The present invention relates to a flat-bottomed vessel, in particular drag reduction for a flat-bottomed vessel.
The present invention also relates to a method for controlling the length of at least one air cavity at the bottom of a flat-bottomed vessel.
A flat-bottomed vessel is a flat-bottomed boat, built for instance for river and canal transport of heavy goods or persons. Some vessels are not self-propelled and need to be towed or pushed by towboats. Due to the large length of such vessels there is a large contact surface between the bottom of such a vessel and the water in which the vessel is placed and this large surface generates a lot of drag during movement of the vessel in the water.
It is known to provide such a flat-bottomed vessel with a drag reduction system for instance using air bubbles, such that the drag may be reduced.
Improving the efficiency of such a flat-bottomed vessel is an ongoing need felt by a skilled person in the field.
The invention provides for an improved flat-bottomed vessel for transporting persons or goods.
According to an aspect of the invention, a flat-bottomed vessel for transporting persons or goods is proposed, the vessel comprising a drag reduction system attached to the bottom of the vessel. The drag reduction system comprises two or more turbulence members extending perpendicular to the longitudinal direction of the vessel for generating an area with turbulent flow downstream to the turbulence members at the bottom of the vessel during movement thereof, and for each turbulence member an air injector adapted to inject an air flow at or near to the turbulence members. The drag reduction system further comprises a keel adjacent to both sides of the turbulence members. The bottom of the vessel is flat without cavities. The turbulence members are ridges sealingly attached to the bottom of the vessel between the keels, and the turbulence members extend 2.5-25 mm from the bottom of the vessel.
By providing a vessel according to the invention, the efficiency of the vessel is improved with only limited alterations to the vessel. To the flat-bottomed vessel only keels and ridges have to be sealingly attached and also an air supply near the ridges must be provided. Sealingly attached has to be understood as that no gap is present between the ridges and the bottom of the vessel. The supplied air creates an air bubble under the flat bottom, wherein the air bubble has the ridge and two keels as boundaries. These boundaries are easy to create on the flat bottom and at limited costs.
Hereinafter, exemplary embodiments of the invention will be described in further detail. It should be appreciated, however, that these embodiments may not be construed as limiting the scope of protection for the present invention.
In an embodiment three or more longitudinal keels are dividing the bottom of the vessel into a first section and a second section and possibly further sections. The stability of the vessel may be improved by dividing the bottom of the vessel into a first and second section. Due to the different sections the air cavity or air cavities extend(s) over a smaller part of the width of the bottom, thereby reducing the risk of the air suddenly moving from one side of the bottom to another side of the bottom.
In an embodiment each of the turbulence members extend over the width of the flat-bottomed vessel and both ends of a turbulence member end against a keel. An advantage of this embodiment is that the air cavities are generated equally over the width of the vessel which increase its stability.
In an embodiment the turbulence members placed in the first section, the second section and possibly further sections are substantially in line to each other. It is advantageous to place the turbulence members in such a relation to each other, such that air cavities in the first section are substantially equal to an air cavities in the second section.
It is noted that, when multiple air cavities are generated in the first section, multiple air cavities are generated in the second section which have substantially the same length and/or position as the air cavities in the first section. The stability of the vessel is therefore not or at least minimally influenced by the generated air cavities.
In an embodiment, the turbulence members have a width in the longitudinal direction of the vessel in the range of 0.5-5 mm. It is advantageous that the turbulence members may be realized by elements which are really small with respect to the vessel.
In an embodiment, the vessel has more than two turbulence members are provided in each of the first section, the second section or further sections at the bottom of the barge, which turbulence members are spaced at equal distances with respect to each other in the longitudinal direction of the vessel.
In another embodiment, the distances may be variable in the longitudinal direction of the vessel.
In an embodiment the air injectors are formed by apertures in the bottom of the vessel and/or in at least one of the keels, which air injectors are connected or connectable to an air pumping device for pumping air to the air injectors. It is advantageous to provide air injectors in at least one of the keels, such that no additional holes have to be made in the skin of the vessel, which makes the drag reduction system easier to attach and/or to dismount with respect to the vessel.
It is noted that conducts between the apertures and the air pumping device may be inserted in the keels as well. Further, it is noted that only one aperture per turbulence member is sufficient to provide enough air at the turbulence member to generate an air cavity over substantially the whole length of the turbulence member.
In an embodiment an air outlet is provided upstream near to a turbulence member, preferably wherein an air outlet is provided upstream near to each of the turbulence members. It is an advantage of this embodiment that the length of air cavities formed behind each turbulence member may be controlled by letting air out by the air outlet. It is therefore accomplished that the air cavity at each turbulence member may develop and is not disturbed by an air cavity realized at a foregoing turbulence member. The efficiency of the drag reduction system increases when more air cavities are realized at the bottom of the vessel, or when a larger surface of the bottom of the vessel is covered by air cavities.
In an embodiment the air outlet(s) is/are operable for selectively letting out air. When the vessel has a certain speed it may occur that an air cavity generated at a first turbulence member extends some distance beyond a subsequent turbulence member. When the air cavity just extends beyond the subsequent turbulence member, the subsequent turbulence member does not create an air cavity so that behind the subsequent turbulence member not the whole distance between the turbulence members is covered by an air cavity. When in this situation the air outlets are opened, the length of the air cavities is controlled, such that the air cavities no longer extend beyond the subsequent turbulence members.
When the vessel moves with a speed considerably higher than described above, the air cavity generated at a turbulence member that extends beyond the subsequent turbulence member, might extend to the next turbulence member and one air cavity is formed over the distance between two turbulence members. The efficiency of the drag reduction system may increase by such controlling of the length of the air cavities.
In an embodiment a sensor is provided upstream to at least one of the turbulence members, which sensor is adapted to measure at least a presence of an air cavity. It is, thereby, advantageous when a controller is provided for controlling the air injectors and/or the air outlet(s) based on a measurement performed by the sensor. In this embodiment it is possible to open or close air injectors and/or outlets based on whether it is determined that an air cavity is present upstream to a turbulence member.
It is for example possible that upstream to each turbulence member a sensor is provided for measuring the presence of an air cavity. An air cavity is generated at a first turbulence member, such that the presence of the air cavity can be measured upstream to the second turbulence member. However, when upstream to a third turbulence member no presence of an air cavity is measured, which may be caused by the air cavity generated by the first turbulence member disturbing generation of an air cavity by the second turbulence member, an air outlet upstream near the second turbulence member may be opened for letting out air. Thereafter, the sensor before the third turbulence member may measure the presence of an air cavity generated by the second turbulence member. The efficiency of the drag reduction system may increase by controlling the lengths of the air cavities and may lead to a reduction of the drag of about 10%.
In an embodiment the keels extend from the bottom of the vessel to substantially a same height, the height might be in the range of 0.05 to 0.30 m.
In another aspect the invention relates to a method for controlling the length of at least one air cavity at a bottom of a flat-bottomed vessel according to any one of the preceding claims, the method comprising the steps of:
moving the vessel at a certain speed;
injecting air at or near at least one of the turbulence members,
determining the speed of the vessel and depth below the bottom of the vessel,
wherein, when the vessel has a speed within a first range, air is injected at or near each of the turbulence members and air is let out upstream near to each of the turbulence members excluding the most forward turbulence member wherein the vessel has a speed within a second range that is higher than the first range, air is let out upstream at or near non-adjacent turbulence members.
Since air is not injected at every air injection, less air is needed in order to generate the air cavities. It is advantageous that less air is needed, since this leads to economic benefits.
Aspects of the invention will be explained in greater detail by reference to exemplary embodiments of the invention shown in the drawings, in which:
Vessels, such as barges, are mainly used for transporting goods, in particular heavy goods, over water. Barges are mainly used for transport via rivers and/or canals. During movement of such a vessel through the water, forces are acted on the outer skin of the vessel in the direction of the relative flow velocity. This is called drag. An air cavity may be provided between the skin of the bottom of the vessel and the water, in order to reduce the drag. Reducing the drag leads to, e.g., fuel savings or a possible higher speed of the vessel.
Therefore,
A part of the bottom where no air cavity is generated may come in contact with the water. Such a part is called ‘wet area’ and is indicated in
Further, keels 4 are provided at the bottom 2 of the vessel 1. Two keels 4 are provided at the sides of the bottom 2 and a third keel 4 is provided between this two keels 4. The keels 4 divide the bottom 2 of the vessel 1 into two sections, thereby increasing the stability of the vessel 1, as can be seen in
In each of the two sections, turbulence members 3 are provided and the turbulence members 3 placed in the first section are substantially parallel to the turbulence members 3 placed in the second section. This is advantageous to the stability of the vessel 1.
Air injectors (not shown) are provided downstream to the turbulence members 3 for injecting air in flow direction F immediately behind the turbulence members 3, such that an air cavity 5 may develop as explained later on, see
It is described and shown that an air cavity 5 generated at a turbulence member 3 extends beyond one subsequent turbulence member 3. However, the air cavity 5 may extend further beyond more than one subsequent turbulence member 3, and its extensions depends on the speed V3 and less on the amount of injected air.
In order to be able to use the drag reduction system in two different moving directions, it might be necessary to provide the possibility to inject air at either side of each turbulence member.
The subsequent step as shown in
Due to the movement of the vessel 1 and forces applied on the air by the water, the air moves downstream, as indicated in
At speed V2, which is between V3 and V1, the situation as indicated in
This situation may be overcome be letting out air as indicated in
An operator of the vessel 1 may be able to control the air outlet upstream to each of the turbulence members 3. It is for example possible that air is let out when the vessel is moving at a velocity within a first speed range. The first speed range may comprise the velocities leading to the situations indicated in
Thus, the efficiency of the drag reduction system may be improved by controlling the length of the air cavities 5. As much surface of the bottom 2 of the vessel 1 as possible is covered with air cavities 5 due to controlling the length of the air cavities.
It is noted that the air outlet 12 may be formed by an aperture in one of the keels 4 or in the bottom 2 of the vessel 1. The air outlet 12 may be closeable or the air outlet may be controlled by means of the air injector 6. An air inlet may also be formed by an aperture in one of the keels 4 or in the bottom 2 of the vessel 1.
When the first sensor 7′ and the second sensor 7″ measures no presence of an air cavity 5, the situation as described in relation to
It is noted that the sensors 7′ and 7″ may be, e.g., an optical sensor, an ultrasound sensor, a capacitive sensor, etc.
It is noted that in some embodiments the width of a turbulence member may be smaller than the height of a turbulence member. In other embodiments the ratio between the width of a turbulence member and the height of a turbulence member may be 1:1. In yet other embodiments, the width of a turbulence member may extend to 30 mm, or possibly to 20 mm.
In the described embodiments it is indicated that the turbulence members 3 end against the keels 4. In other embodiments there might be a gap between the end of the turbulence member 3 and the keel 4, this gap might be smaller than 0.2 m or possibly smaller than 0.1 m.
In the shown embodiments the keels 4 extend a distance from the bottom 2. This distance might be in the range of 0.05 to 0.30 or 0.40 m.
It is noted that the drawings are schematic, not necessarily to scale and that details that are not required for understanding the present invention may have been omitted. The terms “upward”, “downward”, “below”, “above”, and the like relate to the embodiments as oriented in the drawings, unless otherwise specified. Further, elements that are at least substantially identical or that perform an at least substantially identical function are denoted by the same numeral.
The invention is not restricted to the above-described embodiments, which can be varied in a number of ways within the scope of the claims. It is, for example possible that the air injectors inject air to each cavity at a different pressure. For example, when a vessel moves with a pitch angle, the pressure in the first cavity is different than in the last one (the same with the heel). During operation different combinations of active air injectors may be arranged. For example, when all the cavities are developed the system may inject air only upstream to the first turbulence members.
It is further noted that the vessel may be a self-propelled barge or a barge which needs to be pushed by a push boat. It is also possible that the vessel is a cruise ship.
Furthermore, it is noted that the turbulence members and/or keels may be attached to a flexible sheet. The sheet might be attached or attachable to the outer skin of the vessel. It is also possible that the turbulence members that are located close to the bow might be spaced at different distances, for example large distances, compared to the following turbulence members, due to the local changes in the flow near the bow.
With respect to the turbulence member, the turbulence member may be an object that creates a separation of the flow. In practice, it may be an angular profile welded to the bottom. A turbulence member may also be formed by a weld attached to the bottom of the vessel or originating from welding together different components of the vessel. In the case that a turbulence member is formed by a weld, a downstream side of the weld may be grinded, such that a step is formed at the downstream side of the weld. It is also possible, that a groove is grinded into the weld such that a step is formed.
Number | Date | Country | Kind |
---|---|---|---|
2011841 | Nov 2013 | NL | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/NL2014/050802 | 11/25/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/080574 | 6/4/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3659542 | Petrov et al. | May 1972 | A |
3788263 | McDermott | Jan 1974 | A |
4227475 | Mattox | Oct 1980 | A |
5000107 | Burg | Mar 1991 | A |
20060156965 | Stubblefield et al. | Jul 2006 | A1 |
Number | Date | Country |
---|---|---|
2118689 | Oct 1992 | CN |
1662414 | Aug 2005 | CN |
103221300 | Jul 2013 | CN |
2371700 | Oct 2011 | EP |
2388188 | Nov 2011 | EP |
2617640 | Jul 2013 | EP |
2946614 | Dec 2010 | FR |
S5078092 | Jun 1975 | JP |
H10141987 | May 1998 | JP |
2011240918 | Dec 2011 | JP |
03095297 | Nov 2003 | WO |
2007136269 | Nov 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20160368567 A1 | Dec 2016 | US |