Flat high-voltage impulse transformer

Information

  • Patent Grant
  • 6741153
  • Patent Number
    6,741,153
  • Date Filed
    Monday, December 30, 2002
    22 years ago
  • Date Issued
    Tuesday, May 25, 2004
    21 years ago
Abstract
A flat high-voltage impulse transformer is proposed, which can be used in conjunction with a high-intensity discharge (HID) lamp to provide a high-magnitude pulsed voltage to ignite the HID lamp. The proposed transformer structure is characterized by the use of an elongated magnetic core that is made of a magnetic material having a substantially square hysteresis loop and whose saturated flux density is at least two times greater than ferrite, and the primary winding is arranged at the middle section of the elongated magnetic core while the secondary winding is arranged at opposite sides of the primary winding on the elongated magnetic core. This feature allows the transformer of the invention to provide a better voltage transforming effect, and also allows the transformer of the invention to be made more flatted in profile to provide a compact size.
Description




BACKGROUND OF THE INVENTION




1. Field of the Invention




This invention relates to transformer technology, and more particularly, to a flat high-voltage impulse transformer, which can be used in conjunction with a high-intensity discharge (HID) lamp to provide a high-magnitude pulsed voltage for use to ignite the HID lamp.




2. Description of Related Art




High-intensity discharge (HID) lamp is an advanced type of high-quality lighting equipment that can produce high quality light for interior lighting purpose. In application, an HID lamp should be coupled to a transformer-based ignitor that is capable of generating a high-magnitude pulsed voltage, typically several thousands of volts, so as to be able to ignite the HID lamp. In the HID lamp ignitor, the key component is high-voltage impulse transformer.




Conventional high-voltage impulse transformers, however, have some drawbacks. First, conventional high-voltage impulse transformers are typically bulky in size, which make them incompliant with compactness requirement. Second, the pulsed voltages generated by conventional transformers are still unsatisfactory to ignite HID lamps quickly and effectively, and therefore there is still a need for a new high-voltage impulse transformer that can provide a more effective pulsed voltage to ignite the HID lamp.




SUMMARY OF THE INVENTION




It is therefore an objective of this invention to provide a flat high-voltage impulse transformer which can be made flat in profile to make it more compact in size than prior art.




It is another objective of this invention to provide a flat high-voltage impulse transformer which is capable of generating a more effective pulsed voltage output that can ignite the HID lamp more quickly and effectively than prior art.




The flat high-voltage impulse transformer according to the invention is characterized by the use of an elongated magnetic core that is made of a magnetic material having a substantially square hysteresis loop and whose saturated flux density is at least two times greater than ferrite, and the primary winding is arranged at the middle section of the elongated magnetic core while the secondary winding is arranged at opposite sides of the primary winding on the elongated magnetic core. This feature allows the transformer of the invention to provide a better voltage transforming effect, and also allows the transformer of the invention to be made more flatted in profile to provide a compact size.











BRIEF DESCRIPTION OF DRAWINGS




The invention can be more fully understood by reading the following detailed description of the preferred embodiments, with reference made to the accompanying drawings, wherein:





FIG. 1

is a circuit diagram showing the coupling of the transformer of the invention to a HID lamp ignitor;





FIG. 2

is a schematic diagram illustrating the construction of the transformer of the invention;





FIG. 3A

is a schematic diagram showing a perspective view of a rectangularly-shaped magnetic bar utilized as the magnetic core in the transformer of the invention;





FIG. 3B

is a schematic diagram showing a perspective view of a cylindrically-shaped magnetic bar utilized as the magnetic core in the transformer of the invention;





FIG. 4A

is a waveform diagram showing the output pulsed voltage from the transformer of the invention; and





FIG. 4B

(PRIOR ART) is a waveform diagram showing the output pulsed voltage from a conventional transformer.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS




The flat high-voltage impulse transformer according to the invention is disclosed in full details by way of preferred embodiments in the following with reference to the accompanying drawings.





FIG. 1

is a circuit diagram showing the coupling of the transformer of the invention (indicated by the reference numeral


100


) to a high-intensity discharge (HID) lamp


10


. As shown, in addition to the transformer of the invention


100


, the ignitor for the HID lamp


10


further includes a pair of pulsed voltage sources (V


A


, V


B


)


21


,


22


, a pair of inductors (L


1


, L


2


)


31


,


32


, a diode (D


1


)


40


, a resistor (R


1


)


50


, a capacitor (C


1


)


60


, and an avalanche diode


70


. This HID lamp ignitor operates in such a manner that when the potential drop V


c


across the capacitor (C


1


)


60


exceeds the breakdown voltage V


d


of the avalanche diode


70


, it will turn the avalanche diode


70


into conductive state, thereby allowing electrical current to flow through the avalanche diode


70


to the input side of the transformer of the invention


100


, resulting in a low voltage input VL


1


to the primary winding of the transformer of the invention


100


. The low voltage input VL


1


will be then transformed by the transformer of the invention


100


into a high voltage output VL


2


which is used to ignite the HID lamp


10


.





FIG. 2

is a schematic diagram illustrating the construction of the transformer of the invention


100


. As shown, the transformer of the invention


100


comprises :(a) an elongated magnetic core


110


; (b) a first coil


120


for primary winding; and (c) a second coil


130


for secondary winding.




The elongated magnetic core


110


is made of a magnetic material having a substantially squarely-shaped hysteresis loop and whose saturated flux density should be at least two times greater than ferrite. Usable magnetic materials for making this elongated magnetic core


110


include, for example, silicon steel, nickel steel, cobalt-ferrite alloy, amorphous alloy, and so on. Moreover, the elongated magnetic core


110


should be formed in an elongated shape, such as the rectangularly-shaped magnetic bar


110


′ shown in

FIG. 3A

, or the cylindricaily-shaped magnetic bar


110


″ shown in FIG.


3


B. Fundamentally, the elongated magnetic core


110


should be lengthy enough to provide three sections for windings: a first side section


111


, a middle section


112


, and a second side section


113


.




The first coil


120


is wound around the middle section


112


of the elongated magnetic core


110


, and whose two terminals


120




a


,


120




b


are arranged on opposite ends of the middle section


112


. In this embodiment of the invention, the first coil


120


is used as the primary winding of the transformer of the invention


100


.




The second coil


130


is wound both around the first side section


111


and around the second side section


113


of the elongated magnetic core


110


, and which includes a jump portion (as indicated by the reference numeral


131


in

FIG. 2

) to jump over the first coil


120


wound on the middle section


112


. The two terminals


130




a


,


130




b


of the second coil


130


are arranged on opposite ends of the elongated magnetic core


110


. In this embodiment of the invention, the second coil


130


is used as the secondary winding of the transformer of the invention


100


.




When the transformer of the invention


100


is integrated to the HID lamp ignitor shown in

FIG. 1

, the terminals


120




a


,


120




b


of the first coil


120


are used to receive the low voltage input VL


1


, while the terminals


130




a


,


130




b


of the second coil


130


are used to generate the high voltage output VL


2


to the HID lamp


10


.




Since the first coil (primary winding)


120


is arranged at the middle section


112


while the second coil (secondary winding)


130


is arranged at the first side section


111


and second side section


113


on both sides of the first coil


120


, it allows the magnetic flux generated by the first coil


120


to induce the second coil


130


more effectively, i.e., it allows the first coil


120


and the second coil


130


to have an increased coupling efficiency. In addition, since the elongated magnetic core


110


is made of a magnetic material having a substantially square hysteresis loop and whose saturated flux density is at least two times greater than ferrite, it allows a better voltage transforming effect than prior art.





FIG. 4A

is a waveform diagram showing the output pulsed voltage VL


2


from the transformer of the invention


100


; and

FIG. 4B

shows the output pulsed voltage from a conventional transformer. By comparing

FIG. 4A

to

FIG. 4B

, it can be seen that the output pulsed voltage from the transformer of the invention


100


is better than conventional transformer, which would more quickly and effectively ignite the HID lamp


10


than prior art.




In addition to the forgoing benefit, the transformer of the invention


100


is also more advantageous in size than prior art, since the invention utilizes an elongated magnetic core to wind both the first coil and the second coil, without having to utilize a large-size frame as in the case of many conventional transformers. This feature allows the transformer of the invention


100


to be made more flatted in profile, and therefore allow the transformer to be made more compact in size than prior art. This benefit allows the transformer of the invention to be highly competitive on the market.




In conclusion, the invention provides a flat high-voltage impulse transformer, which is characterized by the use of an elongated magnetic core that is made of a magnetic material having a substantially square hysteresis loop and whose saturated flux density is at least two times greater than ferrite, and the primary winding is arranged at the middle section of the elongated magnetic core while the secondary winding is arranged at opposite sides of the primary winding on the elongated magnetic core. This feature allows the transformer of the invention to provide a better voltage transforming effect, and also allows the transformer of the invention to be made more flatted in profile to provide a compact size. The invention is therefore more advantageous to use than the prior art. The invention has been described using exemplary preferred embodiments. However, it is to be understood that the scope of the invention is not limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements. The scope of the claims, therefore, should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.



Claims
  • 1. A flat high-voltage impulse transformer, which comprises:an elongated magnetic core, which is made of a magnetic material having a substantially squarely-shaped hysteresis loop and whose saturated flux density is at least two times greater than ferrite; the elongated magnetic core being partitioned into a first side section, a middle section, and a second side section; a first coil, which is wound on the middle section of the elongated magnetic core, and which has two terminals arranged at opposite ends of the middle section of the elongated magnetic core; and a second coil, which is wound on the first side section and the second side section of the elongated magnetic core on both sides of the first coil, with a jump portion jumping over the first coil on the middle section of the elongated magnetic core, and which has two terminals arranged at opposite ends of the elongated magnetic core.
  • 2. The flat high-voltage impulse transformer of claim 1, wherein the elongated magnetic core is made of silicon steel.
  • 3. The flat high-voltage impulse transformer of claim 1, wherein the elongated magnetic core is made of nickel steel.
  • 4. The flat high-voltage impulse transformer of claim 1, wherein the elongated magnetic core is made of a cobalt-ferrite alloy.
  • 5. The flat high-voltage impulse transformer of claim 1, wherein the elongated magnetic core is made of an amorphous alloy.
  • 6. The flat high-voltage impulse transformer of claim 1, wherein the elongated magnetic core is rectangularly-shaped.
  • 7. The flat high-voltage impulse transformer of claim 1, wherein the elongated magnetic core is cylindrically-shaped.
  • 8. The flat high-voltage impulse transformer of claim 1, wherein the terminals of the first coil are used as voltage input terminals, while the terminals of the second coil are used as voltage output terminals.
US Referenced Citations (3)
Number Name Date Kind
5767759 Rouet Jun 1998 A
5805042 Chastain et al. Sep 1998 A
5815060 Matsumoto et al. Sep 1998 A