Details of the invention are discussed below. These explanations are intended to make the invention comprehensible. However, they have only an exemplary character. Individual or several described characteristics may naturally also be omitted, modified or supplemented. It goes without saying that the characteristics of different embodiments can also be combined with one another. In these drawings:
The heating element 1 features at least one flat heating resistor (18) (“heating resistor 18”).
It features at least one flat carrier 8 (“flat carrier 8”). It may be appropriate for at least one of the carriers 8 to consist at least partly of a textile, knitted fabric, woven fabric, nonwoven fabric, flexible thermoplastic, air-permeable material and/or foil. In the embodiment shown a carrier 8 is provided with a non-woven fabric made of man-made fibers.
According to the invention, the heating element 1 features at least one heating zone 100 (“heating zone 100”). This heating zone is associated with or forms a surface to be heated. It is largely identical to the heating resistor 18.
The heating resistor 18 features, in particular, at least one heating conductor 2 (“heating conductor 2”) that is arranged on and/or in the heating zone 100. It is preferred to configure a plurality of heating conductors such that they lie adjacent to one another in a meandering fashion and are electrically arranged in parallel. In the embodiment shown, one heating conductor is arranged to an average distance of approximately 2 cm from the respectively adjacent heating conductor, and extends approximately parallel to it.
It is possible that at least some of the heating conductors 2 are networked with another such that at least part of the heating conductors 2 are contacted between their ends in an at least partly conductive fashion at contact points 77 (“interlaced heating conductors”). Local heating conductor defects that are caused, e.g., by localized damage during the sewing process or from vandalism therefore do not interfere with the operation of the heating element because the heating current is distributed to the adjacent heating conductors in the event of a local failure of individual heating conductors.
The heating element 1 features at least one contacting region 200 in which the heating zone 100 or heating resistor 18 is contacted (“contacting region 200”). The present heating element features two contacting regions 200 that are spaced apart from one another and extend approximately parallel to one another on opposite sides of the heating zone 100 such that the heating zone lies between them. However, the contacting regions may also be arranged in a curved or meandering fashion.
The heating element 1 features at least one electrode 4 for feeding a current into at least one of the heating conductors 2 of the heating resistor 18 (“electrode 4”). This embodiment is provided with two electrodes 4, each of which extends along the respective contacting region 200. Within the contacting region, they may extend in a meandering fashion and/or in a straight line as shown. They are preferably prefabricated in the form of bands, and need merely to be sewn or bonded on.
At least one electrode 4 preferably features a carrier band 14 on which at least one contact conductor strand 3, 3′, 3″, 3′″, 3″″, 3′″″ is arranged (“carrier band 14”). The carrier band 14 is preferably made of a material that provides the contact conductors 3 with a certain mobility while simultaneously protecting the contact conductors from excessive tensile or flexural stresses. Knitted or interlaced fabrics made of man-made materials known from the garment industry are particularly suitable for this purpose.
The arrangement of the contact conductor strands 3, 3′, 3″, 3′″, 3″″, 3′″″ is described in greater detail below with additional reference to
The harmonic oscillation has a sinusoidal contour (“oscillation contour”), but varying extreme values of the minima 42, 42′, 42″ as well the maxima 41, 41′, 41″ within one period (relative to the longitudinal direction of the carrier band 14).
The two groups of contact conductors 3, 3′ are shifted relative to one another along the longitudinal direction of the carrier band 14 in such a way that the extreme values or peaks of the harmonic oscillations of one group of contact conductors 3 are never arranged at the same location as the extreme values or peaks of the oscillation contour of the contact conductor strands 3′ of the other group relative to the longitudinal direction of the carrier band 14.
In another embodiment that is illustrated in
In the embodiment according to
In other conceivable variations, several contact conductor strands are arranged adjacent to one another, wherein at least one contact conductor strand extends randomly or has a different period than at least one of the other contact conductor strands. It is essential that at least one contact conductor strand extend, at least locally, in a direction that differs from the direction in which the overall electrode 4 and its carrier band 14 respectively extend.
At least the contact conductor strand 3 can feature, for example, at least one essentially metallic, electrical conductor strand 30, wherein this electrical conductor strand preferably consists of copper or a copper alloy and is at least partly provided with a coating of a nonoxidizing or passivated metal, preferably silver or a silver alloy (“metallic contact conductor”). In the embodiment shown, a silver-coated stranded conductor of copper is provided. This reduces the price of the heating element because conventional metallic stranded conductors can be used for the contact conductors.
At least one contact conductor strand 3 and/or one electrode 4 is electrically connected to a plurality of heating conductors 2. In the embodiment shown, all contact conductor strands 3 contact all heating conductors 2.
The invention furthermore proposes that the heating element 1 feature at least one connecting line 6 for feeding a current from a current source 70 into the heating element 1 via at least one electrode 4 (“connecting line 6”).
The heating element furthermore features a temperature sensor 80 that interrupts the current being supplied to the heating element 1 at temperatures between 60° C. and 80° C. (“temperature sensor”).
It may be expedient for at least one contact conductor strand 3 to feature a plurality of individual strands, preferably between 1 and 360, particularly between 10 and 70 (“numerous individual strands”). In the embodiment shown, the contact conductor strands 3 are realized with approximately 60 individual strands. This ensures that the contact conductor strand 3 also remains functional if individual strands fail, e.g., during sewing. In this case, a plurality of individual strands are also combined into at least one strand bundle (“strand bundle”) in order to increase the stability of the contact conductor strand 3. Several strand bundles, preferably between 1 and 20, particularly between 2 and 5, are then combined into a complete bundle. In this case, 2 strand bundles are provided.
It may be expedient to incorporate the heating element into a vehicle seat, a steering wheel, an arm rest, seat padding, a thermal blanket or the like.
Number | Date | Country | Kind |
---|---|---|---|
102006021649.0 | May 2006 | DE | national |