This summary introduces a selection of concepts that are further described below in the detailed description. It is not intended to identify essential features of the claimed subject matter or to be used as an aid in determining the scope of the claimed subject matter. The present invention is defined by the claims.
At a high level, aspects herein are directed to a flat-knit garment for an upper torso of a wearer, such as a flat-knit support garment having one or more flat-knit support zones. In some aspects, the flat-knit support garment for an upper torso of a wearer includes a flat-knit bra, where the unitary bra structure includes integrated, flat-knit features for zonal support, shaping, modesty, and air permeability, and the flat-knit edges of the bra are free of surrounding textile. The exemplary flat-knit bra may be especially suitable for minimizing material waste in the construction of a unitary bra as the seamless flat-knitting process generates a completed knit structure that is not surrounded by a textile structure from which the bra must be removed. Further, the completed flat-knit garment with finished, flat-knit edges may be assembled with minimal seaming and/or optimized integration of at least one closure mechanism during finishing of the flat-knit garment.
In some aspects, the flat-knit bra material may include one or more zonal sequences of knitting throughout the flat-knit process with particular yarns isolated in particular zones, which vary both the support characteristics and the appearance of multiple portions. In another aspect, integrating flat-knit support structures, such as inlaid yarns of varying strengths, and changing stitch sequence and/or yarn type between adjacent flat-knit zones, may provide for additional customization of the flat-knit support garment.
The present invention is described in detail below with reference to the attached drawing figures, wherein:
The subject matter of the present invention is described with specificity to meet statutory requirements. However, the description itself is not intended to limit the scope of aspects described herein. Rather, it is contemplated that the claimed subject matter might also be embodied in other ways, to include different steps or combinations of steps similar to the ones described in this document, in conjunction with other present or future technologies. Moreover, although the terms “step” and/or “block” might be used herein to connote different elements of methods employed, the terms should not be interpreted as implying any particular order among or between various steps herein disclosed unless and except when the order of individual steps is explicitly stated.
Various aspects are described with reference to a support garment for an upper torso. Some examples are described with respect to a “bra,” which may refer to any garment configured to provide support to an upper torso of a wearer, and in particular, support to at least a portion of a wearer's breasts. That is, a flat-knit bra may refer to an upper torso support garment having specific support zones that are flat knitted into the garment and in some instances, may perform similar functions to that of a sewn-together support garment (e.g., a “cut and sewn” bra configuration). For example, an aspect of a flat-knit bra may include a camisole garment having integrated flat-knit features for supporting a wearer's breasts. Similarly, a base layer shirt or other upper torso garment having flat-knit support features, such as the pair of zonal, flat-knit bra cups described here, may include seamless, flat-knit aspects.
One or more integrated features of a flat-knit upper torso support garment provide the supportive aspects of a bra within a seamless, flat-knit material. In some aspects, an integrated feature may refer to a specific yarn type or specific stitch type that is knitted in the continuous bra body—i.e., “integrated” with the surrounding flat-knit stitches. For example, an integrated feature may refer to an integrated yarn (e.g., a particular yarn material having a particular tensile strength) that is knitted with the surrounding flat-knit structure of the bra, in seamless construction with one or more other integrated features of the flat-knit bra material.
In further aspects, an integrated support structure created with flat-knitting of one or more yarns to produce dimension within the bra material. Such dimension may be referred to as “shaping” and/or displacing a zone of the flat-knit bra with respect to an adjacent, flat-knit zone having different integrated features. Generating such integrated support structures within the flat-knit bra may include, in some aspects, forming the flat-knitted material by knitting in a continual, “integrated” manner with the surrounding bra portions (i.e., seamless construction of the flat-knit bra). Accordingly, aspects of one or more integrated, flat-knit features refers to a seamless construction of the flat-knit bra material during one or more changes in yarn content, one or more changes in stitch structure, and one or more changes in the construction of integrated support structures (e.g., flat-knit bra cups), each integrated flat-knit feature having a particular function within the support garment. As such, without changing knitting machines or inserting separate materials or garment components, the flat-knit bra may include specific, integrated features according to a specific bra's dimensions and/or proportions, while maintaining the unitary structure and/or ready-to-wear features created via flat-knitting technology.
In another example, an integrated support structure may correspond to a variety of different zones within the flat-knit bra. For example, the bra cup region may include an integrated support structure that provides lift, such as integrated yarns or stitches in a bra hammock. In another example, the bra strap region may include an integrated support structure that provides resistance to elongation, lockout, and/or other support characteristics, adjustable or stationary, that supplement the existing stitches of that particular zone. Accordingly, aspects are described below for exemplary flat-knit bra configurations having flat-knit zones characterized by the one or more integrated features within those zones, such as a cup region characterized by a particular stitch sequence that generates shaping, and a particular yarn that produces a material having a desired stretch modulus. In another aspect, a bra body may include a common yarn and/or common stitch sequence throughout the entire flat-knit bra, with additional, integrated flat-knit features in particular zones, such as the cup zone, strap zone, body zone, chestband zone, wing zone, etc. The integrated, flat-knit features therefore may enhance the properties of an otherwise consistent material construction, imparting increased or decreased stretch characteristics or structural characteristics to zones at various locations within the flat-knit bra.
In some aspects, the integrated features of the flat-knit bra may facilitate the construction of a pre-molded, pre-shaped bra material for later molding. For example, the flat-knit bra having a flat-knitted amount of dimension within one or more zones of the bra may be treated with a particular molding technique during finishing of the flat-knit bra. Because of the stress and strain on the flat-knit bra material caused by such heat treatment and molding, aspects of the flat-knit bra facilitate molding and reduce at least a portion of the stress on the flat-knit bra material. In some instances of shaping a bra, the cup area may be molded using a mold structure with a particular depth corresponding to the desired final cup proportions. However, based on pre-shaping the flat-knit bra with various integrated features (i.e., yarn changes, stitch changes, knitted support structures, short row shaping, etc.), the flat-knit bra material may be molded using a more shallow mold structure that mates to the pre-shaped flat-knit bra structure, thereby protecting the bra during heat treatment and/or molding. A resulting finished, flat-knit bra may include a molded cup area that was initially formed via pre-shaped flat knitting of the cup zone, and further formed during heated molding of the cup zone with a mold having a minimal height corresponding to the pre-shaped cup zone.
In some aspects, the mold corresponding to the pre-shaped, flat-knit bra includes a low-profile mold that may be less likely to damage (i.e., tear apart) the material being molded, and in particular, the material proximate a boundary of the molded feature. The modified mold structure (i.e., reduced scale of the requisite mold size) may cause less tearing of the pre-shaped material, require less heat applied to generate shaping of an already pre-shaped material, and is less likely to damage the bra material during treatment as compared to molding a flat-knitted bra (with or without pre-shaping) on a regular-profile mold. Further, by preserving the stability of the flat-knitted bra material during molding, a targeted application of heat molding may be applied to the flat-knitted, pre-shaped zones within the bra. Additionally, molding of the pre-shaped, flat-knitted cup zone may provide for minimized tearing of the material along the boundary where the heat treatment is applied, thereby enabling zonal application of shallower (i.e., less damaging) heat molding devices (e.g., at lower temperatures and/or shorter duration) to one or more pre-shaped, flat-knitted zones with seamless construction, and optimizing the post-processing treatment of the flat-knit bra, in some aspects.
Additional examples of optimized post-processing treatments for the flat-knit bra include integrally knitting the edges of the bra using uncovered Spandex, which provides a “binding” structure along the armhole and neckline portions of the bra. In other words, no additional binding is needed along the edges of the finished, flat-knit bra, such as a sewn-on binding or separate trim piece. Similarly, the flat-knit chestband zone is integrally knit with the adjacent flat-knit material such that an additional sewn-on elastic trim may not be needed, in some aspects. In some instances, the integral chestband and/or integral stretch edge of the flat-knit bra facilitates an optimized assembly time for the flat-knit bra, which might otherwise require additional time to apply edges, trim, binding, bands, elastic, and the like. By changing a bra body yarn to a high-stretch yarn, for example, the perimeter of the bra may become more resilient, easier to maintain shape, and finished without requiring additional processing.
In some aspects, post-processing may also be minimized using partial knitting to create depth within one or more portions of the bra cup zones. As such, aspects of the flat-knit bra may utilize partial knitting to build up material where an otherwise cut-and-sew bra may include a separate molded spacer fabric sewn into the cup, providing encapsulation and support. In other examples, partial knitting may be used within a zone of the bra, such as the cup zone, to generate shaping to the final structure that is used as a pre-shaped guide for later molding.
In further aspects, the flat-knit edges around a perimeter of flat-knit support garment are constructed free of surrounding textile structure. Without surrounding textile structure, the flat-knit support garment may be created without the need to cut and/or remove excess material. In one aspect, the “flat-knit edge” may refer broadly to a bounded, cast-off, and/or finished knit edge, such as a flat-knit edge that maintains structure when exposed (i.e., does not unravel). During the flat knitting of the outer perimeter and/or edge of the material directly adjacent one or more flat-knit zones (having one or more integrated features) within the bra, a flat-knit edge may be knitted as a continuous structure with the multiple rows of knitting along the bra. For example, the flat-knit bra may include a unitary, flat-knit construction, which may refer to having all flat-knitted content of the bra, including a continuous structure that maintains material stability between rows of knitting, types of yarns, changes in zonal support regions, and a surrounding flat-knit edge. At least a portion of the same set of flat-knit needles may be used to generate the seamless transition from yarns of the various bra material zones having particular yarn characteristics, to yarns of the flat-knit edge, having another yarn feel. As such, the flat-knit edge having a specific tactile characteristic different than at least a portion of the other flat-knit bra material, may be referred to as a perimeter finish and/or a “stretch edge” of the flat-knit bra.
In one aspect, a bra of unitary construction includes a flat-knit textile element having flat-knit edges free of surrounding textile structure such that the flat-knit edges are not surrounded by textile structure from which the textile element is removed. Further, the flat-knit textile element includes at least a first bra support zone and a second bra support zone. Various portions of the flat-knit bra may include specific yarns for performance within each zone of the central, flat-knit bra material (i.e., bra body, bra straps, bra wings, and bra cups, etc.) and specific yarns for performance along a perimeter, stretch edge flat-knitted in unitary construction with the flat-knit bra body. It is understood that such perimeter stretch zone is considered to be part of the flat-knit bra, is not a separate or sewn-on element, and is not a removable textile from around the unitary, flat-knit bra. In other words, the perimeter of the flat-knit bra includes a stretch edge that is flat knitted at the same time.
In another aspect, a flat-knit zonal support bra includes a bra cup area formed of a first stitch configuration, the first stitch configuration having a plurality of flat-knit stitches that provide a first stretch property to the bra cup area. The flat-knit zonal support bra further includes a bra strap area formed of a second stitch configuration, said second stitch configuration different from said first stitch configuration, the second stitch configuration having a plurality of flat-knit stitches that provide a second stretch property to the bra strap area. Additionally, the bra includes a bra base area formed of a third stitch configuration and in unitary construction with both the first stitch configuration and the second stitch configuration, the third stitch configuration having a plurality of flat-knit stitches that provide a third stretch property to the bra base area. In some aspects, the unitary construction of the bra cup area, bra strap area, and bra base area comprises flat-knit edges free of surrounding textile structures such that the flat-knit edges are not surrounded by textile structure from which the flat-knit zonal support bra must be removed.
Accordingly, a flat-knit bra may be formed from a single, flat-knit shape that comes off of a flat-knitting machine with a unitary knit construction including the bra cups, sides, front strap portions, back strap portions, and back of the bra. In such flat-knit orientation, the bra may be assembled for later closure of at least one seam to join the sides of the flat-knit body into a tubular structure. Such closure may include a closure feature, coupled to the flat-knit bra on at least a portion of the flat-knit bra material. The closure feature may provide an opened and closed position for the bra structure, such as an opening along the back of the flat-knit bra, an opening proximate one or more of the final assembly seams of the flat-knit bra material, and a closure mechanism proximate a midline front or midline back of the bra.
Further, based on the flat-knit orientation of the front and back strap portions, additional assembly aspects may include attaching a front strap portion to a back strap portion. In another aspect, a single strap portion of the flat-knit bra base may include a complete length of the strap that, once assembled, provides strap structure on both a front and a back side of a wearer. As such, in one aspect, a flat-knit bra base may include left and right portions that are joined in a tubular structure, and one or more strap portions that are joined to complete an armhole structure. In further aspects, the flat-knit bra may be strapless, having a unitary construction of bra cups, sides, and back, with flat-knit edges and no strap features.
In one aspect, corresponding front and back strap portions may be coupled to an intermediate strap portion that is separate from the base flat-knit bra structure. The intermediate strap portion is one example of joining the front and back knitted strap features from a flat-knit bra structure. In another aspect, front strap portions that are flat-knit into the bra structure may be joined to a back panel and/or insert, such as a racerback panel having attachment points for the flat-knit finished edges of the strap features on the flat-knit bra structure. In further aspects, a back panel/insert may also include attachment points for underarm features of the flat-knit bra structure.
While including multiple integrated features in a top that supports a wearer's breasts, the flat-knit bra may have a solid garment construction requiring minimal assembly. Further, the flat-knit bra may have additional characteristics throughout the unitary structure based on stitch placement and yarn type, whether functional, structural, and/or decorative, having a ready-to-wear, finished flat-knit edge that is free from surrounding structure upon flat-knitting. In one example, a first yarn having a first yarn property may be inserted in a first zone during flat-knitting, while a second yarn having a second yarn property may be inserted in a second zone adjacent to the first zone, switching between the first and second yarns utilizing the flat-knitting process. The types of yarns changed throughout the flat-knit bra may vary based on one or multiple characteristics. For example, the various yarns in the flat-knit bra may include multi-component yarns changed within a single or multiple zones, bi-composition yarns, multi-composition yarns, conductive yarns, yarns having particular electrical characteristics, yarns having particular melting properties responsive to variable heat treatments, yarns with varying gauges, multiple yarn sizes, engineered yarn materials, yarns with specific features and/or stretch characteristics, yarns having particular coloring features, color-changing yarns, fast-drying yarns, moisture-wicking yarns, yarns of various sizes/denier, and the like.
In one aspect, a stretch property may refer to one or more characteristics of an area of the flat-knit bra that results from a particular yarn type, a particular yarn placement, a particular knit stitch, and a particular shaping feature of one or more stitches within the flat-knit bra. For example, one stretch property associated with one or more zones of the flat-knit bra may include a modulus of elasticity associated with the one or more zones. As such, different regions of the flat-knit bra may include different modulus of elasticity values, and hence demonstrate varying stretch properties corresponding to an amount of stretch. In another example, the flat-knit bra may include a particular amount of lockout in a particular region of the bra, thereby imparting a particular stretch property characterized by minimized stretch associated with that region. In further examples, a stretch property may refer to a resulting direction of stretch, amount of stretch, etc.
While flat-knitting the bra having various yarn properties within various flat-knit bra zones, a flat-knitting machine optimized for flat-knitting a bra may be utilized, according to some aspects. As such, a particular yarn may be inserted in a particular zone of the flat-knit bra. In one aspect, a flat-knit bra may be knitted to provide certain benefits, such as a resulting flat-knit material feel, fabric effect, finished surface, or other flat-knit benefits. In one example, a commercially available flat-knitting machine may be used to generate aspects of the flat-knit bra. For example, at least a portion of a flat-knit bra may be manufactured on a commercially available flat-knitting machine having a gauge within 14-18 stitches per inch or a gauge greater than 14 stitches per inch, or greater than 16 stitches per inch, or greater than 18 stitches per inch (e.g., 21-gauge,), etc. In another aspect, at least a portion of a flat-knit bra may be manufactured on a commercially available flat-knitting machine having a specific gauge corresponding to a particular flat-knit bra property. For example, a flat-knitting machine having a gauge with a number of stitches per inch optimized for a particular zone and/or particular yarn type may be utilized to create a flat-knit bra. Accordingly, one or more regions of a flat-knitted bra contemplated herein may have a stitch density greater than a threshold based on a gauge of a flat-knitting machine used to stitch the one or more regions: e.g., one or more regions may have a stitch density greater than 14, 16, or 18 stitches per inch. It is contemplated that additional or alternative flat-knitting machines may be utilized, in some aspects, such as a flat-knitting machine having higher gauge and/or specific mechanisms optimized for generating a flat-knit bra.
Aspects of the flat-knit bra are provided below, with reference to the different features described in
Based on knitting each portion of the flat-knit bra 10 using a flat-knitting machine, the flat-knitted rows providing the bra straps, such as the back left strap 14, include a finished edge 44 that is unbroken and joined from one row to the next. Similarly, the flat-knitted rows providing the underarm portions, such as the back right torso portion 34, include a finished edge 46 that is already bound/finished. In another example, the flat-knitted rows providing the chest support band portion of the flat-knit bra, such as the chest band 36, include a finished edge 48 in seamless construction with the remaining bra material.
In one aspect of the zonal, flat-knit bra 10, a lower zone 50 secures the flat-knit bra 10 on a wearer by preventing shifting of the assembled garment body 12 (i.e., assembled into a tubular structure), and may include one or more different types of yarns and/or different types of stitches. For example, the lower zone 50 may include a flat-knit chest band 36 having a plurality of stitches configured to create lockout of the stretch properties within the chest band 36, a variable yarn type having different stretch properties with respect to the remaining garment body 12, or a combination of both stitch configuration and yarn type to alter the flat-knit bra 10 structure, stretch features, and/or lockout characteristics of the lower zone 50.
In further aspects, the middle zone 62 may secure the middle to upper chest portion of a wearer, such as the wearer's breasts supported by left and right bra cups 22 and 30. In one example, the middle zone 62 may include integrated flat-knit structures for support and/or shaping, specific yarn types isolated and flat-knitted within one or more areas that vary the stretch characteristics or appearance of the bra, and/or specific stitch types such as doubled or dropped stitches that may each alter the flat-knit bra 10 structure, stretch features, and/or lockout characteristics of the middle zone 62. In some aspects, the left bra cup 22 and the right bra cup 30 may include cup shaping that adds dimension to the flat-knit bra 10 extending from the plane of the surrounding flat-knit bra 10, such as a three-dimensional (3-D) feature of the bra 10. As such, while the shaping stitches and/or shaping yarn incorporated in one or both of the bra cups provide dimension to the overall finished bra structure, they may be flat-knit in unitary construction with adjacent garment portions, such as the left torso portion 20, the center chest portion 24, and the right torso portion 28. In one example, the dimension added to the flat-knit bra may include a stitched area having a depth between 0.1 centimeters and 2.0 centimeters. In some aspects, the added stitch density/depth adding dimension to the flat-knit bra may correspond to a number and type of stitches, yarns, or a combination of both stitches and yarn types to extend the material of the flat-knit bra beyond the plane of the surrounding bra body.
In yet another aspect, one or more flat-knit features of the upper zone 60 may secure the flat-knit bra 10 on a wearer's breasts by positioning the middle zone 62 and/or the bottom zone 50 with respect to the wearer's shoulders. For example, upon joining the back left strap 14 to the front left strap 18, and the back right strap 32 to the front right strap 26, the upper zone 60 may provide a wearable garment having a flat-knit unitary construction.
As further shown in
The various zones/portions described with respect to
While aspects are described in
As further depicted in the example of
In seamless construction with zonal feature C, the zonal feature D portions of the bra 82 also provide varied stretch characteristics where stitch density and/or yarn type may be varied. In addition to altering stretch characteristics within the zonal feature D, which corresponds to a wearers bust cup region, the zonal feature D may include shaped features that are generated based on stitch and/or yarn type. For example, an increase knit stitch in the perimeter stitches of the zonal feature D may increase a shape of the cup region along a bottom edge of the zonal feature D. Additionally, a decrease knit stitch in the perimeter stitches of the zonal feature D may decrease the shape of the cup region along a top edge of the zonal feature D. As such, the flat-knit bra 82 may be engineered within the zonal feature D using flat-knit stitches providing shaping and a desired amount of stretch, while maintaining modesty in the cup region utilizing stitch and yarn properties.
As further shown in
In addition to changing yarns within various yarns of the bra 82, in some aspects, one or more yarns may be changed based on a specific color pattern or placement within the overall bra structure. For example, a flat-knitting method may be used to knit in a colored emblem, logo, branding indicator, and the like. As such, based on isolating yarns in the flat-knitting process between zones of the flat-knit bra, a particular colored yarn may be knitted in a particular location for a variety of visual effects, while at the same time, changing the structural and support aspects of the yarns being flat-knitted in unitary construction.
The exemplary zonal features A, B, C, D, E, and F in
With reference to
Additionally, the various regions throughout the front and back portions 104 and 106 may include one or more different bra region characteristics, such as stretch properties, lockout features, knit structures, yarn types, changes in stitch structure, changes in yarn type, increase zones, decrease zones, shaped zones, venting structures, or a combination of such bra region characteristic to provide a flat-knit bra 102 having specific breast support zones and additional bra features for flat-knitting without surrounding textile structure from which the bra must be removed.
In one aspect, the back portion 106 may include a breathable mesh material or other material that is separate from the flat-knitted construction of the bra front portion 104. In another aspect, a proportion and/or characteristic of one or more features of the flat-knit bra may be customized to provide a flat-knit bra that is configured to fit a variety of wearer's body shapes. For example, a single flat-knit bra front may include characteristics that correspond to both a first user being a first size and a second user being a second size that is different from the first size. As such, the customized wearability of the flat-knit bra may be engineered into one or more yarn features, zone features, structural features, functional aspects, bra front features, bra back features, or a combination of these various aspects of the flat-knit bra.
With respect to specific features in specific zones and/or regions of the bra, as shown in the exemplary enlarged portion 142 of the flat-knit bra 150 of
In further aspects, as shown in
In one aspect, a bra body such as the bra body zone 160 may refer to any portion of the flat-knit bra providing a common foundation. For example, the bra body may include any portion of the flat-knit bra for coupling one or more zones. In another example, the flat-knit bra body may include a supporting feature other than the straps, cups, chest band, and/or wings. In yet another example, the bra body may include a particular stretch property or zonal structure to generate overall support to the circumference of the wearer's torso. As such, the bra body may refer to an area between two bra cups, an area between bra cups and bra straps, an area between bra cups and bra wings, and an area between bra wings and a bra back.
Turning next to
In the exemplary flat-knit bra 188 of
In the exemplary embodiment of
In further aspects, the flat-knit bra 214 may be flat-knit in a fully fashioned manner, providing all of the structural features functional zones for providing support and stretch characteristics of a finished bra. In further aspects, the flat-knit bra 214 may be provided with a flat-knit front portion and a separately attached back panel. In this example, the back panel may be flat-knit, or may be a separate material made from a variety of fabrics or construction methods. Additionally, a flat-knit bra front may be engineered to facilitate additional portions coupled to the flat-knit bra, such as an additional cup insert or lining feature coupled to the flat-knit bra base once the bra base is flat-knitted with flat-knit-edges. The flat-knit bra may also be generated with flat-knit edges that may be coupled to additional features, such as a separate chest band, label insert, and the like. Although fully knitted in a flat-knit form, additional treatments may also be applied to the finished, flat-knit bra, such as a heat treatment applied to a particular portion of the bra during molding or locking out, an ironing on of a heat-transfer label or other identifying information, or attachment of a separate embroidered, knitted, or woven feature.
In one aspect, an additional layer for support, comfort, or wearability may be added to or incorporated with the flat-knit bra structure, such as a separate bra lining material coupled to the flat-knit bra front. As such, while the flat-knit bra front may have a resulting material surface generated from various zones, yarns, stitches, structures, dimension, and the like, the internal surface of the flat-knit bra front may be coupled to a separate liner treatment to generate a smoother surface as compared to the internal surface of the flat-knit bra front. In another embodiment, during flat-knitting, a smoother-surface bra lining may be knitted separate from but adjacent to the flat-knit bra front. As such, the unitary construction of the bra may be maintained while a first orientation of yarn flat-knits the bra front, and a second orientation of yarn flat-knits the lining that is worn next to the skin of a wearer. It is contemplated that numerous aspects of the flat-knit bra, including the flat-knit bra front having a first layer of flat-knit zonal structure and a second layer of smoother-structure for skin contact, may utilize one or more different knitting techniques, including flat-knitting of the unitary bra structure.
Additional aspects of a flat-knitted support garment are described with respect to
In some aspects, each zone includes at least one characteristic that differs from at least one adjacent, flat-knit zone, such as a yarn type and/or stitch sequence. Accordingly, the flat-knit cup zone 226 may include a first stitch sequence, while the adjacent body zone may include at least a portion of a second stitch sequence. Similarly, the flat-knit body zone 228 may include a first yarn type while the adjacent, flat-knit strap zone 236 may include at least one yarn type different than the flat-knit body zone 228 yarn type. Each flat-knit zone within the seamless, flat-knit material may therefore include yarn and stitch variations that alter the stretch characteristics and resulting modulus of different portions of the support garment 220. For example, the cup zone 226 of the bra 222 may include a low stretch modulus, the body zone 228 may include a lower stretch modulus (relative to the cup zone 226 low stretch), while the back zone 232 provides a high stretch modulus zone. The strap zone 236 may include a no-stretch zone (i.e., lockout zone), with a medium stretch transitional zone 238 between the no-stretch strap zone 236 and the high stretch back zone 232.
The finished neckline edge 240 and the finished armhole edge 242 is integral to the flat-knit construction of the bra 222, as each of the neckline edge 240 and the armhole edge 242 include flat-knitted material 224 generated without seaming or finishing, and instead is supportive of the unitary knitted structure within the support garment 220. Such finished-edge structure of both the neckline edge 240 and the armhole edge 242 is maintained via boundary changes between support zones of the bra 222, in seamless, flat-knit construction. A first seamless boundary 250 between cup zone 226 and body zone 228 may be achieved via flat knitting by maintaining at least one common yarn between the cup zone 226 and the body zone 228. In other aspects, a first seamless boundary 250 between cup zone 226 and body zone 228 is achieved via flat knitting by at least one common knit stitch between the cup zone 226 and the body zone 228. In some aspects, the seamless boundary between adjacent, flat-knit zones may provide an intermediate zone, having its own stitch configuration and including portions of both of the adjacent stitch configurations to provide an intermediate zone.
Similar boundaries may be present between additional, adjacent zones of the flat-knit support garment 220, such as the second seamless boundary 252 between the bra body 228 and the wing zone 230, the third seamless boundary 254 between the wing zone 230 and the back zone 232, and a fourth seamless boundary 258 between portions of the body zone 228, portions of the wing zone 230, and portions of the back zone 232, all with respect to the chestband zone 234. Continuing in an upward direction along the y axis, such as in a knitting direction of the flat-knit material 224, additional seamless boundaries may include the fifth seamless boundary 256 between the strap zone 236 and the bra body 228 and/or transitional zone 238.
Having flat-knitted multiple flat-knit zones created in seamless construction with each adjacent zone, a first seam edge 244 may be configured to join to the second seam edge 246, while the third seam sedge 248 may be configured to join to the fourth seam edge 250. In some aspects, a molding region 260 within the flat-knit material 224 includes a first cup molding region 262 and a second cup molding region 264, with one or more flat-knit features proximate the first seamless boundary 250, surrounding each of the first cup molding region 262 and the second cup molding region 264, that facilitate molding of each bra 222 cup. As will be discussed in greater detail below with respect to molded support garments 220, a transitional flat-knit structure along and/or proximate to the seamless boundary 250 surrounding each flat-knit cup zone 226 may stabilize the surrounding flat-knit material 224 during molding or other finishing treatment within the molding region 260.
As further depicted in
Turning next to
In some aspects, each zone includes at least one characteristic that differs from at least one adjacent, flat-knit zone, such as a yarn type and/or stitch sequence. Such variation within the flat-knit support garment 268 changes an amount of support provided to a wearer based on each zone of the bra 270, a modulus of stretch within each zone of the flat-knit bra for both function during wear and ease of pulling on and off over a wearer's head. Accordingly, the flat-knit cup zone 274 may include a first stitch sequence, while the adjacent body zone 276 may include at least a portion of a second stitch sequence. Similarly, the flat-knit body zone 276 may include a first yarn type while the adjacent, flat-knit strap zone 284 may include at least one yarn type different than the flat-knit body zone 276 yarn type. Each flat-knit zone within the seamless, flat-knit material 272 may therefore include yarn and stitch variations that alter the stretch characteristics and resulting modulus of different portions of the support garment 268. For example, the cup zone 274 of the bra 270 may include a medium stretch modulus, the body zone 276 may include a low stretch modulus (relative to the cup zone 226 medium stretch), the wing zone 278 may include a lower stretch modulus (relative to the body zone 276 low stretch), the strap zone 284 and the bust-support zone 288 may include a no-stretch modulus (i.e., lockout), while the first back zone 280 provides a medium stretch modulus and the second back zone 282 provides a high stretch modulus zone. The transitional zone 286 may exhibit one or more stretch characteristics, such as a low stretch modulus adjacent the second back zone 282, and a medium stretch modulus adjacent the strap zone 284.
In some aspects, one or more yarns are flat-knitted within each zone of the flat-knit support garment 268. In some instances, a multi-component yarn may be optimized for use within each zone, or multiple zones, of the flat-knit bra, with the corresponding changes in bra support associated with stitch sequence, partial knitting, in-laid yarns, and other integrated structures of the flat-knit material. One yarn flat-knitted throughout one or more zones of the bra may include a primary yarn material covered or not covered by a secondary yarn. For example, a yarn flat-knitted through one or more zones of the bra may include a nylon and/or texturized polyester yarn covering a Spandex yarn, with a resulting denier, a particular filament size, and final ply. For example, a base yarn for the flat-knit bra may include a polyester and/or nylon yarn wrapped around a Spandex yarn. For example, a 40-50 denier PET and a 40-50 denier Nylon may be used to cover a 70-80 denier Spandex. In further aspects, a 42-46 dtex PET and a 42-46 dtex Nylon may be covered by a 75-81 dtex Spandex. As such, the polyester and Nylon yarns may be used to cover (i.e., wrap around) the Spandex yarn, according to some aspects.
In one example, the covered yarn may be used in one or more zones of the flat-knit support garment. In further examples the covered yarn may be used in all zones of the flat-knit support garment, with variations in stitch sequence, support structures, in-laid yarns, and other integrated features providing the changing supportive functions across a garment having a primary yarn content. In other aspects, at least a portion of the support garment 268 may include non-covered yarn, while adjacent portions of the support garment 268 may include covered yarn. Because of the unitary, flat-knit structure of the flat-knit support garment 268, such changes between covered and non-covered yarn may take place in seamless construction across knitted zones of the bra, within knitted zones of the bra, and within organic, zonal placement at various zones of the bra. For example, an uncovered stretch edge along a perimeter of the flat-knit support garment, such as the stretch zone 298, may include a Spandex yarn suitable for contact with a wearer's skin and configured to ease on-and-off wear of the support garment. Such stretch edge having an un-covered Spandex yarn with softer feel, may seamlessly transition to the flat-knit body of the bra, changing from uncovered yarn to covered yarn where the stretch edge transitions to adjacent covered zone, such as the stretch edge transitioning to the wing zone 278, body zone 276, strap zone 284, and back zone 280, for example.
In addition to changing a material feel between the stretch-edge uncovered yarn and the main portions of the support garment having covered yarn, one or more changes in yarn content and/or stitch sequence may be used to generate a resulting material property, such as a lockout characteristic in a particular zone of the bra. For example, a strap zone having lockout characteristics may include specific, harder yarn in place of or in addition to the covered yarn of the support garment. In further aspects, yarn content changes throughout the flat-knit support garment may correspond to one or more of the zones depicted in each example. While shown in these examples as having a particular graphic element, each zone within the flat-knit support structure may carry a common yarn color, thereby disguising a change between adjacent zones utilizing the same color of yarn, but different stitch sequences.
Further adjustments to the yarn content of the flat-knit support garment 268 may include changes associated with the weight of the yarn, thickness of the material achieved using the particular yarns of each zone, yarn selection corresponding to performance characteristics of the resulting support garment, and other yarn optimizations desired to generate integrated features of the flat-knit support garment. As an example of one such yarn selection, aspects of a flat-knit support garment yarn may include a 30-55 denier yarn. In other aspects, the yarn flat-knitted in various zones of the support garment include a 40-50 denier yarn, while in other aspects, an approximately 44-denier yarn may be flat-knitted in one or more zones of the flat-knit support garment. Accordingly, a particular denier yarn may be knitted within various portions of the flat-knit bra, based on a desired yarn size for each portion of the bra, and according to the machine gauge and desired stitches per inch of the resulting flat-knit material.
With continued reference to
The finished neckline edge 290 and the finished armhole edge 294 are integral to the flat-knit construction of the bra 270, without additional knitted structure, edging, seaming, or finishing, and instead is supportive of the unitary knitted structure within the support garment 268. However, in some aspects, the support garment 268 includes a high-power stretch zone 298 that borders one or both of the neckline edge 290 and the armhole edge 294. For example, a first yarn may form the unitary structure of the bra material 272, while a second yarn may form the high-power stretch zone 298 that generates an armhole stretch edge 296 and/or neckline stretch edge 292. Aspects of the bra 270 include a first yarn type throughout the bra material 272 and a second yarn type throughout the high-power stretch zone 298.
In some aspects, a molding region 310 within the flat-knit material 272 includes a transitional flat-knit structure along and/or proximate to the first seamless boundary 300 surrounding the flat-knit cup zone 274 that stabilizes the surrounding flat-knit material 272 during molding or other finishing treatment within the molding region 310. Further, the apparel boundary 312 depicted near the bottom edge of the bra 270 may be may be flat-knit, integral with a surrounding material for an upper torso garment, such as a camisole. In some instances, the apparel boundary 312 may be proximate the armhole stretch edge 296, the bra material armhole 294, the neckline stretch edge 292, with such apparel boundary 312 being integral to additional support features of upper torso garments, such as a base layer garment having a built-in flat-knit bra 270.
In
Based on the desired performance of the bra 316 once finished, the support garment 314 may include a particular position of a seamless boundary between adjacent flat-knit zones having various stretch properties, such as a particular flat-knit boundary characteristic between a high-stretch and a low-stretch zone. Such integral boundary and/or transitional zones may provide further optimization of the functional cup zone 320, body zone 322, wing zone 324, back zone 326, and/or strap zone 328. As discussed above, such transitional boundaries between two different flat-knit zones of the bra may facilitate molding of at least a portion of the bra. For example, the first boundary 330 between the cup zone 320 and the body zone 322 may provide shaping structures at or near the cup zone 320 that result in a pre-shaped and/or pre-molded flat-knit bra material. Further, the pre-shaped cup zone 320, such as a flat-knit cup zone with short rows and/or partial knitting proximate the first boundary 330, may be molded with a shallower mold and/or cooler mold treatment to alter the configuration of the cup zone 320 and preserve the surrounding body zone 322.
As shown in the support garment 346 of
The flat-knit bra of
Turning next to the assembled, flat-knit support garment 366 of
The support garment 366 provides a bra 368 having a bra material 370 with a perforated first back zone 372, a second back zone 374, a strap zone 376, a wing zone 378, an air-permeable midline zone 380, a cup zone 382, and a chestband zone 384. The flat-knit bra 368 also includes a stretch edge 388 adjacent a perimeter of the bra material 370. The stretch edge 388 may continue along some or all of a perimeter of the assembled, bra material 370 as part of the unitary, flat-knit structure of the upper torso support garment 366. As further depicted in
Turning next to
In the example of
In some aspects, as shown in
With reference to the assembled support garment 478 in
The chestband zone of each aspect of the flat-knit bra discussed thus far has suggested at least one flat-knit feature within the chestband zone, and a seamless transition between at least a portion of the chestband zone and an adjacent bra zone. In the example of
In an expanded stitch sequence 492,
Turning next to
In some aspects, the cup zone stitch sequence 552 may include one or more variations, such as covered and uncovered yarns, full knitting sequences vs. partial knitting sequences, a flat-knit bra material knitted with intarsia on one bed of the knitting needles and a partial knitting sequence generating shaping within the cup zone, and the like. In some instances, the cup zone stitch sequence 552 may be repeated across an entire width of the cup zone in a flat-knit bra material, and transitioning along the boundaries of the cup zone to a different stitch sequence (i.e., that of the adjacent flat-knit body zone stitch sequence). Accordingly, the repeating pattern G of
In
Finally, an exemplary stitch sequence 604 is depicted in
The examples of stitch sequences provided here, with repeating patterns for flat knitting of a chestband zone, a cup zone, a back main interlock zone, a back selvedge zone, and a back mesh zone, may be used in isolation or in combination within adjacent stitch structure of the flat-knit support garment to create one or more different characteristics of the flat-knit bra, such as a target stretch modulus of a particular zone of the bra, a location of particular support structure integral to the bra material, a desired stretch modulus characteristic of a particular portion of the flat-knit zones within a bra, a/or a desired lockout and/or support level resisting stretch within the bra material. While aspects of the exemplary stitch structures in
Any and all aspects of a flat-knit bra, and any variation thereof, are contemplated as being within the scope described here. Moreover, it is contemplated that any number of stitch types or yarn types may be used throughout the flat-knit bra and within the various support zones/regions. Aspects of the present invention have been described with the intent to be illustrative rather than restrictive. Alternative aspects will become apparent to those skilled in the art that do not depart from its scope. A skilled artisan may develop alternative means of implementing the aforementioned improvements without departing from the scope of the present invention.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations and are contemplated within the scope of the claims. Not all assembly or construction steps listed in the various figures need be carried out in a specific order described.
This application claims priority to U.S. Provisional Patent Application No. 62/250,316, filed Nov. 3, 2015, entitled “Flat-Knit Bra,” the entire contents of which is hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
1984326 | Titone | Dec 1934 | A |
2397247 | Davidson | Mar 1946 | A |
2707381 | Lombardi | May 1955 | A |
2899812 | Attenborough | Aug 1959 | A |
2946211 | Morancy et al. | Jul 1960 | A |
3092987 | Levine | Jun 1963 | A |
3167938 | Seiler | Feb 1965 | A |
3241340 | Knohl | Mar 1966 | A |
3389580 | Bentley et al. | Jun 1968 | A |
3500665 | Braxton et al. | Mar 1970 | A |
3537279 | Epley | Nov 1970 | A |
3561234 | Mishcon | Feb 1971 | A |
3640096 | Betts et al. | Feb 1972 | A |
3668896 | Betts et al. | Jun 1972 | A |
3668898 | Betts et al. | Jun 1972 | A |
3677252 | Pedley | Jul 1972 | A |
3695063 | Betts et al. | Oct 1972 | A |
3789098 | Cole et al. | Jan 1974 | A |
3796068 | Betts et al. | Mar 1974 | A |
3985003 | Reed et al. | Oct 1976 | A |
4019350 | Schmidt et al. | Apr 1977 | A |
4100766 | Kuhnert | Jul 1978 | A |
4267710 | Imamichi | May 1981 | A |
4311150 | Schreiber et al. | Jan 1982 | A |
4356710 | Mizuno et al. | Nov 1982 | A |
4419997 | Cole et al. | Dec 1983 | A |
5120264 | Van Engel | Jun 1992 | A |
5214941 | Essig | Jun 1993 | A |
5359865 | So et al. | Nov 1994 | A |
5787503 | Murphy, III | Aug 1998 | A |
5887451 | Suzuki | Mar 1999 | A |
5890381 | Leeke et al. | Apr 1999 | A |
5916272 | Nonnenmacher et al. | Jun 1999 | A |
5946944 | Osborne | Sep 1999 | A |
5956765 | Chin et al. | Sep 1999 | A |
6089052 | Riegger et al. | Jul 2000 | A |
6178784 | Marley, Jr. | Jan 2001 | B1 |
6443805 | Kirkwood | Sep 2002 | B1 |
6526783 | Sheu | Mar 2003 | B2 |
6550286 | Querquant | Apr 2003 | B2 |
6645040 | Rabinowicz et al. | Nov 2003 | B2 |
6685534 | Mitchell et al. | Feb 2004 | B2 |
6779367 | Mitchell et al. | Aug 2004 | B2 |
6779369 | Shepherd | Aug 2004 | B2 |
6824445 | Oneyear et al. | Nov 2004 | B2 |
6899591 | Mitchell | May 2005 | B2 |
RE38853 | Rabinowicz | Oct 2005 | E |
7001240 | Huffman-Jimenez | Feb 2006 | B1 |
7043329 | Dias et al. | May 2006 | B2 |
7169011 | Mitchell et al. | Jan 2007 | B2 |
7442110 | Gaudet | Oct 2008 | B2 |
7536879 | Vanwelden | May 2009 | B2 |
7611999 | McMurray | Nov 2009 | B2 |
7614256 | Mitchell | Nov 2009 | B2 |
7716954 | Naka et al. | May 2010 | B2 |
8128457 | Reinisch et al. | Mar 2012 | B2 |
8226452 | Hendrickson | Jul 2012 | B2 |
8398453 | Mitchell et al. | Mar 2013 | B2 |
8469769 | Hendrickson | Jun 2013 | B2 |
8550872 | Upton et al. | Oct 2013 | B2 |
8640503 | Kunde et al. | Feb 2014 | B2 |
8690634 | Heath | Apr 2014 | B2 |
9375045 | Farris et al. | Jun 2016 | B2 |
9375046 | Meir | Jun 2016 | B2 |
9405205 | De Graaf et al. | Aug 2016 | B2 |
9538794 | Turlan | Jan 2017 | B2 |
10145042 | Diaz et al. | Dec 2018 | B2 |
10179960 | Diaz et al. | Jan 2019 | B2 |
20040097151 | McMurray | May 2004 | A1 |
20040099016 | Shepherd | May 2004 | A1 |
20040168479 | McMurray | Sep 2004 | A1 |
20050115282 | Starbuck | Jun 2005 | A1 |
20060243000 | Turlan et al. | Nov 2006 | A1 |
20080268217 | Kanatani et al. | Oct 2008 | A1 |
20100184355 | Kennedy | Jul 2010 | A1 |
20140068968 | Podhajny et al. | Mar 2014 | A1 |
20140366585 | Shen et al. | Dec 2014 | A1 |
20160242472 | Turlan et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
2036542 | Feb 1972 | DE |
0261800 | Mar 1988 | EP |
2852026 | Sep 2004 | FR |
1574736 | Sep 1980 | GB |
5361320 | Dec 2013 | JP |
2005041702 | May 2005 | WO |
2011106014 | Sep 2011 | WO |
2016197051 | Dec 2016 | WO |
Entry |
---|
Zheng, Rong, Winnie Yu, and Jintu Fan, “Pressure evaluation of 3D seamless knitted bras and conventional wired bras,” Fibers and Polymers 10.1 (2009): 124-131. http://www.researchgate.net/profile/Winnie_Yu/publication/225481465_Pressure_evaluation_of 3D_seamless_ knitted_bras_and_conventional_wired_bras/links/54d029160cf24601c0964062.pdf. |
“Leading Lady Seamless Knit Nursing Bra,” Hanes®, hanes.com, Style #24304, accessed Oct. 12, 2015 http://www.hanes.com/hanes/onehanesplace/bra/shop-by-category/nursing-bras/leading-lady-nursing-bra-24304. |
“Simplicity Mother's Breast Feeding Maternity Nursing Bra Tank Top Camisole,” Amazon, amazon.com, Accessed Oct. 2015 http://www.amazon.com/Simplicity%C2%AE-Womens-Maternity-Nursing-Sleeveless/dp/B00LQ1O8FK. |
Stoll Performance Plus SS-2016-ES Brochure, © 2016 H. Stoll AG & Co., KG, Germany, 36 pages. |
International Search Report and Written Opinion dated Feb. 3, 2017 in International Patent Application No. PCT/US2016/060261, 13 pages. |
Non-Final Office Action dated Sep. 18, 2017 in U.S. Appl. No. 15/584,925, 7 pages. |
“Breast sizing and development of 3D seamless bra”; Rong Zheng; 2007, 322 pages. http://ira.lib.polyu.edu.hk/handle/10397/2619. |
“Three Dimensional Seamless Garment Knitting on VBed Flat Knitting Machines”; Wonseok Choi et al., Jul. 19, 2014, 5 pages. https://www.researchgate.net/publication/237482349_Three_dimensional_seamless_garment_knitting_on_Vbed_flat_knitting_machines. |
International Search Report and Written Opinion dated Feb. 8, 2018 in International Patent Application No. PCT/US2017/030859, 14 pages. |
International Search Report and Written Opinion dated Feb. 8, 2018 in International Patent Application No. PCT/US2017/030947, 14 pages. |
International Search Report and Written Opinion dated Feb. 8, 2018 in International Patent Application No. PCT/US2017/030861, 14 pages. |
International Search Report and Written Opinion dated Feb. 9, 2018 in International Patent Application No. PCT/US2017/030863, 14 pages. |
Notice of Allowance dated Feb. 5, 2018 in U.S. Appl. No. 15/584,925, 5 pages. |
Notice of Allowance dated Apr. 24, 2018 in U.S. Appl. No. 15/584,925, 5 pages. |
International Preliminary Report on Patentability and Written Opinion in PCT Appl No. PCT/US2016/060261, dated May 17, 2018, 9 pages. |
Notice of Allowance dated Jul. 16, 2018 in U.S. Appl. No. 15/584,925, 5 pages. |
Notice of Allowance dated Aug. 30, 2018 in U.S. Appl. No. 15/584,930, 6 pages. |
Non-Final Office Action dated Feb. 7, 2019 in U.S. Appl. No. 15/584,950, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20170119063 A1 | May 2017 | US |
Number | Date | Country | |
---|---|---|---|
62250316 | Nov 2015 | US |