1. Field of the Invention
The present invention is related to a flask or container which is preferably used for drying biological materials. More specifically, embodiments of the present invention provide a flask for receiving biological materials, and method for treating or processing the biological materials while contained in the flask.
2. Description of the Prior Art
Dried biological materials are becoming increasingly useful in agriculture, biotechnology and medicine. For instance, freeze-dried human blood products, vaccines and the like are already in use, or are proposed to be in use, in clinical settings for both animal and human applications. In the field of biotechnology, biosensors have wide spread applications. In all such cases, long term storage under sterile conditions, and often under unfavorable environmental circumstances, is a requirement.
Conventional devices in the market do not optimally provide drying of biological materials under sterile conditions, while allowing for certain desired contamination-free processing of the biological materials under defined conditions, such as during drying, storage and re-hydration. More particularly, because biological materials show much improved survival if they are exposed to water vapor prior to immersion in liquid water, it is desired to pre-hydrate biological samples with water vapor without contaminating the biological samples.
A patentability investigation was conducted to determine the state of the art with respect to solving problems of contamination while processing biological materials during drying, storage and re-hydration, and the following U.S. Patents were discovered: U.S. Pat. No. 4,232,453 to Edelmann; U.S. Pat. No. 4,275,511 to Parkinsen, et al.; U.S. Pat. No. 4,966,469 to Fraser, et al.; U.S. Pat. No. 5,154,007 to Piunno, et al.; U.S. Pat. No. 5,689,595 to Sutherland, et al.; and U.S. Pat. No. 6,122,836 to Tenedini, et al.
U.S. Pat. No. 4,232,453 to Edelmann discloses a tray for holding a biological specimen and a submersible container for freeze-drying the specimen. A heating element is taught for melting a synthetic resin for embedding the specimen therein.
U.S. Pat. No. 4,275,511 to Parkinsen, et al. discloses an evaporator/sublimator flask having a straight sided cylinder, preferably made of borosilicate glass tubing of sufficient wall thickness to prevent implosion when subjected to a high vacuum. The straight sided cylinder is open at one end and sealed at the other. An elastomer cap is disposed over the open end of the cylinder.
U.S. Pat. No. 4,966,469 to Fraser, et al. discloses a flask for freeze-drying. A positioning device engages the top of the flask and comprises a generally circular stopper having an opening. An annular tube extends through the stopper and into the flask. A thermocouple is coiled around the lower part of the annular tube.
U.S. Pat. No. 5,154,007 to Piunno, et al. discloses an apparatus and describes a method for distillation drying of one or more biological samples. The apparatus includes a retaining assembly, a vacuum assembly, a cooling assembly, a monitoring assembly and a control assembly for actively regulating the temperature and pressure conditions of biological tissue so that biological samples may be dried without damage.
U.S. Pat. No. 5,689,895 to Sutherland, et al. discloses a device for positioning a probe (e.g., a temperature sensor) in a flask for freeze-drying. The device includes a stopper secured to an open end of the flask. The stopper has a center opening and at least one radial opening spaced from the center opening. The radial opening allows for fluid communication between inside and outside of the flask when the stopper is secured to the open end of the flask. The center opening receives a guide tube which extends into the flask and receives the probe.
U.S. Pat. No. 6,122,836 to Tenedini, et al. discloses a freeze-drying apparatus and associated lyophilization procedures employing vapor flow detection and/or vacuum control for monitoring and control of a lyophilization process. The vapor flow detector (e.g., a windmill sensor) is disposed to monitor vapor flow from product undergoing lyophilization.
None of the foregoing patents teach a flask, device or container which permits drying (freeze-drying, air-drying, foam drying) of biological materials under sterile conditions and which allows for processing under defined conditions during drying, storage and re-hydration. Therefore, what is needed and what has been invented is a flask and method which overcomes the contamination deficiencies of the prior art. What is more specifically needed and what has been invented is a flask for drying (e.g., freeze-drying) substances under sterile conditions, and method for processing a substance under sterile conditions, including drying, storage, and rehydration. In the method for processing, the flask is placed on a shelf of a freeze-drying and re-hydration apparatus where substances contained in the flask are freeze-dried and re-hydrated without contamination.
Embodiments of the present invention broadly provide a device for holding substances during drying. The device includes a flask having a structure defining an opening, a first filter member disposed in the opening, and a second filter member disposed in the opening juxtaposedly to the first filter member. The first filter member comprises at least one aperture sized to preclude the passing of bacteria there through. Preferably, first filter member comprises a plurality of apertures having an average opening with an average maximum dimension (e.g. diameter, maximum diagonal distance across opening, etc.) ranging from about 0.10 um to about 0.22 um. In one embodiment of the invention the first filter member has a higher flexibility than the second filter member. In another embodiment of the invention, the difference in average permeability or average maximum dimension of openings (i.e., the openings that permit gases or liquids to pass through) between the first and second filter members ranges from about 0.00 um to about 0.90 um. Thus, if one filter member has an average aperture opening of about 0.22 um, the other filter member may have an average aperture opening ranging from about 0.60 um to about 0.90 um. A retainer ring is engaged to the flask for retaining the first and second filter members in the opening. The structure of the flask additionally comprises a second opening wherein a third filter member maybe disposed. A temperature-conductive member passes through a side of the flask. The device or flask may be disposed in a freeze-drying apparatus where substances contained in the device are processed by freeze-drying and prehydration.
Embodiments of the present invention also provide a method for processing a substance under sterile conditions comprising disposing a substance in a flask, positioning the flask in a drying apparatus, and passing a drying medium through a first filter member and through a second filter member juxtaposed to the first filter member for drying the substance. The method may additionally comprise contacting the substance with a temperature-conductive member for monitoring the temperature of the substance. The temperature-conductive member typically passes through a side of the flask and has a thermocouple coupled thereto. The flask may be exposed to water vapor as desired for prehydration purposes.
These provisions together with the various ancillary provisions and features which will become apparent to those skilled in the art as the following description proceeds, are attained by the methods and flask(s) of the present invention, preferred embodiments thereof being shown with reference to the accompanying drawings, by way of example only, wherein:
Referring in detail now to the drawings for various embodiments of the invention, there is seen a flask, generally illustrated as 10, having a bottom 12, a rear wall 14 and side walls 16 and 18 bound to the bottom 12, and a front wall assembly 20 bound to the bottom 12 and the side walls 16 and 18. A top 22 is secured to the rear wall 14, to the side walls 16 and 18, and to the front wall assembly 20. The flask 10 may be manufactured from any suitable material, preferably a transparent plastic (polyethylene, polypropylene, polystyrene, etc.).
The top 22 of the flask 10 includes an opening 30 with a perimeter 32. Filters 34 and 36 are superimposedly disposed over the opening 30 such that the respective perimeters 34a and 36a associated with filters 34 and 36 extend beyond the perimeter 32 of opening 30 for structural support purposes, as best shown in
The front wall assembly 20 is formed with a protruding hollow neck 70 to provide an opening 74 (see
In a preferred embodiment of the invention, one or more temperature probes 90 maybe disposed such as to be in contact with substance or material 80 (see FIG. 1). Preferably, the probes 90 pass through side of side wall 16 and couple to thermocouple conductors 94—94 which extend to an indicator (not shown) for displaying temperature indicia of the substance or material 80. The temperature of the substance or material 80 is preferably monitored during processing, especially the drying process. The progress of the temperature of the material 80 during freeze-drying, air drying, or foam drying provides valuable information about the progress of treatment or processing, especially drying. For this purpose, the temperature probes 90 are placed in contact with the sample or material 80. The thermocouple conductor 94 is coupled to the probe 90 to monitor sample temperature.
Filter 34 is preferably a bacteria-filtering filter which precludes the entry of bacteria into the flask 10. Filter 36 is a prefilter, preferably for filtering large foreign particles, such as dust. Filter 36 is preferably a support membrane type filter which increases the structural rigidity of the combination of the superimposed filters 34 and 36. In operation, filter 34 would typically move or flex toward and/or against filter 36. Preferably, filter 34 has a higher flexibility than filter 36. Preferably further, filter 34 comprises a plurality of apertures having an average opening with an average maximum dimension (e.g. diameter, maximum diagonal distance across the opening, etc.) ranging from about 0.10 um to about 0.65 um, more preferably from about 0.10 um to about 0.45 um, and most preferably from about 0.10 um to about 0.22 um. Filter 36 comprises a plurality of apertures having an average opening with an average maximum dimension (e.g. diameter, maximum diagonal distance across the opening, etc.) ranging from about 0.60 um to about 1.0 um, more preferably from about 0.65 um to about 0.95 um, and most preferably from about 0.70 um to about 0.90 um. Stated alternatively, and in another embodiment of the invention, the difference in average size of filter openings between the filters 34 and 36 ranges from about 0.00 um to about 0.90 um, more preferably from about 0.45 um to about 0.75 um, and most preferably from about 0.50 um to about 0.70 um. Thus, if the average size openings in filter 34 is about 0.22 microns, the average size openings in filter 36 may range anywhere from about 0.60 um to about 0.90 um. Filters 34 and 36 may be manufactured from any suitable material, such as polyvinylidene fluoride, cellulose, fiberglass, etc. Preferably filter 34 is manufactured of polyvinylidene fluoride, while filter 36 is manufactured from fiberglass.
In a method for processing a substance or the material 80 under sterile conditions, the material 80 is disposed in the flask 10 via the opening 74 in the neck 70. The flask 10 containing the material 80 is then placed in a suitable apparatus for processing the material 80 with the flask 10. The apparatus for processing, generally illustrated as 100 in
After the flask 10 containing the material 80 has been suitably disposed in apparatus 100, the material 80 is frozen within the flask 10 at a rate that is considered optimal for the sample and as can be controlled by an apparatus, such as apparatus 100. Once frozen to low temperature, such as −60° C. for example, the sample can be exposed to a strong vacuum as produced by the drying apparatus 100. The applied vacuum draws water out of the samples by sublimation of the frozen water, making the ice change directly into liquid vapor. The water vapor leaves the material 80 and passes serially through the filters 34 and 36 and is collected within the apparatus 100 by a condenser. This drying continues as the material 80 is slowly heated back to ambient room temperature under vacuum.
After freeze-drying, the flask 10 containing the freeze-dried sample may be removed from the apparatus 100 and for storage purposes. Storing in a sterile manner may be at room temperature in a suitable dry location while the freeze-dried material 80 remains in the flask. During storage, the filter cap 50 may be placed within the confines of the ring 40 to cover internal opening 44 of the retainer ring 40 and the superimposed filters 34 and 36. When it is desired to use material 80, the flask 10 including the material 80 is removed from storage and is subsequently disposed within a suitable humid chamber for rehydration of the freeze-dried material 80. During rehydration, minute particulates of water vapor pass through filters 36 and 34 while contamination is prevented from entering the inside of flask 10 by the filters 34 and 36. The water vapor is typically at a temperature ranging from about 20° C. to about 37° C. The remaining rehydration is then achieved by the addition of water, and/or a preferred resuspension solution, such as a cell growth medium, via the opening 74 in neck 70 of the flask 10.
Embodiments of the present invention will be illustrated by the following set forth example which is being given to set forth the presently known best mode and by way of illustration only and not by way of any limitation. All parameters such as concentrations, mixing proportions, temperatures, rates, compounds, etc., submitted in these examples are not to be construed to unduly limit the scope of the invention.
The flask 10 may be loaded with a sterile sample, in a sterile hood, sealed, and then transferred to the drying apparatus (a freeze-dryer) 100, such as that manufactured by Kinetics Group, Inc. The sterile sample may be 293H human embryonic kidney cell line in 2.5 ml buffer solution. When freeze-drying is complete, the flask 10 containing the freeze-dried sample may be stored without precautions against contamination since the flask 10 is a closed system. Vapor phase re-hydration may be accomplished simply by exposing the flask 10 to water vapor within a humidified incubator. Since the water vapor contacts the sample by passage through the bacterial filter 34, there is no risk of contamination. It is preferable to monitor sample temperature during the drying process. The progress of sample temperature during freeze drying, air drying, or foam drying provides valuable information about the progress of drying. For this purpose, the end of the temperature probe 90 may be placed in contact with the sample or material 80. The thermocouple wire 94 is coupled to temperature probes 90.
Material 80 used in the example consisted of a 2.5 ml sample buffer solution containing 293H cells placed within flasks 10 via the opening 74 in neck 70. The flasks 10 were placed within the apparatus 100 for freeze-drying. The flasks 10 and samples 80 were frozen at 1° C. per minute to −60° C. and held at that temperature for 1 hour. The vacuum was initiated during this time interval while the samples were held at −60° C. As the vacuum was applied by apparatus 100, the change in sample temperature was observed via port 90 due to the heat released by the material 80 during loss of water, as indicated by FIG. 10. Next, under vacuum, the samples were held at −25° C. for an additional 6 hours. Following this time interval, the samples were subsequently slowly heated back to room temperature of +22° C. over an 8 hour period while still under vacuum.
Therefore, due to the inherent design, having a set of filters 34 and 36 covering a smaller area than the top surface 22 of the flask and having a flask 10 that is of rigid, transparent plastic, one can view a sample 80 disposed within the flask 10 (prior to or after drying) directly using a 1b microscope (preferably an inverted type or by inversion of the flask 10 on a standard scope) without any risk of contamination to a sterile sample 80. In other words, by having the filers 34 and 36 only covering a portion of the upper surface 22, there is a free visual path through the plane of the bottom surface 12 (via top surface 22) of the flask 10 for allowing microscopic (visible, fluorescence, etc.) viewing. With a microscopy, valuable photographs (micrographs, digital images, video, etc.) can be taken of the samples 80 during any stage of the process. These images can help one ascertain the quality of drying, the integrity of a sample, sample structure, and allow viability assays, while the samples 80 are still contained within the flask 10.
While the present invention has been described herein with reference to particular embodiments thereof, a latitude of modification, various changes and substitutions are intended in the foregoing disclosure, and it will be appreciated that in some instances some features of the invention will be employed without a corresponding use of other features without departing from the scope and spirit of the invention as set forth. Therefore, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope and spirit of the present invention. It is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments and equivalents falling within the scope of the appended claims.
Embodiments of this invention were made with Government support under Grant No. 6600100C8048, awarded by the Department of Defense Advanced Research Projects Agency (DARPA). The Government has certain rights to embodiments of this invention.
Number | Name | Date | Kind |
---|---|---|---|
2564174 | Roman | Aug 1951 | A |
3474543 | Bender et al. | Oct 1969 | A |
3888629 | Bagshawe | Jun 1975 | A |
4232453 | Edelmann | Nov 1980 | A |
4275511 | Parkinson et al. | Jun 1981 | A |
4286389 | Ogle | Sep 1981 | A |
4306357 | Villarejos | Dec 1981 | A |
4595021 | Shimizu et al. | Jun 1986 | A |
4938389 | Rossi et al. | Jul 1990 | A |
4966469 | Fraser et al. | Oct 1990 | A |
5154007 | Piunni et al. | Oct 1992 | A |
5522155 | Jones | Jun 1996 | A |
5616242 | Mandola | Apr 1997 | A |
5689895 | Sutherland et al. | Nov 1997 | A |
5732837 | Jones | Mar 1998 | A |
5811060 | Laguna Valderrama | Sep 1998 | A |
6095356 | Rits | Aug 2000 | A |
6122836 | Tenedini et al. | Sep 2000 | A |
Number | Date | Country | |
---|---|---|---|
20030154623 A1 | Aug 2003 | US |