This application claims priority to Taiwanese Application No. 104211029, filed on Jul. 8, 2015.
The disclosure relates to a fiber cable assembly, and more particularly to a flat optical fiber cable assembly.
Referring to
There are different types of existing optical fiber cables, one of which is a flat optical fiber cable 11′ shown in
Therefore, an object of the disclosure is to provide a flat optical fiber cable assembly that can alleviate the drawback of the prior art.
According to the disclosure, a flat optical fiber cable assembly includes a flat optical fiber cable and a reinforcement mechanism.
The flat optical fiber cable includes an optical fiber cord, at least one tension wire spaced apart from the optical fiber cord, a plurality of reinforcing fibers and an outer plastic layer covering the optical fiber cord, the at least one tension wire and the reinforcing fibers.
The reinforcement mechanism is connected to the flat optical fiber cable and includes a reinforcing sleeve and a reinforcing body. The reinforcing sleeve is sleeved on the at least one tension wire. The reinforcing body includes two opposite end surfaces, an outer surface extending between the end surfaces, a through groove that is indented inwardly from the outer surface and that extends through the end surfaces, and a positioning groove that is indented inwardly from the outer surface, that extends through the end surfaces and that is angularly spaced apart from the through groove. The positioning groove has an engaging portion. The optical fiber cord is inserted into the through groove, and the at least one tension wire is inserted into the positioning groove with the reinforcing sleeve engaging the engaging portion.
Other features and advantages of the disclosure will become apparent in the following detailed description of the embodiments with reference to the accompanying drawings, of which:
Before the present disclosure is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
The signal transmitting unit 3 includes a flat optical fiber cable 31 and a reinforcement mechanism 32 connected to the flat optical fiber cable 31. The flat optical fiber cable 31 includes an optical fiber cord 311, two tension wires 312 spaced apart from each other and from the optical fiber cord 311, a plurality of reinforcing fibers 313 and an outer plastic layer 314 covering the optical fiber cord 311, the two tension wires 312 and the reinforcing fibers 313. In an alternative embodiment, the number of tension wires 312 may be only one. In this embodiment, each reinforcing fiber 313 is a Kevlar fiber.
The reinforcement mechanism 32 includes two reinforcing sleeves 321 respectively sleeved on the tension wires 312, and a reinforcing body 324 coordinated with the reinforcing sleeves 321. In this embodiment, the connector 2 is integrally connected as one piece to one end of the reinforcing body 324, and the reinforcing sleeves 321 are respectively press-fitted on the tension wires 312.
The reinforcing body 324 includes two opposite end surfaces 3241 (only one is visible in
In this embodiment, each reinforcing sleeve 321 has two opposite side sleeve portions 322 and an intermediate sleeve portion 323 that is disposed between the side sleeve portions 322 and that has an outer diameter larger than that of each of the side sleeve portions 322. The side sleeve portions 322 and the intermediate portion 323 of each reinforcing sleeve 321 are used to engage with the engaging portion 327 of a respective one of the positioning grooves 326. Of course, in actual practice, each reinforcing sleeve 321 may have a uniform outer diameter, and as long as it can engage with the engaging portion 327 of the respective one of the positioning grooves 326, it can achieve the same effect as the aforesaid reinforcing sleeve 321.
Because the reinforcing sleeves 321 are respectively press-fitted on the tension wires 312 and are respectively engaged with the engaging portions 327 of the positioning grooves 326, not only the strength of the connection between the flat optical fiber cable 31 and the reinforcing body 324 can be enhanced, but also the overall structure of the assembly can be simplified, so that the components can be easily assembled, thereby reducing the manufacturing cost of the flat optical fiber cable assembly of the disclosure.
Aside from achieving the same advantages of the first embodiment, the second embodiment can also permit the connection of the flat optical fiber cable 31 with different types of connectors.
To sum up, with the reinforcing sleeves 321 being respectively press-fitted on the tension wires 312, or with the coordination of the reinforcing sleeves 321 with the structural configurations of the connector 2 and the reinforcing body 324, not only the connection force between the flat optical fiber cable 31 and the connector 2 can be effectively improved, but also the overall structure of the flat optical fiber cable assembly of the disclosure can be simplified so that the components can be easily assembled, thereby reducing the manufacturing cost of the flat optical fiber cable assembly of the disclosure.
While the disclosure has been described in connection with what are considered the exemplary embodiments, it is understood that this disclosure is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Number | Date | Country | Kind |
---|---|---|---|
104211029 U | Jul 2015 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
4846545 | Estabrook | Jul 1989 | A |
6778743 | Kordahi | Aug 2004 | B1 |
20050100303 | Cox | May 2005 | A1 |
20070110384 | Cody et al. | May 2007 | A1 |
20090148103 | Lu | Jun 2009 | A1 |
20100086266 | Marcouiller | Apr 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20170010428 A1 | Jan 2017 | US |