downward along the corresponding notches of the middle annular element. In consequence, the lamp cup received in the cup seat is moved forward or backward along with the cup seat, and the light emitted by a lighting unit at the end of the neck of the main body is projected outward through the transparent lamp cup in the zooming assembly to achieve the desired light converging or diverging effect. The aforesaid zooming adjustment can be flexibly made.
The second object of the present invention is to provide the foregoing flashlight, wherein the convex lens of the transparent lamp cup is convex outward, and the lamp cup further has a lower end provided with a concave region. The light emitted by the lighting unit at the end of the neck of the main body is guided by the concave region and projected outward through the convex lens so as to achieve the desired light converging or diverging effect.
The structure as well as a preferred mode of use, further objects, and advantages of the present invention will be best understood by referring to the following detailed description of an illustrative embodiment in conjunction with the accompanying drawings, in which:
Please refer to
The main body 1 is a flashlight main body in which a battery pack and conductive components are received. The upper end of the main body 1 is defined as the neck 11, and the upper end of the neck 11 is connected with a lighting unit 12 (implemented herein by a light-emitting diode). A lower annular element 13 is mounted around a lower section of the neck 11 of the main body 1 so that, by rotating the lower annular element 13, a power switch connected thereto is driven to switch between different lighting modes such as a turned on mode, a flashing mode, and a turned off mode. (The power switch is not a major technical feature of the present invention and therefore will not be dealt with in further detail herein.) In addition, the upper end of the neck 11 of the main body 1 has an externally threaded portion 14.
The cap 2 is a component connected with a transparent cover 21 at one end. A predetermined inner section of the cap 2 is formed as a threaded section 22, as shown in
The cup seat 3 is a movable component shaped according to the interior space of the cap 2. The outer periphery of the cup seat 3 is provided with at least two lugs 31, wherein each lug 31 has a threaded portion 32 on the outer side. As shown in
The lamp cup 4 is a transparent component shaped according to the inner periphery of the cup seat 3. As shown in
The middle annular element 5 is a covering component shaped according to the main body 1 and the cup seat 3. A receiving section 51 extends from one end of the middle annular element 5 and is peripherally provided with notches 52 of a predetermined depth. The inner periphery of the middle annular element 5 is formed with threads 53. The other end of the middle annular element 5 is concavely provided with an annular groove 54, as shown in
The main body 1, the cap 2, the cup seat 3, the lamp cup 4, and the middle annular element 5 are put together as follows. Referring to
To operate the zooming assembly 6 provided at one end of the neck 11 of the main body 1 of the flashlight 7, referring to
When it is desired to remove the zooming assembly 6 threadedly connected to one end of the neck 11 of the main body 1 of the flashlight 7, the user only has to rotate the middle annular element 5, and the zooming assembly 6 can be rapidly detached from the neck 11 of the flashlight main body 1.
Furthermore, by rotating the lower annular element 13, the flashlight 7 can be switched between predetermined lighting modes, such as a strong light mode, a weak light mode, a flashing mode, and a turned off mode.