The present invention generally relates to flexible bags and, more particularly, to bags having a flat bottom for providing support in a stand-up position. Specifically, the present invention relates to flat bottom, stand-up bags that are fabricated using a polymer material and manufactured on a continuous basis.
Stand-up bags are used in a wide variety of applications. One common application is to hold food and other items that are purchased at retail establishments, such as department or grocery stores. Stand-up bags have also been applied to fast food establishments as a means for transporting the purchased food. The stand-up bags provide a relatively inexpensive way to deliver multiple items to a customer who can easily transport the items and secure them in a stable position on any countertop or similar surface.
A common type of stand-up bag is fabricated from a paper material. The paper may be coated, such as with a wax or a polymer, so as to resist liquid spills and grease absorption. Generally, liquid spills or other moisture application to a paper bag will destroy the integrity of the bag or the paper, causing the bag to fail and damage to the material inside the bag. Stand-up bags may also be fabricated from a polymer material so as to reduce the risk of bag failure, since most polymer materials are substantially resistant to moisture absorption.
There are a number of types of polymer bags. One form of polymer bags includes a sealing flange that extends from the bottom end of the bag, which may prevent the bag from standing upright. Polymer bags may also be formed in a manner similar to paper bags, including a number of folded layers at the bottom. In some bags, a separate patch is applied to cover the flange or folds to create a flat surface and to increase strength.
The addition of patches and the folding process typically results in additional process steps. In addition, the bottom surface of the bag includes multiple layers of material, which also adds to material costs. Thus, a manufacturing process eliminating or minimizing one or more of these drawbacks will serve to create a more economical product.
The present invention relates to the formation of a bag, in particular a bag having a flat bottom wall, opposing front and rear walls and two side walls. The side walls connect the front and rear walls with the bottom edge of these walls connected to the bottom wall. The bag of the present invention may be formed by providing two adjacent webs of material, with one edge being joined at a fold line. The adjacent webs are positioned parallel to one another and extend away from the fold line. In forming the bag, an inwardly directed bottom fold is provided along the fold line, such that the bottom fold is positioned between the web layers. The web layers are welded along a first line, transverse to the inwardly directed bottom fold. In the manufacturing process, a second transverse weld line is formed in a parallel space relationship with the first weld line. The folded web portion between the first weld line and second weld line is separated from the web, forming a tubular structure having a closed end along the bottom fold. Inwardly directed gusset folds are provided on both the first and second weld lines. The gusset folds are positioned between the web layers and are directed transverse to the bottom fold. In forming the gusset fold along the side walls, a triangular base portion is created at the intersection of the inwardly directed bottom fold and the inwardly directed gusset fold. The triangular base portions are directed along the first and second weld lines and define the width of the side walls.
In the manufacturing process of the bag, the adjacent webs of material may be formed as one continuous web that is folded along the joining fold line. The transverse weld lines may, in one embodiment, seal the adjacent webs along the welded line as well as the inwardly directed bottom fold along the weld line. The triangular base is formed by the inwardly directed gusset fold, which interacts with the bottom fold. Alternatively, a triangular cutout may be removed adjacent the bottom fold, at the position of the transverse weld lines and the inwardly directed bottom fold, separately sealing a portion of the bottom fold to an adjacent web surface and forming triangular base portions.
In forming the bag of the present invention, the web material may be formed as a blown tube, which is flattened and extends forward from the tube-forming machine in a machine direction. The bag is formed transverse to the machine direction, with opposite folded edges of the flattened tube forming the joining fold line. Alternatively, a flattened web may be folded to create a center fold. Other features and advantages of the invention are contemplated and are described in further detail below and incorporated into the associated claims.
For the purposes of illustrating the invention, the drawings show various forms of the invention. The invention is not, however, limited to the precise forms shown, unless such limitations are expressly incorporated into the claims.
In the drawings, where like elements identify like numerals, there is shown a number of embodiments of a flat bottom, stand-up bag and a method of manufacturing the bag. In
Upon being collapsed, the tube 16 may move to further stations for additional processing. For example, the collapsed tube 16 may be wound onto a core and retained for further processing at a later time. Treatment of the web material may be incorporated into the process, such as corona treatment of the outside surface of the web (not shown).
In
As illustrated in
The tube 16 with the inwardly directed bottom folds 32, 34 continues forward from the pleat guides towards the draw rollers 26 (upwardly in
As the flattened tube continues to move toward the draw rollers 26, triangular portions of material 44, 46 are removed from the folded web 16. The triangular web portions 44, 46 correspond to the opposing sides of the bottom folds 32, 34. In addition, a top and bottom triangular portion is removed from each side edge. These top and bottom portions correspond to upper and lower portions of the bottom folds that are positioned on opposite sides of the anvils 36, 38. It should be noted that a number of finals of heating elements may be utilized in order to create the triangular web portions 44, 46 and to remove the material from the tubular web. Preferably, the heating elements or dies 40, 42 are configured to intermittently contact the web material and may be in the form of reciprocating members, which move towards the web material (on opposite sides of the anvils 36, 38) in a timed relationship with the movement of the web between the nip rollers 18 and draw rollers 26. The timing relationship defines the separation between adjacent bags.
At the position of the removal of the triangular web portions 44, 46, there is shown a separate heating operation that forms a side seal 48. The side seal 48 extends from the apexes of the opposing triangular notches, formed by removal of the web portions 44, 46. It is contemplated that the tubular web 16 is fused along the angled surfaces of the triangular notches 44, 46 and that the sealing line continues along the side seal 48.
After the sealed web 16 moves through the draw rollers 26, a knife blade 50 separates the web 16 into separate web halves 16a and 16b. The knife blade 50 is generally shown and may be of any known structure, including a sharp knife edge, a heated wire, or the like. The web portions 16a, 16b continue to move away from the knife blade 50 by means of rollers or the like (not shown). In a timed relationship, the web portions 16a, 16b are separated from the continuous tube 16 at the position of the side seal 48 to form separate bag forms 116a, 116b. The separation of the bag forms 116a, 116b are generally designated at position 52. A reciprocating knife blade or scoring roller may be utilized to perform the separation operation. After separation, the bag forms 116a and 116a as shown have a similar construction and size. It is contemplated that the bag fauns may vary in transverse length (i.e., laterally across the page as shown in
In
The side gussets 70, 72 are defined at their center by the side seal 48. At the bottom edge of the bag form 116, the side gussets 70, 72 interact with the bottom fold line 22 (or 24), which is maintained in the bag form 116 by the timed insertion of the bottom fold paddle 68. As such, a flat bottom gusset is formed, with a central fold, along with inwardly folded side gussets 70, 72. A triangular support element is formed at the base of the side gussets 70, 72, adjacent their intersection with the bottom fold line 22.
In
The folding of the bag form 116 to create a completed bag is more particularly illustrated in
A formed bag is shown in
As an alternative to the flattened tube having tube layers, the manufacturing process may start with a continuous flat web. Such a flat web material may be created, for example, by removing the folded ends 22, 24 from the tube, creating two separate flat web portions. The two web portions my each then be separately wound onto a core or otherwise directed for processing. Another potential alternative is the use of a cast film. In using a flat web material, the formation of the bottom fold line at the side edge of folded web portions may be created in a number of ways. For example, the web material may be provided with a V-fold, such that two adjacent surfaces of the web are brought together and extend from a (preferably) central fold line. The open end of the bag form is then opposite of the fold line. The web material may then be moved in a continuous manner between parallel rollers, with essentially half of the process machine of
Generally, the bag is formed in a transverse direction to the machine direction in the formation or movement of the web material. Thus, as the web moves between the parallel rollers (upwardly in
In
Returning again to
In
As indicated above, the formation of the bag by the present method results in a bag having a front and rear walls formed from web material that continues along the bottom wall of the bag, without overlapping folds and preferably without seams. Side seals are formed within the side wall portions that include gussets and triangular supports at the base of the bag, at the intersection between the side gussets and the bottom wall.
In
A number of materials may be utilized to create the bag embodiments described above, including co-extruded blown polymer films, such as high-density polyethylene, medium-density polyethylene and low-density polyethylene. Preferably, a medium molecular weight, high-density polyethylene film will provide the desirable attributes for stiffness, wall thickness and strength. However, the contemplated invention is not limited to this specific material. Additional elements may be included within the finished bags, such as handles, clasps, windows, etc. The handle elements may be separately attached to the surfaces of the bag, by heat bonding, adhesives, mechanical attachment, etc. Openings may also be provided in the bag walls to form handles. For example, an oval opening may be provided through the front wall 56 and rear wall 58 at a position inwardly of the top edge. In addition, a hem may be provided at the tope edge to create a more finished appearance. The bag materials may be printed as desired or a colorant may be added during the extrusion of the raw materials.
The present invention may be embodied in other specific forms without departing from the spirit and central attributes thereof. Accordingly, reference should be made to the appended claims, rather than the foregoing specification as indicating the scope of the invention.
Number | Date | Country | |
---|---|---|---|
Parent | 12507586 | Jul 2009 | US |
Child | 12533899 | US |