1. Field of the Invention
The present invention relates to the flat light module and the manufacturing method thereof, and more especially, to the flat light module with a high light-emitting efficiency and the manufacturing method thereof.
2. Background of the Related Art
The flat backlight module is widely used as the illuminant for the flat panel display (FPD) because it can provide extensive plane light source and has a high light-emitting efficiency with good uniformity. A conventional flat light module includes an upper substrate and a lower substrate. A plurality of metal electrodes are formed on the lower substrate and then a dielectric layer is formed on the lower substrate to cover the metal electrodes. The fluorescent layers are formed on the upper surface of the dielectric layer and the lower surface of the upper substrate. A plurality of ribs are formed between the upper and the lower substrates, and discharge gas is filled between the upper and lower substrates. When a voltage is applied on the metal electrodes to generate an electrical field, the discharge gas is ionized by the electrical field to form plasma and then emits ultraviolet rays. The ultraviolet rays stimulate and excite the fluorescent layers to emit white light.
The dielectric layer abovementioned has a flat plane surface, which limits light-emitting area and reduces light-emitting efficiency because it utilizes only the fluorescent layer coated on the flat plane surface of the dielectric layer. Another conventional dielectric layer is patterned as a plane surface with a plurality of bars which are the same height, and every bar structure covers a metal electrode respectively. For the patterned dielectric layer, the fluorescent layer is coated on the plane surface and the sidewall surface of the bar to increase the light-emitting area, but it still can not satisfy the requirement of high light-emitting efficiency. Besides, utilizing a conventional multilayer printing technology, which includes many complex and repeated processes, to pattern the dielectric layer increases the manufacturing time and cost.
One object of the present invention is to provide a flat light module and the manufacturing method thereof, wherein the flat light module has a various height dielectric structure formed by the screen printing/coating, exposing, developing and sand blasting/etching technologies to simplify the manufacturing process and reduce the manufacturing time and cost.
One object of the present invention is to provide a flat light module having a dielectric structure with a various height to enhance the light-emitting efficiency by increasing the coated area of the fluorescent layer.
One object of the present invention is to provide a flat light module that the non-discharge gaps thereof begin illuminating due to the cross-talk induced by the fluorescent material coated on the cavities of the dielectric structure.
One object of the present invention is to provide a flat light module to simplify the manufacturing process, and economize the manufacturing material by replacing ribs with dielectric structures.
In order to achieve the above objects, one embodiment of the present invention provides a flat light module manufacturing method including: providing a first substrate, a second substrate paralleled the first substrate and forming a plurality of electrodes on the upper surface of the second substrate; forming a first dielectric layer to cover the electrodes; forming a first photoresist film on the first dielectric layer and patterning the first photoresist film on a first pattern by using a photolithography process; forming a second dielectric layer on the first dielectric layer to cover the first pattern; forming a second photoresist film on the second dielectric layer and patterning the second photoresist film on a second pattern by using a photolithography process; using the first pattern as a stopper and using the second pattern as a mask to remove a portion of the second dielectric layer to form a plurality of protrusions, and to expose a portion of surface of the second dielectric layer; removing the first pattern and the second pattern to expose a portion of surface of the first dielectric layer and the second dielectric layer; coating a fluorescent layer on the exposed surfaces of the first dielectric layer and the second dielectric layer, and the upper surface of the second substrate except for the surface of forming the electrodes and the first dielectric layer; and filling discharge gas between the first substrate and the second substrate.
Another embodiment of the present invention provides a flat light module which includes: a first substrate; a second substrate paralleled the first substrate; a plurality of electrodes formed on the upper surface of the second substrate; a plurality of dielectric structures formed on the upper surface of the second substrate, wherein every dielectric structure is configured to cover one of those electrodes, and a plurality of protrusions are formed on the upper surface of each dielectric structure; a fluorescent layer coated on the exposed surface of the dielectric structures, and the upper surface of the second substrate except for the surface forming the electrodes and the first dielectric layer; and discharge gas filled between the first substrate and the second substrate.
a to
a to
The foregoing manufacturing method using the screen printing/coating, exposing, developing and sand blasting/etching technologies to form the protrusions has the advantages of simple manufacturing process and short manufacturing time. Therefore, comparing with the protrusions formed by conventional multilayer printing technology that needs many complex and repeated processes, the present invention can simplify the manufacturing process and reduce the manufacturing cost.
Furthermore, the space between the positive electrode 50 and the negative electrode 52 of every metal electrode pair is defined as a discharge gap 58, and the space between two adjacent metal electrode pairs is defined as a non-discharge gap 60. A plurality of ribs 62 are formed between the first and second substrates 42, 44 to maintain the constant distance of the space between the first and second substrates 42, 44. Every rib 62 is formed in the non-discharge gap 60, and the sidewalls of the rib 62 are also coated with the fluorescent layer 56. When a voltage applied on the positive electrode 50 and the negative electrode 52 to form an electric field, the discharge gas is ionized by the electrical field to form plasma and then emits ultraviolet rays. The ultraviolet rays irradiate and excite the entire fluorescent layer 56 to emit the white light. At the same time, the cross-talk is induced in the cavities of the dielectric structure 20, and makes the non-discharge gap 60 illuminate.
To sum up, utilizing protrusions and cavities of the dielectric structures increase surface area of the fluorescent layer and enhance the illuminating efficiency. Moreover, the cavities of the dielectric structures generate a cross-talk stimulating the non-discharge gaps luminesce, and the increasing brightness of the flat light module is 25˜30%.
Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that other modifications and variation can be made without departing the spirit and scope of the invention as hereafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
95140758 | Nov 2006 | TW | national |