The present invention relates to respirators or face masks which are capable of being folded flat during storage and forming a cup-shaped air chamber over the mouth and nose of a wearer during use.
Filtration respirators or face masks are used in a wide variety of applications when it is desired to protect a human's respiratory system from particles suspended in the air or from unpleasant or noxious gases. Generally such respirators or face masks are of one of two types—a molded cup-shaped form or a flat-folded form. The flat-folded form has advantages in that it can be carried in a wearer's pocket until needed and re-folded flat to keep the inside clean between wearings.
The flat-folded form of face mask has been constructed as a fabric which is rectangular in form and has pleats running generally parallel to the mouth of the wearer. Such constructions may have a stiffening element to hold the face mask away from contact with the wearer's face. Stiffening has also been provided by fusing a pleat across the width of the face mask in a laminated structure or by providing a seam across the width of the face mask.
Also disclosed is a pleated respirator which is centrally folded in the horizontal direction to form upper and lower opposed faces. The respirator has at least one horizontal pleat essentially central to the opposed faces to foreshorten the filter medium in the vertical dimension and at least one additional horizontal pleat in each of these opposed faces. The central pleat is shorter in the horizontal dimension relative to the pleats in the opposed faces which are shorter in the horizontal dimension relative to the maximum horizontal dimension of the filter medium. The central pleat together with the pleats in opposed faces form a self-supporting pocket.
Also disclosed is a respirator made from a pocket of flexible filtering sheet material having a generally tapering shape with an open edge at the larger end of the pocket and a closed end at the smaller end of the pocket. The closed end of the pocket is formed with fold lines defining a generally quadrilateral surface comprising triangular surfaces which are folded to extend inwardly of the pocket, the triangular surfaces facing each other and being in use, relatively inclined to each other.
More complex configurations which have been disclosed include a cup-shaped filtering facepiece made from a pocket of filtering sheet material having opposed side walls, a generally tapering shape with an open end at the larger end and a closed end at the smaller end. The edge of the pocket at the closed end is outwardly bowed, e.g. defined by intersecting straight lines and/or curved lines, and the closed end is provided with fold lines defining a surface which is folded inwardly of the closed end of the pocket to define a generally conical inwardly extending recess for rigidifying the pocket against collapse against the face of the wearer on inhalation.
Further disclosed is face mask having an upper part and a lower part with a generally central part therebetween. The central part of the body portion is folded backwardly about a vertical crease or fold line which substantially divides it in half. This fold or crease line, when the mask is worn, is more or less aligned with an imaginary vertical line passing through the center of the forehead, the nose and the center of the mouth. The upper part of the body portion extends upwardly at an angle from the upper edge of the central part so that its upper edge contacts the bridge of the nose and the cheekbone area of the face. The lower part of the body portion extends downwardly and in the direction of the throat form the lower edge of the center part so as to provide coverage underneath the chin of the wearer. The mask overlies, but does not directly contact, the lips and mouth of the wearer.
The present invention provides a personal respiratory protection device comprising
a flat central portion having first and second edges,
a flat first member joined to the first edge of the central portion through either a fold-line, seam, weld or bond, said fold, bond, weld or seam of said first member being substantially coextensive with said first edge of said central portion, and
a flat second member joined to the second edge of the central portion through either a fold-line, seam, weld or bond, said fold, bond, weld or seam of said second member being substantially coextensive with said second edge of said central portion,
at least one of the central portion and first and second members being formed from filter media, and
said device being capable of being folded flat for storage with said first and second members being in at least partial face-to-face contact with a common surface of said central portion and, during use, being capable of forming a cup-shaped air chamber over the nose and mouth of the wearer with the unjoined edges of the central portion and first and second members adapted to contact and be secured to the nose, cheeks and chin of the wearer and the outer boundary of the unjoined edges which are adapted to contact the nose, cheeks and chin of the wearer being less than the perimeter of the device in the flat folded storage state. Additional portions may be optionally attached to the unjoined edges of the first and second members. Additional portions may be optionally attached to the central portion.
The configuration of the flat-folded respiratory device may be rectangular to substantially elliptical. The respiratory device, when unfolded for use, is substantially cup-shaped. The filter media which comprises at least one of the first member, central portion and second member may be a nonwoven fabric such as one formed from microfibers or may be of several layers, each layer having similar or dissimilar filtering properties. The filter media may, of course, also comprise any two or all of the first member, central portion and second member as well as the additional portions.
The respiratory devices of the present invention may further comprise headbands or other means such as adhesive for holding the respiratory device in place on the face of the wearer, nose clips or any other means to provide good contact of the respiratory device with the nose of the wearer, exhalation valves, and other accouterments common to respirators and facemasks such as, for example, face seals, eye shields and neck coverings. When the respiratory device is constructed with a nose clip, the nose clip may be on the outer portion of the first member of the respiratory device and a cushioning member such as a piece of foam can be placed directly below the nose clip on the inner surface of the first member or the nose clip may be on the inner surface of the first member and a cushioning member can be placed covering the nose clip or when the respiratory device comprises multiple layers, the nose clip may be placed between layers.
The respiratory devices of the present invention include, for example, respirators, surgical masks, clean room masks, face shields, dust masks, breath warming masks, and a variety of other face coverings. The respiratory devices of the present invention can be designed to provide better sealing engagement with the wearer's face than some other types of cup-shaped respirators or face masks which contact the wearer's face at the periphery of the respirator at an acute angle with minimal contact region, thereby increasing discomfort to the wearer and potentially minimizing the engagement of the seal at the perimeter of the respirator.
Additionally provided is a process for producing personal respiratory devices to afford respiratory protection to a wearer comprising
a) forming a flat central portion, said central portion having at least a first edge and a second edge;
b) attaching a flat first member to said central portion at the first edge of said central portion with a fold, bond, weld or seam, said fold, bond, weld or seam edge of said first member being substantially coextensive with said first edge of said central portion;
c) attaching a flat second member to said central portion at the second edge of said central portion with a fold, bond, weld or seam, said fold, bond, weld or seam edge of said second member being substantially coextensive with said second edge of said central portion;
with the proviso that at least one of said central portion, first member and second member comprises filter media and said device being capable of being folded flat for storage and, during use, being capable of forming a cup-shaped air chamber over the nose and mouth of the wearer, and the unjoined edges of the central portion, first member and second member adapted to contact and be secured to the nose, cheeks and chin of the wearer and the outer boundary of the unjoined edges which are adapted to contact the nose, cheeks and chin of the wearer being less than the perimeter of the device in the flat folded storage state. Additional portions may be optionally attached to the unjoined edges of the first and second members.
Also provided is a process for producing personal respiratory protection devices comprising the steps of forming a rectangular sheet of filtering media, folding a first long edge toward the center of the sheet to form a first member, folding the second long edge toward the center of the sheet to form a second member and sealing the nonfolded edges. The process may optionally include additional portions attached to the first and second members at their unfolded edges through additional folds or bonds.
Further provided is a process for preparing personal respiratory protection devices comprising forming a first elliptical sheet of filter media having two edges, forming a second elliptical sheet of filter media having two edges, at least one side of each sheet having a common shape, bonding the common shaped edges, folding the unbonded edge of said second sheet toward the bonded edge, forming a third elliptical sheet of filter media having two edges, at least one edge of which has a common shape with the unbonded edge of said first sheet, placing said third sheet on said second sheet and bonding the common shaped edges of said first and third sheet.
Each process is amenable to high speed production methods and may comprise additional steps as needed for attachment of headbands, nose clips, and other typical respiratory device components.
a-13p are front views of various additional alternative embodiments of the present invention.
In one embodiment of the invention as shown in
The personal respiratory protection device 10 is shown in
In another embodiment shown in
The width of the central portion 12 of personal respiratory protection device 10 extending between edge seals 11 and 11′ or bonds located in the same position as edge seals 11 and 11′ is preferably about 160 to 220 mm in width, more preferably about 175 to 205 mm, most preferably about 185 to 190 mm in width. The height of central portion 12 of respiratory device 10 extending between folds 15 and 17 is preferably about 30 to 110 mm in height, more preferably about 50 to 100 mm in height, most preferably about 75 to 80 mm in height. The width of first member 14 and second member 16 of respiratory device 10 are preferably about the same as that of central portion 12. The depth of first member 14 extending from fold 15 to the peripheral edge of first member 14 of respiratory device 10 or fold 21 of respiratory device 10′ is preferably about 30 to 110 mm, more preferably about 50 to 70 mm, most preferably about 55 to 65 mm. The depth of second member 16 extending from fold 17 to the peripheral edge of second member 16 of respiratory device 10 to fold 23 of respiratory device 10′ is preferably about 30 to 110 mm, more preferably about 55 to 75 mm, most preferably about 60 to 70 mm. The depths of first member 14 and second member 16 may be the same or different and the sum of the depths of the first and second members preferably does not exceed the height of the central portion. Additional members 20 and 22 in respiratory device 10′ are preferably about the same width as first and second members 14 and 16. Additional member 20 in respiratory device 10′ is preferably about 1 to 95 mm, more preferably about 5 to 40 mm, most preferably about 5 to 30 mm in depth. Additional member 22 of respiratory device 10′ is preferably about 1 to 95 mm, more preferably about 3 to 75 mm, most preferably about 3 to 35 mm in depth. End edge seals are preferably at about 1 to 25 mm, more preferably about 5-10 mm from the outer edges of central portion 12, first member 14 and second member 16 and are preferably 1 to 10 mm in width, more preferably 2 to 5 mm in width. When additional portions 20 and 22 are present as in respiratory device 10′ such portions may be, but preferably are not, included in edge seals 11, 11′. In such respiratory devices as 10 and 10′, the outer boundary of the unjoined edges which contact the nose, cheeks and chin of the wearer in the open configuration shown in
A further embodiment which is referred to as being elliptical in shape is shown in
In
In the respiratory devices shown in
In the personal respiratory protection device shown in
The shape of the flat-folded personal respiratory protection device, although referred to as generally elliptical with regard to
The filter media or material useful in the present invention which must comprise at least one of the central portion, first member or second member may be comprised of a number of woven and nonwoven materials, a single or a plurality of layers, with or without an inner or outer cover or scrim, and with or without a stiffening means. Preferably, the central portion is provided with stiffening means such as, for example; woven or nonwoven scrim, adhesive bars, printing or bonding. Examples of suitable filter material include microfiber webs, fibrillated film webs, woven or nonwoven webs (e.g., airlaid or carded staple fibers), solution-blown fiber webs, or combinations thereof. Fibers useful for forming such webs include, for example, polyolefins such as polypropylene, polyethylene, polybutylene, poly(4-methyl-1-pentene) and blends thereof, halogen substituted polyolefins such as those containing one or more chloroethylene units, or tetrafluoroethylene units, and which may also contain acrylonitrile units, polyesters, polycarbonates, polyurethanes, rosin-wool, glass, cellulose or combinations thereof.
Fibers of the filtering layer are selected depending upon the type of particulate to be filtered. Proper selection of fibers can also affect the comfort of the respiratory device to the wearer, e.g., by providing softness or moisture control. Webs of melt blown microfibers useful in the present invention can be prepared as described, for example, in Wente, Van A., “Superfine Thermoplastic Fibers” in Industrial Engineering Chemistry, Vol. 48, 1342 et seq. (1956) and in Report No. 4364 of the Navel Research Laboratories, published May 25, 1954, entitled “Manufacture of Super Fine Organic Fibers” by Van A. Wente et al. The blown microfibers in the filter media useful on the present invention preferably have an effective fiber diameter of from 3 to 30 micrometers, more preferably from about 7 to 15 micrometers, as calculated according to the method set forth in Davies, C. N., “The Separation of Airborne Dust Particles”, Institution of Mechanical Engineers, London, Proceedings 1B, 1952.
Staple fibers may also, optionally, be present in the filtering layer. The presence of crimped, bulking staple fibers provides for a more lofty, less dense web than a web consisting solely of blown microfibers. Preferably, no more than 90 weight percent staple fibers, more preferably no more than 70 weight percent are present in the media. Such webs containing staple fiber are disclosed in U.S. Pat. No. 4,118,531 (Hauser), which is incorporated herein by reference.
Bicomponent staple fibers may also be used in the filtering layer or in one or more other layers of the filter media. The bicomponent staple fibers which generally have an outer layer which has a lower melting point than the core portion can be used to form a resilient shaping layer bonded together at fiber intersection points, e.g., by heating the layer so that the outer layer of the bicomponent fibers flows into contact with adjacent fibers that are either bicomponent or other staple fibers. The shaping layer can also be prepared with binder fibers of a heat-flowable polyester included together with staple fibers and upon heating of the shaping layer the binder fibers melt and flow to a fiber intersection point where they surround the fiber intersection point. Upon cooling, bonds develop at the intersection points of the fibers and hold the fiber mass in the desired shape. Also, binder materials such as acrylic latex or powdered heat activatable adhesive resins can be applied to the webs to provide bonding of the fibers.
Electrically charged fibers such as are disclosed in U.S. Pat. No. 4,215,682 (Kubik et al.), U.S. Pat. No. 4,588,537 (Klasse et al.) which are incorporated herein by reference, or by other conventional methods of polarizing or charging electrets, e.g., by the process of U.S. Pat. No. 4,375,718 (Wadsworth et al.), or U.S. Pat. No. 4,592,815 (Nakao), which are incorporated herein by reference are particularly useful in the present invention. Electrically charged fibrillated-film fibers as taught in U.S. Pat. No. RE. 31,285 (van Turnhout), also incorporated herein by reference, are also useful. In general the charging process involves subjecting the material to corona discharge or pulsed high voltage.
Sorbent particulate material such as activated carbon or alumina may also be included in the filtering layer. Such particle-loaded webs are described, for example, in U.S. Pat. No. 3,971,373 (Braun), U.S. Pat. No. 4,100,324 (Anderson) and U.S. Pat. No. 4,429,001 (Kolpin et al.), which are incorporated herein by reference. Masks from particle loaded filter layers are particularly good for protection from gaseous materials.
At least one of the central portion, first member and second member of a respiratory device of the present invention must comprise filter media. Preferably at least two of the central portion, first member and second member comprise filter media and all of the central portion, first member and second member may comprise filter media. The portion(s) not formed of filter media may be formed of a variety of materials. The first member may be formed, for example, from a material which provides a moisture barrier to prevent fogging of a wearer's glasses. The central portion may be formed of a transparent material so that lip movement by the wearer can be observed.
Where the central portion is bonded to the first and/or second members, bonding can be carried out by ultrasonic welding, adhesive bonding, stapling, sewing, thermomechanical, pressure, or other suitable means and can be intermittent or continuous. Any of these means leaves the bonded area somewhat strengthened or rigidified. Such bonding means are also suitable for securing the end portions of the respiratory devices shown in
The respiratory devices of the present invention are preferably held in place on a wearer's face by means well-known to those skilled in the art such as by adhesive or with straps or headbands secured to the respiratory device main body, formed by the central portion and first and second members of the respiratory device, or additional portion(s) of the respiratory device, at outboard positions on either the outer or inner surface of the respiratory device by such means as loops which may be integrally formed with the respiratory device shown in, for example,
Straps or headbands useful in the present invention may be constructed from resilient polyurethane, polyisoprene, butylene-styrene copolymers such as, for example, KRATON™ thermoplastic elastomers available from Shell Chemical Co., but also may be constructed from elastic rubber, or a covered stretch yarn such as LYCRA™ spandex available from DuPont Co.
Also useful for straps or headbands in the present invention are stretch activated, elastomeric composite materials. One such material is a non-tacky, multi-layer elastomeric laminate having at least one elastomeric core and at least one relatively nonelastomeric skin layer. The skin layer is stretched beyond its elastic limit and is relaxed with the core so as to form a microstructured skin layer. Microstructure means that the surface contains peak and valley irregularities or folds which are large enough to be perceived by the unaided human eye as causing increased opacity over the opacity of the composite before microstructuring, and which irregularities are small enough to be perceived as smooth or soft to human skin. Magnification of the irregularities is required to see the details of the microstructured texture. Such an elastomeric composite is disclosed in U.S. Pat. No. 5,501,679 to Krueger et al., which is hereby incorporated by reference.
Non-elastic bands useful in the present invention include, for example, non-woven materials formed by both wet-laid or dry-laid processes and consisting of rayon, polyester or like fibers, calendared spun-bonded webs of polypropylene, polyethylene or polyester and reinforced paper. The bands may either be tied, clasped, or stretched such that the bands encircle the head of the wearer bringing the facemask in sealing engagement with the face of the wearer.
Alternative band designs also can include open-loop or closed loop constructions to encircle the head of the wearer or loop over the ears of the wearer. U.S. Pat. No. 5,237,986 (Seppala et al.) discloses a headband assembly which enables the mask to be easily and quickly, and provides for temporary storage during non-use periods.
A nose clip useful in the respiratory device of the present invention may be made of, for example, a pliable dead-soft band of metal such as aluminum or plastic coated wire and can be shaped to fit the device comfortably to a wearer's face. Particularly preferred is a non-linear nose clip configured to extend over the bridge of the wearer's nose having inflections disposed along the clip section to afford wings that assist in providing a snug fit of the mask in the nose and cheek area as shown in
The respiratory device may also include an optional exhalation valve, typically a diaphragm valve, which allows for the easy exhalation of air by the user. An exhalation valve having extraordinary low pressure drop during exhalation for the mask is described in U.S. Pat. No. 5,325,892 (Japuntich et al.) which is incorporated herein by reference. Many exhalation valves of other designs are well known to those skilled in the art. The exhalation valve is preferably secured to the central portion, preferably near the middle of the central portion, by sonic welds, adhesion bonding, mechanical clamping or the like.
The respiratory device may optionally have attached, at the upper edge or outboard portions of the respiratory device, a face shield. Typical face shields are disclosed, for example, in U.S. Pat. No. 2,762,368 (Bloomfield) and U.S. Pat. No. 4,944,294 (Borek, Jr.), which are incorporated herein by reference. Also useful is the type of face shield 72 disclosed in U.S. Pat. No. 5,020,533 (Hubbard et al.) and shown in
Further, face seals which minimize leakage of air between the device and the face may also optionally be used with the respiratory device of the present invention. Typical face seals are described, for example, in U.S. Pat. No. 4,600,002 (Maryyanek et al.), U.S. Pat. No. 4,688,566 (Boyce), and U.S. Pat. No. 4,827,924 (Japuntich), which describes a ring of soft elastomeric material 76 as in shown in
Also, neck covers which protect the neck area from, for example, splashing liquids, may also be used with the respiratory devices of the present invention. Typical neck covers are disclosed, for example in U.S. Pat. No. 4,825,878 (Kuntz et al.), U.S. Pat. No. 5,322,061 (Brunson), and U.S. Design Pat. No. Des. 347,090 (Brunson), which are incorporated herein by reference.
The respiratory devices of the present invention can be sterilized by any standard method, such as gamma radiation, exposure to ethylene oxide, or autoclaving, although these processes may effect any charge which has been provide to the device.
The flat-folded personal respiratory protection devices of the present invention can be prepared by forming a flat central portion having at least a first edge and a second edge and attaching a flat first member to the central portion at the first edge of the central portion with a fold, bond or seam. The fold, bond or seam edge of the first portion is substantially coextensive with the first edge of the central portion. A flat second member is attached to the central portion at the second edge of the central portion with a fold, bond or seam. Again, the fold, bond or seam edge of the second member is substantially coextensive with the second edge of the central portion. At least one of the central portion, first and second members contains filter media.
The flat-folded respiratory devices shown in
The flat-folded respiratory devices shown in
Each process is amenable to high speed production methods and may comprise additional steps as needed for attachment of headbands, nose clips, and other typical respiratory device components.
An exhalation valve 136 is optionally inserted into the web assembly 134 at a valving station 136a. The valving station 136a preferably forms a hole proximate the center of the web assembly 134. The edges of the hole may be sealed to minimize excess web material. The valve 136 may be retained in the hole by welding, adhesive, pressure fit, clamping, snap assemblies or some other suitable means. Exemplary respiratory devices with exhalation valves are illustrated in
As is illustrated in
The folded device blank 155 can be welded along edges 158, 160 at finishing and headband attaching station 154a to form a strip of respiratory devices 156 from which the excess material beyond the bond lines can be removed. The weld line 160 is adjacent to the face-fit weld and edge finishing lines 133. The face-fit weld and edge finishing line 135 is shown in dashed lines since it is beneath the first member 146. Headband material 154 forming a headband 161 is positioned on the folded device blank 155 along a headband path “H” extending between left and right headband attachment locations 162, 164. The headband 161 is preferably attached to the device blank 155 at left and right headband attachment locations 162, 164. Since the device blank 155 is substantially flat during the manufacturing process 120, the headband path “H” is an axis substantially intersecting the left and right attachment locations 162, 164.
When the headband is of the preferred material disclosed in allowed U.S. Pat. No. 5,501,679 (Krueger et al.), it will be understood that it is possible to activate or partially activate the headband material 154 before, during or after application to the respiratory device blank 155. One preferred method is to activate the headband material 154 just prior to application by selectively clamping the yet unactivated headband material between adjacent clamps, elongating it the desired amount, laying the activated headband material 154 onto the device blank 155, and attaching the inactivated end portions of the headband material 154 to the device blank 155. Alternatively, the unactivated headband material 154 can be laid onto the device blank 155, attached at the ends as discussed herein and then activated prior to packaging. Finally, the headband material 154 can remain unactivated until activated by the user.
A longitudinal score line “S” may optionally be formed either before, during or after attachment of the headband material 154 to the device blank 155 at the finishing and headband attaching station 154a to create a multi-part headband. The edges 166, 168 of the device blank 155 adjacent to the left and right headband attachment locations 162, 164 may either be severed to form discrete respiratory devices or perforated to form a strip of respiratory devices 167 (see
When other types of headband material are used, the headband material is applied at the length desired in the final finished flat-folded respiratory device and attached at left and right headband attachment locations 162, 164.
The following examples further illustrate this invention, but the particular materials, shapes and sizes thereof in these examples, as well as other conditions and details should not be construed to unduly limit this invention.
Personal respiratory protection devices of the present invention are further described by way of the non-limiting examples set forth below:
Two sheets (350 mm×300 mm) of electrically charged melt blown polypropylene microfibers were placed one atop the other to form a layered web having a basis weight of 100 g/m2, an effective fiber diameter of 7 to 8 microns, and a thickness of about 1 mm. An outer cover layer of a light spunbond polypropylene web (350 mm×300 mm; 50 g/m2, Type 105OB1UO0, available from Don and Low Nonwovens, Forfar, Scotland, United Kingdom) was placed in contact with one face of the microfiber layered web. A strip of polypropylene support mesh (380 mm×78 mm; 145 g/m2, Type 5173, available from Intermas, Barcelona, Spain) was placed widthwise on the remaining microfiber surface approximately 108 mm from one long edge of the layered microfiber web and 114 mm from the other long edge of the layered microfiber web and extending over the edges of the microfiber surface. An inner cover sheet (350 mm×300 mm; 23 g/m2, LURTASIL™ 6123, available from Spun Web UK, Derby, England, United Kingdom) was placed atop the support mesh and the remaining exposed microfiber web. The five-layered construction was then ultrasonically bonded in a rectangular shape roughly approximating the layered construction to provide bonds which held the layered construction together at its perimeter forming a top edge, a bottom edge and two side edges. The layers were also bonded together along the long edges of the support mesh. The length of the thus-bonded construction, measured parallel to the top and bottom edges, was 188 mm; and the width, measured parallel to the side edges was 203 mm. The edges of the strip of support mesh lay 60 mm from the top edge of the layered construction and 65 mm from the bottom edge of the construction. Excess material beyond the periphery of the bond was removed, leaving portions beyond the bond line at the side edges, proximate the centerline of the support mesh, 50 mm long×20 mm wide to form headband attachment means.
The top edge of the layered construction was folded lengthwise proximate the nearest edge of the support mesh to form an upper fold such that the inner cover contacted itself for a distance of 39 mm from the upper fold to form a first member, the remaining 21 mm of layered construction forming an additional portion. The bottom edge of the layered construction was folded lengthwise proximate the nearest edge of the support mesh to form a lower fold such that the inner cover contacted itself for a distance of 39 mm to form a second member, the remaining 26 mm forming an additional portion. The inner cover layer of the additional portions were then in contact with each other. The contacting portions of the central portion, lying between the upper and lower folds, the first member and the second member were sealed at their side edges.
A malleable nose clip about 5 mm wide×140 mm long was attached to the exterior surface of the additional portion attached to the first member and a strip of nose foam about 15 mm wide×140 mm long was attached to the inner surface of the additional portion substantially aligned with the nose clip. The additional portions were folded such that the outer covers of each contacted the outer cover of the first and second members, respectively.
The free ends of the layered construction left to form headband attachment means were folded to the bonded edge of the layered construction and bonded to form loops. Head band elastic was threaded through the loops to provide means for securing the thus-formed respiratory device to a wearer's face.
First and second layered sheet constructions (350 mm×300 mm) were prepared as in Example 1 except the support mesh was omitted. A curvilinear bond was formed along a long edge of each sheet and excess material beyond the convex portion of the bond was removed. A third layered sheet construction was prepared as in Example 1 except each of the five layers was substantially coextensive. The first layered sheet construction was placed atop the third layered sheet construction with inner covers in contact. The first and third sheet constructions were bonded together using a curvilinear bond near the unbonded long edged of the first sheet construction to form an elliptical first respiratory device member having a width of 165 mm and a depth of 32 mm. The radius of each of the curvilinear bond was 145 mm.
The edge of the first sheet construction not bonded to the third sheet was folded back toward the edge of the first sheet which was bonded to the third sheet. The second sheet construction was placed atop the folded first sheet and partially covered third sheet. The second and third sheet construction were bonded together using a curvilinear bond to form an elliptical second respiratory device member from the second sheet having a width of 165 mm and a depth of 32 mm and an elliptical central respiratory device portion having a width of 165 mm and a height of 64 mm from the third sheet construction. The material outside the elliptical portions was removed. The first and second members were folded away from the central portion.
A malleable aluminum nose clip was attached to the exterior surface of the periphery of the first member and a strip of nose foam was attached to the interior surface in substantial alignment with the nose clip. Headband attachment means were attached at the points where the bonds between the central portion and the first and second members met, and head band elastic was threaded through the attachment means to form a respiratory device ready for a wearer to don.
The various modifications and alterations of this invention will be apparent to those skilled in the art without departing from the scope and spirit of this invention and this invention should not be restricted to that set forth herein for illustrative purposes.
This application is a continuation of application Ser. No. 11/279,976 filed Apr. 17, 2006, which is a continuation of application Ser. No. 11/069,531 filed Feb. 28, 2005 (now U.S. Pat. No. 7,069,930B2), which is a division of application Ser. No. 10/798,581 filed on Mar. 11, 2004 (now U.S. Pat. No. 6,886,563B2), which is a division of application Ser. No. 10/395,975 filed on Mar. 25, 2003 (now U.S. Pat. No. 6,722,366B2), which is a division of application Ser. No. 09/218,930 filed on Dec. 22, 1998 (now U.S. Pat. No. 6,568,392B1), which is a division of application Ser. No. 08/612,527 filed on Mar. 8, 1996 (now U.S. Pat. No. 6,123,077), which is a continuation-in-part of application Ser. No. 08/507,449, having a U.S. filing date of Sep. 11, 1995 (now abandoned), from International Application US95/02790 (WO 95/02790) filed under the Patent Cooperation Treaty on Mar. 9, 1995
Number | Name | Date | Kind |
---|---|---|---|
1523884 | LeDuc | Jan 1925 | A |
1987922 | Blatt | Jan 1935 | A |
2012505 | Goldsmith | Aug 1935 | A |
2029947 | Schmitt et al. | Feb 1936 | A |
2447450 | Williams | Aug 1948 | A |
2565124 | Durborow | Aug 1951 | A |
2762368 | Bloomfield | Sep 1956 | A |
3603315 | Becker, III | Sep 1971 | A |
3613678 | Mayhew | Oct 1971 | A |
3664335 | Boucher et al. | May 1972 | A |
3884227 | Lutz et al. | May 1975 | A |
3971369 | Aspelin et al. | Jul 1976 | A |
3971373 | Braun | Jul 1976 | A |
3985132 | Boyce et al. | Oct 1976 | A |
4100324 | Anderson et al. | Jul 1978 | A |
4118531 | Hauser | Oct 1978 | A |
4215682 | Kubik et al. | Aug 1980 | A |
4248220 | White | Feb 1981 | A |
4300549 | Parker | Nov 1981 | A |
4375718 | Wadsworth et al. | Mar 1983 | A |
RE31285 | Turnhout et al. | Jun 1983 | E |
4417575 | Hilton et al. | Nov 1983 | A |
4419993 | Petersen | Dec 1983 | A |
4419994 | Hilton | Dec 1983 | A |
4429001 | Kolpin et al. | Jan 1984 | A |
4454881 | Huber et al. | Jun 1984 | A |
4536440 | Berg | Aug 1985 | A |
4588537 | Klaase et al. | May 1986 | A |
4592815 | Nakao | Jun 1986 | A |
4600002 | Maryyanek et al. | Jul 1986 | A |
4625720 | Lock | Dec 1986 | A |
D287649 | Zdrok et al. | Jan 1987 | S |
4635628 | Hubbard et al. | Jan 1987 | A |
4688566 | Boyce | Aug 1987 | A |
4807619 | Dyrud et al. | Feb 1989 | A |
4813948 | Insley | Mar 1989 | A |
4825878 | Kuntz et al. | May 1989 | A |
4827924 | Japuntich | May 1989 | A |
4850347 | Skov | Jul 1989 | A |
4874399 | Reed et al. | Oct 1989 | A |
4883547 | Japuntich | Nov 1989 | A |
4920960 | Hubbard et al. | May 1990 | A |
4944294 | Borek, Jr. | Jul 1990 | A |
5009319 | Jantzen | Apr 1991 | A |
5020533 | Hubbard et al. | Jun 1991 | A |
5143061 | Kaimer | Sep 1992 | A |
5237986 | Seppala et al. | Aug 1993 | A |
5244482 | Hassenboehler, Jr. et al. | Sep 1993 | A |
D347090 | Brunson | May 1994 | S |
5322061 | Brunson | Jun 1994 | A |
5325892 | Japuntich et al. | Jul 1994 | A |
5331957 | Liu | Jul 1994 | A |
5419318 | Tayebi | May 1995 | A |
5429856 | Krueger et al. | Jul 1995 | A |
5446925 | Baker et al. | Sep 1995 | A |
5467765 | Maturaporn | Nov 1995 | A |
5501679 | Krueger et al. | Mar 1996 | A |
5620785 | Watt et al. | Apr 1997 | A |
5645057 | Watt et al. | Jul 1997 | A |
5673690 | Tayebi et al. | Oct 1997 | A |
5694925 | Reese et al. | Dec 1997 | A |
5706803 | Bayer | Jan 1998 | A |
5720052 | Walker | Feb 1998 | A |
5724677 | Bryant et al. | Mar 1998 | A |
5735270 | Bayer | Apr 1998 | A |
5738030 | Ok | Apr 1998 | A |
5765556 | Brunson | Jun 1998 | A |
D416323 | Henderson et al. | Nov 1999 | S |
D424688 | Bryant et al. | May 2000 | S |
6070579 | Bryant et al. | Jun 2000 | A |
6092521 | Miura | Jul 2000 | A |
6123077 | Bostock et al. | Sep 2000 | A |
D431647 | Henderson et al. | Oct 2000 | S |
6148817 | Bryant | Nov 2000 | A |
D459471 | Curran et al. | Jun 2002 | S |
6436529 | Bostock et al. | Aug 2002 | B1 |
6484722 | Bostock et al. | Nov 2002 | B2 |
6536434 | Bostock et al. | Mar 2003 | B1 |
6568392 | Bostock et al. | May 2003 | B1 |
6715489 | Bostock et al. | Apr 2004 | B2 |
6722366 | Bostock et al. | Apr 2004 | B2 |
6886563 | Bostock et al. | Dec 2004 | B2 |
7036503 | Miyazawa et al. | May 2006 | B2 |
7036507 | Jensen | May 2006 | B2 |
7069930 | Bostock et al. | Jul 2006 | B2 |
7086401 | Chiam | Aug 2006 | B2 |
7131442 | Kronzer | Nov 2006 | B1 |
7171967 | Brunell et al. | Feb 2007 | B2 |
7185653 | Lee | Mar 2007 | B2 |
7210482 | Huang et al. | May 2007 | B2 |
20060180152 | Bostock et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
1296487 | Mar 1992 | CA |
3337031 | Sep 1985 | DE |
0060687 | Sep 1982 | EP |
0183059 | Jun 1986 | EP |
391725 | Oct 1990 | EP |
1220851 | Jan 1960 | FR |
2473875 | Jul 1981 | FR |
134432 | Jan 1919 | GB |
388638 | Mar 1933 | GB |
871661 | Jun 1961 | GB |
2025773 | Jan 1980 | GB |
2046102 | Nov 1980 | GB |
1588442 | Apr 1981 | GB |
2057891 | Apr 1981 | GB |
2072516 | Oct 1981 | GB |
2079161 | Jan 1982 | GB |
2103491 | Feb 1983 | GB |
10-11186 | Aug 1935 | JP |
49-14395 | May 1972 | JP |
55-21988 | Jan 1980 | JP |
58-124639 | Jul 1983 | JP |
3-63046 | Dec 1986 | JP |
61-272063 | Dec 1986 | JP |
2-234967 | Sep 1990 | JP |
4-20363 | Feb 1992 | JP |
5-171556 | Jul 1993 | JP |
5-220313 | Aug 1993 | JP |
6-128852 | May 1994 | JP |
6-142223 | May 1994 | JP |
3112218 | Aug 2005 | JP |
3121985 | Jun 2006 | JP |
WO 8910106 | Nov 1989 | WO |
WO 9419976 | Sep 1994 | WO |
WO 9505232 | Feb 1995 | WO |
WO 9628216 | Sep 1996 | WO |
WO 9628217 | Sep 1996 | WO |
WO 9732493 | Sep 1997 | WO |
WO 9732494 | Sep 1997 | WO |
WO 9831743 | Jul 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20100095967 A1 | Apr 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10798581 | Mar 2004 | US |
Child | 11069531 | US | |
Parent | 10395975 | Mar 2003 | US |
Child | 10798581 | US | |
Parent | 09218930 | Dec 1998 | US |
Child | 10395975 | US | |
Parent | 08612527 | Mar 1996 | US |
Child | 09218930 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11279976 | Jan 2006 | US |
Child | 12640513 | US | |
Parent | 11069531 | Feb 2005 | US |
Child | 11279976 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08507449 | US | |
Child | 08612527 | US |