The present invention relates to antennas generally and more particularly to folding antennas.
The following Patent documents are believed to represent the current state of the art:
U.S. Pat. Nos.: 6,680,705 and 5,764;190; and
U.S. Published Patent Application No: 2005/0057409.
The present invention seeks to provide an improved folding antenna.
There is thus provided in accordance with a preferred embodiment of the present invention a multi-band antenna including a first antenna portion extending generally in a first plane, a second antenna portion, extending generally in a second plane and a hinged coupling providing coupling between the first antenna portion and the second antenna portion and permitting the second antenna portion to be folded over the first antenna portion such that the first plane and the second plane lie generally parallel.
In accordance with a preferred embodiment of the present invention the coupling includes at least one of galvanic coupling and capacitive coupling. Preferably, the first antenna portion includes a strip line antenna. Additionally or alternatively, the second antenna portion includes a wire bent in a generally rectangular shape whose dimensions exceed the dimensions of the first antenna portion.
In accordance with another preferred embodiment of the present invention the second antenna portion is curved with respect to the second plane. Preferably, the second antenna portion includes a curved portion having a curvature diameter which is less than or equal to twice the diameter of the second antenna portion. Additionally or alternatively, the multi-band antenna includes a dual-band antenna, wherein the first antenna portion operates in a high frequency band and the second antenna portion operates in a low frequency band, when coupled to the first antenna portion.
In accordance with yet another preferred embodiment of the present invention the wire includes a first end and a second end, which are arranged generally in a mutually spaced parallel orientation. Preferably, the multi-band antenna includes a tri-band antenna.
In accordance with still another preferred embodiment of the present invention the antenna also includes a pivotable antenna connector coupled to the first antenna portion. Preferably, the pivotable antenna connector is coupled to the first antenna portion by at least one of galvanic coupling and capacitive coupling.
In accordance with a further preferred embodiment of the present invention the antenna is pivotably coupled to a communicating device, whereby the first antenna portion is pivotably coupled to the communicating device about a first axis and the second antenna portion is pivotably coupled to the first antenna portion about a second axis extending perpendicular to the first axis. Preferably, the second antenna portion is folded over the first antenna portion and the first antenna portion lies generally parallel to a side edge of the communicating device, the multi-band antenna has a width which does not exceed a width of the communicating device.
In accordance with yet a further preferred embodiment of the present invention the antenna also includes a third antenna portion coupled to the second antenna portion. Preferably, the third antenna portion is coupled to the second antenna portion by at least one of galvanic coupling and capacitive coupling. Additionally or alternatively, the antenna also includes a hinged coupling providing coupling between the second antenna portion and the third antenna portion and permitting the third antenna portion to be folded over the second antenna portion. Preferably, the hinged coupling provides at least one of galvanic coupling and capacitive coupling.
In accordance with still a further preferred embodiment of the present invention the multi-band antenna includes a quadri-band antenna. Preferably, the multi-band antenna is operative to operate in at least one low frequency band, which is suitable for reception of television broadcasts. Additionally or alternatively, the multi-band antenna is operative to employ second order harmonics thereby to operate in another band.
In accordance with an additional preferred embodiment of the present invention the antenna also includes at least one electrical component operative to provide impedance matching. Preferably, the at least one electrical component includes at least one of an inductor and a capacitor.
In accordance with another preferred embodiment of the present invention the antenna also includes a housing element formed around the first antenna portion. Preferably, the housing element is molded around the first antenna portion. Additionally or alternatively, the antenna also includes a support element operative to support the second antenna portion.
The present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings in which:
Reference is now made to
As seen in
The antenna 100 is formed with an RF connector 126, such as a MMCX plug, commercially available from Amphenol Corporation of Wallington, Conn., USA under catalog designator 908-21106. The connector 126 includes, at a top portion thereof, a conductive pin-tip 128 which extends through pin accommodating aperture 119 and is soldered thereto, and additionally includes a stem portion 136 which is adapted to retain the RF connector 126 in place when inserted in an RF connector socket of a communications card of a mobile device.
A strap 138 preferably connects a cylindrical portion 140 to printed circuit board 110. Strap 138 includes a shoulder portion 142 formed at one end thereof and a pair of prongs 144 formed at another end of the strap 138. Shoulder portion 142 preferably is seated against a bottom surface 146 of conductive element 123, and prongs 144 preferably extend through bores 124 and are soldered to bottom surface 146, thereby preventing movement of cylindrical portion 140 relative to printed circuit board 110. Cylindrical portion 140 includes a first edge portion 150 and a second, externally serrated, edge portion 152, intermediate which is formed a neck portion 154.
A housing element 156, which is preferably dielectric, but alternatively may be formed at least partially of a conductive material, is preferably formed by molding around printed circuit board 110, connector 126 and cylindrical portion 140. Due to the method of molding, the housing element 156 is formed with a transverse bore 158 which accommodates cylindrical portion 140 and which is molded to have a serrated edge surface 160 which corresponds to and interlocks with serrated edge portion 152 of cylindrical portion 140.
As seen with particular clarity in
Antenna 100 includes a wire assembly 165, which comprises a pivoting pin 166, rotationally held within end 150 of cylindrical portion 140. Pivoting pin 166 is integrally formed with a supporting arm 172 having a bore 174 formed therein. The wire assembly 165 also includes a support surface 176, which is preferably slightly concave but may alternatively be planar. Support surface 176 preferably has mounted thereon a plurality of retaining elements 178 and one or more spacers 180. Support surface 176 may have mounted thereon decorative elements, advertisements or other functional elements. Alternatively, retaining elements 178 and spacers 180 may be mounted on a hollow support frame, which functionally replaces support surface 176.
Also included in wire assembly 165 is a generally rectangular-shaped antenna wire 182, which is preferably slightly concave but may alternatively be planar. The curvature diameter of antenna wire 182 is preferably less than or equal to twice the wire diameter. Preferably, the dimensions of wire 182 exceed those of strip-line antenna 118.
Wire 182 is preferably formed with a first end 184, which is disposed within bore 174 of supporting arm 172, and a second end 186. Second end 186 of wire 182 is preferably rotatably maintained within cylindrical portion 140 by a generally cylindrical spring element 188. Spring element 188 preferably includes edge portions 190, intermediate which are formed a plurality of resilient supporting ribs 192.
Wire 182 generally surrounds support surface 176 at a fixed distance therefrom. The distance between the wire 182 and support surface 176 is maintained by spacers 180, and the fixed orientation therebetween is retained by retaining elements 178.
Rotation of the wire assembly 165 with respect to housing element 156 is enabled by rotation of pivoting pin 166 within cylindrical portion 140, and corresponding rotation of second end 186 of wire 182 with respect to spring element 188. It is appreciated that rotation of pivoting pin 166 and of second end 186 results in rotation of the entire wire assembly 165 about an axis 194 extending longitudinally through cylindrical portion 140. It is appreciated that the rotation of wire assembly 165 enables the antenna 100 to assume either one of the alternative orientations shown in
Wire 182 of wire assembly 165 is preferably galvanically coupled to strip-line antenna 118, but may alternatively be non-galvanically coupled thereto, as by capacitive coupling.
As seen with particular clarity in
As seen with particular clarity in
Reference is now additionally made to
Turning specifically to
Turning to
It is appreciated that the wire assembly 165 may assume any other orientation within the limits shown in
It is a particular feature of the present invention that the antenna 100 provides dual band functionality. A first band, which is typically a low frequency band, is affected by the length, width and concavity of wire 182. A second band, which is typically a high frequency band, is affected by the length and/or width of strip line antenna 118, with some lesser tuning contribution stemming from galvanic and near field RF coupling between the wire assembly 165 and housing element 156.
Reference is now made to
As seen in
The antenna 200 is formed with an RF connector 226, such as a MMCX plug, commercially available from Amphenol Corporation of Wallington, Conn., USA under catalog designator 908-21106. The connector 226 includes, at a top portion thereof, a conductive pin-tip 228, which extends through pin accommodating aperture 219 and is soldered thereto, and additionally includes a stem portion 236 which is adapted to retain the RF connector 226 in place when inserted in an RF connector socket of a communications card of a mobile device.
A strap 238 preferably connects a cylindrical portion 240 to printed circuit board 210. Strap 238 includes a shoulder portion 242 formed at one end thereof and a pair of prongs 244 formed at another end of the strap 238. Shoulder portion 242 preferably is seated against a bottom surface 246 of conductive element 223, and prongs 244 preferably extend through bores 224 and are soldered to bottom surface 246, thereby preventing movement of cylindrical portion 240 relative to printed circuit board 210. Cylindrical portion 240 includes a first edge portion 250 and a second, externally serrated, edge portion 252, intermediate which is formed a neck portion 254.
A housing element 256, which is preferably dielectric, but alternatively may be formed at least partially of a conductive material, is preferably formed by molding around printed circuit board 210, connector 226 and cylindrical portion 240. Due to the method of molding, the housing element 256 is formed with a transverse bore 258 which accommodates cylindrical portion 240 and which is molded to have a serrated edge surface 260 which corresponds to and interlocks with serrated edge portion 252 of cylindrical portion 240.
As seen with particular clarity in
Antenna 200 includes a wire assembly 265, which comprises a pair of antenna wire portions 266 and 267, together forming a generally rectangular-shaped antenna, having ends 268 and 270 respectively. Wire ends 268 and 270 are preferably arranged in a mutually spaced parallel orientation. Preferably, the dimensions of the rectangular antenna exceed those of strip-line antenna 218.
Wire portions 266 and 267 preferably also each include a pivoting portion, referenced by numerals 272 and 273 respectively, which are held together by a conductive interface tube 274. Interface tube 274 is rotatably maintained within cylindrical portion 240 by a generally cylindrical spring element 276. Spring element 276 preferably includes edge portions 277, intermediate which are formed a plurality of resilient supporting ribs 278.
Wire portions 266 and 267 are preferably formed around and are spaced from a support surface 280 via a plurality of retaining elements 282 and one or more spacers 284 which are mounted on support surface 280. Support surface 280 may have mounted thereon decorative elements, advertisements or other functional elements. Alternatively, retaining elements 282 and spacers 284 may be mounted on a hollow support frame, which functionally replaces support surface 280.
Rotation of the wire assembly 265 with respect to housing element 256 is enabled by rotation of interface tube 274 and pivoting portion 272 and 273 with respect to spring element 276 within cylindrical portion 240. It is appreciated that rotation of interface tube 274 and pivoting portions 272 and 273 results in rotation of the entire wire assembly 265 about an axis 294 extending longitudinally through cylindrical portion 240. It is appreciated that the rotation of wire assembly 265 enables the antenna 200 to assume either one of the alternative orientations shown in
Wire portions 266 and 267 of wire assembly 265 are preferably galvanically coupled to strip-line antenna 218, but may alternatively be non-galvanically coupled thereto, as by capacitive coupling.
As seen with particular clarity in
Reference is now additionally made to
Turning specifically to
Turning to
It is appreciated that the wire assembly 265 may assume any other orientation within the limits shown in
It is a particular feature of the present invention that the antenna 200 is a multi-element antenna which provides tri-band functionality. First and second bands, which are typically a low frequency band and a high frequency band respectively, are affected by the length, width and mutual orientation of ends 268 and 270 of wire portions 266 and 267. A third band, which is typically another high frequency band, is affected by the length and/or width of strip line antenna 218, with some lesser tuning contribution stemming from galvanic and near field RF coupling between the wire assembly 265 and housing element 256.
Reference is now made to
As seen in
The antenna 300 is formed with an RF connector 326, such as a MMCX plug, commercially available from Amphenol Corporation of Wallington, Conn., USA under catalog designator 908-21106. The connector 326 includes, at a top portion thereof, a conductive pin-tip 328 which extends through pin accommodating aperture 319 and is soldered thereto, and additionally includes a stem portion 336 which is adapted to retain the RF connector 326 in place when inserted in an RF connector socket of a communications card of a mobile device.
A strap 338 preferably connects a cylindrical portion 340 to printed circuit board 310. Strap 338 includes a shoulder portion 342 formed at one end thereof and a pair of prongs 344 formed at another end of the strap 338. Shoulder portion 342 preferably is seated against a bottom surface 346 of conductive element 323, and prongs 344 preferably extend through bores 324 and are soldered to bottom surface 346, thereby preventing movement of cylindrical portion 340 relative to printed circuit board 310. Cylindrical portion 340 includes a first edge portion 350 and a second, externally serrated, edge portion 352, intermediate which is formed a neck portion 354.
A housing element 356, which is preferably dielectric, but alternatively may be formed at least partially of a conductive material, is preferably formed by molding around printed circuit board 310, connector 326 and cylindrical portion 340. Due to the method of molding, the housing element 356 is formed with a transverse bore 358 which accommodates cylindrical portion 340 and which is molded to have a serrated edge surface 360 which corresponds to and interlocks with serrated edge portion 352 of cylindrical portion 340.
As seen with particular clarity in
Antenna 300 includes a wire assembly 365, which comprises a pivoting pin 366, rotationally held within end 350 of cylindrical portion 340. Pivoting pin 366 is integrally formed with a supporting arm 372 having a bore 374 formed therein. The wire assembly 365 also includes a support surface 376. Support surface 376 preferably has mounted thereon one of more retaining elements 378 and one or more spacers 380. Support surface 376 may have mounted thereon decorative elements, advertisements or other functional elements. Alternatively, retaining elements 378 and spacers 380 may be mounted on a hollow support frame, which functionally replaces support surface 376.
Also included in wire assembly 365 is a generally rectangular-shaped antenna wire 382, which is preferably formed with a first end 384, which is disposed within bore 374 of supporting arm 372, and a second end 386. Second end 386 of wire 382 is preferably rotatably maintained within cylindrical portion 340 by a generally cylindrical spring element 388. Spring element 388 preferably includes edge portions 390, intermediate which are formed a plurality of resilient supporting ribs 392. Preferably, the dimensions of wire 382 exceed those of strip-line antenna 318.
Wire 382 generally surrounds support surface 376 at a fixed distance therefrom. The distance between the wire 382 and support surface 376 is maintained by spacers 380, and the fixed orientation therebetween is retained by retaining elements 378.
A second wire portion 394, which is preferably generally rectangular, is preferably connected to a transverse portion 396 of wire 382 via a connector 398 which is formed with a pair of bores 400 and 401. Preferably, second wire portion 394 is seated in bore 400 and transverse portion 396 of wire 382 is seated in bore 401. Second wire portion 394 may rotate about an axis 402 extending longitudinally through connector 398, thereby to extend the wire assembly 365.
Rotation of the wire assembly 365 with respect to housing element 356 is enabled by rotation of pivoting pin 366 within cylindrical portion 340, and corresponding rotation of second end 386 of wire 382 with respect to spring element 388. It is appreciated that rotation of pivoting pin 366 and of second end 386 results in rotation of the entire wire assembly 365 about an axis 404 extending longitudinally through cylindrical portion 340. It is appreciated that the rotation of wire assembly 365 and of second wire portion 394 enables the antenna 300 to assume any of the orientations shown in
Wire 382 of wire assembly 365 is preferably galvanically coupled to strip-line antenna 318, but may alternatively be non-galvanically coupled thereto, as by capacitive coupling. Additionally, wire portion 394 is preferably galvanically coupled to wire portion 382, but may alternatively be non-galvanically coupled thereto, as by capacitive coupling.
Reference is now additionally made to
Turning specifically to
Turning to
It is appreciated that the wire assembly 365 may assume any other orientation within the limits shown in
It is a particular feature of the present invention that the antenna 300 provides quadri-band functionality. A first band, which is typically a high frequency band, is affected by the length, and/or width of strip line antenna 318, with some lesser tuning contribution stemming from galvanic and near field RF coupling between the wire assembly 365 and housing element 356. A second band, which is typically another high frequency band, is affected by the length and/or width of wire portions 382 and 394. A third band may be provided when the antenna 300 is in a fully extended orientation, as shown in
It is appreciated that in the fully extended orientation of antenna 300, as shown in
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove as well as modifications and variations thereof as would occur to a person of skill in the art upon reading the foregoing specification and which are not in the prior art.
The present application is related to U.S. Provisional Patent Application Ser. No. 60/697,484, filed Jul. 8, 2005, and entitled FLAT FOLDING HINGED MULTI-POLE ANTENNA, the disclosure of which is hereby incorporated by reference and priority of which is hereby claimed pursuant to 37 CFR 1.78(a) (4) and (5)(i).
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IL06/00786 | 7/6/2006 | WO | 00 | 7/27/2011 |
Number | Date | Country | |
---|---|---|---|
60697484 | Jul 2005 | US |