The invention relates to a sensor assembly for detecting a linear or rotary movement of an object according to the features of the preamble of claim 1.
Various sensor assemblies are known for detecting linear or rotary movements of an object in a contactless and therefore wear-free manner. These sensor assemblies operate using a permanent magnet whose magnetic field is influenced by a detection element that can be fastened to the object or that forms part of the object. The magnetic field acts on a detector that is designed either as a Hall sensor (illustrated in
In the sensor assembly illustrated in
On the other hand, there are approaches involving a sensor assembly having only one reed switch, as illustrated in
Although the sensor assembly approach based on the reed switch principle is simpler compared to the principle employing a Hall sensor, the former approach also has disadvantages. Because of the simple principle of the reed switch, the movement of the object cannot be detected in a stepless or stepped manner. Only a single conclusion may be drawn, namely, whether the object is located in one given position (reed switch open) or in another position (reed switch closed), corresponding to a proximity detector. Furthermore, under the principles of both the known approaches there is the risk that contaminants may collect in the cavity of the U-shaped housing and, in particular for magnetically conductive particles that may be attracted due to the magnetic pull of the permanent magnet. If, depending on its size, this recess becomes clogged with a large accumulation of contaminant particles, the detection element may no longer be able to enter the recess, thereby preventing movement of the object from being measured. This may occur in short order when the sensor assembly is in continuous use and exposed to severe environmental conditions.
The object of the invention, therefore, is to provide a sensor assembly for detecting the movement of an object that avoids the above-described disadvantages. In particular, a sensor assembly is intended that allows specific positions of the object to be scanned. The predetermined positions may result from linear or rotary movement. The aim is to avoid providing the detection element with an additional magnetic component such as a permanent magnet, a ferrite part, or the like, while continuing to allow a contactless, wear-free measurement.
This object is achieved by the features of claim 1.
According to the invention, at least one or multiple detection elements extend in one plane of movement next to at least one magnetic element that generates a magnetic field, and the detection element is composed of a material that influences the magnetic field., Such a system has several advantages:
First, two detectors—such as reed switches, Hall sensors, magnetic resonance sensor assemblies, or the like—are used that operate in a contactless and therefore wear-free manner. The use of reed switches is particularly preferred since they are reliable and especially economical. The detection element itself is composed of a material that influences the magnetic field of the magnetic element and thus in turn acts on the detectors. The presence of two detectors has the advantage that either a stepless detection of the movement of the object (by use of Hall magnetic resonance sensor assemblies) or a stepped detection of the position of the object (by use of reed switches) may be performed. The magnetic element that generates a magnetic field is still a permanent magnet that is economical and easy to handle. Alternatively or additionally, the magnetic element may be an electromagnet.
A very significant advantage of the invention is that the detectors together with the magnetic element extend in parallel to the plane of movement. The entire sensor assembly may thus have a flat shape and be adapted to the direction of movement of the object. In other words, the detectors together with the magnetic element may have, for example, a flat shape for straight-line movement of the object, or a curved shape for rotary movement of the object. This flat or curved shape in addition to a movement of the detection element past the detectors results in the advantage that no contaminants can collect, in particular in the region of the magnetic element, but also in the entire region of the sensor assembly, which would impair the movement of the detection element. In fact, just the opposite is the case, since dirt particles and contaminants may be removed by the passage of the detection element relative to the detectors.
In a further embodiment of the invention, for detection of a straight-line movement of the object, the detectors and the magnetic element are each mounted on a flat support, and are protected from outside influences by means of a casing. The advantage of the enclosed shape is that no contaminants, in particular shavings or other electrically and magnetically conductive particles, can enter the magnetic field between the detector, in particular the reed switch, and the magnetic element, in particular the permanent magnet. These contaminants may collect most heavily on the surface of the casing in the immediate vicinity of the magnetic element, and are removed when the detection element passes over it. This shape also makes an extremely flat sensor assembly possible, particularly when the detection element also has a flat shape and the detection element and sensor can move relative to each other parallel to a movement plane or in respective parallel planes. The sensor assembly according to the invention has general applicability anywhere a path must be followed and specific positions detected. The sensor assembly is used for recognizing intermediate positions during travel, as well as for determining end positions.
Thus, straight-line movement (position expressed in millimeters, for example) may be scanned in exactly the same manner as for rotary movement (angles expressed in degrees). Use of the sensor assembly in the field of automotive engineering (automobiles) is particularly advantageous, since in this case severe environmental conditions (specifically, contamination from electrically and magnetically conductive particles, temperature fluctuations, vibrations, and the like) are present, and very little installation space is available.
One illustrated embodiment, to which the invention, however, is not limited, is explained below and with reference to the figures, which show the following:
It is clear from
Instead of the applications of the detectors designed as reed switches 6 and 7, the use of Hall sensors, magnetic resonance sensor assemblies, or the like may be considered as a replacement for the one or more reed switches.
When reed switches are used, the following specialized characteristics may also be realized:
Open or closed:
The detection element (a disk, for example) is juxtaposed with the sensor from the outset (reed switch open); at a sufficiently large spacing the detection element, or at a hole in the detection element (reed switch closed).
One possible variant of an output signal pattern for two reed switches and a magnetic element is as follows:
Other patterns may be generated by coding of the detection element or by the choice of the starting position.
The switching response is determined by:
Advantages:
The use of an electromagnet results in additional applications and advantages:
When the detection element does not have a flat shape, additional switch points may be generated by modifying the detection element, for example according to the following illustration:
[see source for diagram]
1 Sensor assembly
2 Detection element
3 Sensor
4 Magnetic element
5 Support
6 Reed switch
7 Reed switch
8 Casing
Number | Date | Country | Kind |
---|---|---|---|
10 2004 043 457.3 | Sep 2004 | DE | national |
10 2005 042 050.8 | Sep 2005 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/09520 | 9/5/2005 | WO | 3/5/2007 |