The invention relates to a flat gable composite packing, in particular a square lug packing, wherein the composite has at least one carrier layer made out of paper or cardboard, a coupling agent layer, an oxygen barrier layer, preferably made out of aluminum, and a bilateral plastic coating made out of polyethylene (PE), with a casting opening provided in the packing gable, and with a resealable spout element, which has a flange and a cap connected thereto, whose flange enveloping the casting opening is rigidly bonded with the packing surface, as well as a procedure for manufacturing such a flat gable composite packing.
The casting opening is normally a covered casting opening provided in the packing gable, or a casting opening stamped out in the area of the packing gable.
Flat gable composite packings are known in numerous designs. They are primarily used in the area of liquids packaging in conjunction with cold, cold-sterile, hot and aseptic filling. These packings are partially provided with spout elements sealed onto the gables, which are designed to be resealable with a cap. For opening such packings for the first time, it is known to provide an opening element sealed onto the composite piece, which forms an opening surface that generates a casting opening after opened.
In the flat gable composite packing known from DE 44 09 945 A1, it was proposed that a notch circling the opening surface be provided, and that an opening aid be non-positively secured inside the notch for withdrawing the composite pieces forming the opening surface and enveloped by the notch. However, the flat gable composite packing described above needs improvement in several areas. On the one hand, the is conceivable that the non-positive connection of the opening aid and composite piece most often designed as a seal might become weakened or even broken by stresses during the transport of the packing. As a result, it would no longer be possible to open the described packing with the opening aid.
In addition, the described packing provides that the composite material forming the opening surface be completely removed by means of the opening aid. This results in a throwaway part already during the first step of opening the flat gable composite packing that must be separately disposed of.
Proceeding from the above, the object of the present invention is to design and develop further a flat gable composite packing of the kind described at the preamble, along with a procedure for its manufacture, in such a way as to enable a reliable opening of the packing.
In terms of the flat gable composite packing, the object is achieved by virtue of the fact that, in a flat gable composite packing according to the present invention, an opening element attached to the packing interior can be bonded with the cap to form an undetachable unit by means of a connecting element that penetrates the coated casting opening.
In a flat gable composite packing with a casting opening stamped out in the area of the packing gable the object is achieved by virtue of the fact that a sealing element attached to the packing interior can be bonded by means of a connecting element with the cap to form an undetachable unit in the area of the casting opening, that the sealing element has a larger surface than the casting opening, a weakening line that corresponds to the contour of the casting opening and borders an opening element, and is provided with a product-side gas or aroma barrier layer, and that the opening element is separated out from the sealing element by the opening of the spout element.
In terms of the process for manufacturing such a flat gable composite packing, the object is achieved via the following steps:
In this flat gable composite packing with a casting opening stamped out in the area of the packing gable, the object concerning the manufacturing procedure is achieved via the following steps:
The invention ensures a reliable opening of the flat gable composite packing. When the cap is opened the first time, the opening element lying below the casting opening relative to the cap is pulled out of the packing. While doing so, it frees the casting opening, thereby forming the casting hole. If the flat gable composite packing is designed with a covered casting opening, the opening element takes the film layers covering the casting opening with it while being pulled out of the packing. If the flat gable composite packing is designed with a casting opening stamped out in the area of the packing gable, the opening element that seals the casting opening from the packing interior opens the casting opening.
As opposed to prior art, the film layers covering the casting opening are no longer removed via a potentially erroneous, non-positive connection with the opening element by actuating the opening element, but rather the films coated over the casting opening are either taken out of the packing from below along with the opening element pulled out of the packing when the cap opens, or, given a casting opening sealed by the opening element, the casting opening is freed on initial opening.
The fact that the opening element is connected with the inner PE film additionally ensures that the opening surface weakened by the penetration of connecting elements is sealed to satisfy the hygiene requirements.
In order to remove the film layers entrained by the opening element during initial opening over as large a surface as possible, it makes sense for the contour of the opening element to preferably correspond to the contour of the casting opening. To open the covered casting opening, it here makes sense in particular if the opening element is sharp-edged on its edges pointing toward the inner PE layer. In addition, this design ensures that the edges of the PE film enveloping the formed casting hole are uniformly separated, so that the flat gable composite packing according to the invention places the focus on user wishes relating not just to hygiene, but to aesthetics as well.
As an alternative, it is possible to design the opening element to be enveloped by a weakening line in a sealing element, whose surface is greater than that of the casting opening, wherein the surface of the opening element corresponds to that of the stamped-out casting opening. In such a design of the opening element., the opening element breaks out of the sealing element along the weakening line during initial opening, and is pulled out of the packing. The remainder of the sealing element remains as a ring enveloping the casting opening in the packing.
The manufacture of the resealable spout element is simplified by virtue of the fact that the connecting element is molded onto the opening element as a single piece. However, it is also possible to mold the connecting element to the cap as a single piece. It is also advantageous for the cap to have a recess to receive the end of the connecting element facing the cap. This design simplifies the bonding of the connecting element with the cap.
It has proven advantageous for reliably opening the casting opening with the opening element if the recess provided in the cap is arranged closer to the actuating side of the cap than to the site where the cap is hinged to the spout element. As a result of this design, the forces introduced into the film layers by the opening element given a covered casting opening are greater than it the recess were to be located in the middle of the cap. When the flat gable composite packing is designed with a stamped out casting opening sealed by the opening element, this arrangement of the connecting element enables a better detachment of the opening element from the sealing element.
It has proven to be particularly beneficial to design the connecting element as a pin or web. This makes it easier to puncture the film layers covering the casting opening with the connecting element, and connect the opening element with the cap by means of the connecting element, as described in the procedure according to the invention.
The connecting element is connected in a particularly effective manner with the cap if its free end is designed as a barb for the form-fitting connection of the opening element with the opening cover. This design allows the connecting element to positively latch with the cap while applying the spout element.
As an alternative or in addition, the connecting element can be positively or non-positively bonded with the cap via thermal treatment, to achieve a particularly reliable bond between the connecting element and the cap.
The connecting element can be easily introduced into the recess of the cap in particular when slit in a plane perpendicular to the sealed cover. As a result, the connecting element can be compressed on its end facing the cap, and hence be more easily introduced into the recess of the cap, in particular in the embodiment with a cross-section designed as a barb.
The user is given special protection by providing an “originality seal” between the flange and cap of the spout element, which is broken when the cap is initially opened.
The invention will be described in greater detail below based on a drawing that depicts only an embodiment. The drawing shows;
As evident from
When the cap 2 is first opened with the actuating element 9, the positive bond of the barb-shaped end 6 with the cap 2 pulls the plate 7 of the opening element 4 from the connecting element 5 and out of the flat gable packing 11. In this opening process, the plate 7 of the opening element 4 penetrates the film layers 12 covering the casting opening. In addition, the originality seal 10 is broken during initial opening of the flat gable composite packing, wherein one portion 10A remains on the cap 2, and a second portion 10B remains on the flange 3 of the casting spout element 1.
Keeping the same reference numbers from
Number | Date | Country | Kind |
---|---|---|---|
199 47 296 | Oct 1999 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTEP00/09572 | 9/29/2000 | WO | 00 | 1/23/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0125098 | 4/12/2001 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3768719 | Johnson | Oct 1973 | A |
4781323 | Elias et al. | Nov 1988 | A |
4930683 | Färber | Jun 1990 | A |
4949882 | Take | Aug 1990 | A |
5067614 | Jonsson | Nov 1991 | A |
5199635 | Abrams et al. | Apr 1993 | A |
5348184 | Adams et al. | Sep 1994 | A |
5397013 | Adams et al. | Mar 1995 | A |
Number | Date | Country |
---|---|---|
4409945 | Sep 1995 | DE |
755862 | Jan 1997 | EP |
2770832 | May 1999 | FR |