This application claims priority to and the benefit of Korean Patent Application No. 10-2010-0052361, filed on Jun. 3, 2010, in the Korean Intellectual Property Office, the disclosure of which is incorporated herein in its entirety by reference.
1. Field
Aspects of embodiments according to the present invention relate to a flat panel display device and a method of manufacturing the same.
2. Description of the Related Art
Flat panel display devices, e.g., organic light-emitting display devices and liquid crystal display (LCD) devices, are classified into active matrix flat panel display devices and passive matrix flat panel display devices. Active matrix flat panel display devices include a thin film transistor (TFT) and a capacitor in each pixel and display high-resolution images.
When a TFT and a capacitor are formed in each pixel, a wiring for connecting the TFT and the capacitor is formed in fine patterns in order to increase an aperture ratio. Such fine patterns are typically formed by photolithography using a photo-mask.
Photolithography involves uniformly coating a photoresist on a substrate, aligning a photo-mask, on which a pattern is formed, with the substrate, and exposing the photoresist by using an exposure device such as a stepper. If the photoresist is a positive photoresist, the photolithography further involves developing and etching the exposed photoresist to form a desired pattern, and removing the photoresist when the photoresist is no longer needed.
A series of processes for forming a pattern by using a photo-mask is complex as described above. As the number of processes using a photo-mask increases, manufacturing costs and manufacturing time increase.
Embodiments of the present invention are directed toward a flat panel display device that may reduce the number of processes using a photo-mask and increase an aperture ratio, and a method of manufacturing the flat panel display device.
According to an embodiment of the present invention, there is provided a method of manufacturing a flat panel display device, the method including: forming a semiconductor layer of a thin film transistor (TFT) on a substrate; forming a gate electrode on the semiconductor layer with a gate insulating layer between the gate electrode and the semiconductor layer, and doping source and drain regions of the semiconductor layer with ion impurities; sequentially forming a first conductive layer, a first insulating layer, and a second conductive layer, and forming a capacitor at a distance away from the TFT by patterning the first conductive layer, the first insulating layer, and the second conductive layer; forming a second insulating layer, and forming contact holes passing through the second insulating layer, the contact holes exposing portions of the source and drain regions and the second conductive layer; and forming source and drain electrodes, the source electrode contacting the source region and the drain electrode contacting the drain region and the second conductive layer through the contact holes.
The forming of the gate electrode may include forming a wiring on the gate insulating layer on which the gate electrode is formed, the wiring comprising a same material as that of the gate electrode and directly contacting the first conductive layer.
The doping of the source and drain regions of the semiconductor layer with the ion impurities may include doping the source and drain regions with same ion impurities.
The doping of the source and drain regions of the semiconductor layer with the ion impurities may include doping the source and drain regions with the ion impurities by using the gate electrode as a self-aligned mask.
Each of the first conductive layer and the second conductive layer may include a transparent conductive material.
Portions of the first conductive layer, the first insulating layer, and the second conductive layer where the TFT is formed may be completely etched.
The forming of the capacitor may include patterning the first conductive layer, the first insulating layer, and the second conductive layer so that etched side surfaces of the first conductive layer, the first insulating layer, and the second conductive layer are aligned.
The second insulating layer may directly contact the gate electrode.
The method may further include forming an organic layer on the source and drain electrodes, and forming a via-hole passing through the organic layer, the via-hole exposing a portion of one of the source and drain electrodes.
The method may further include forming a pixel electrode contacting one of the source and drain electrodes through the via-hole.
According to another embodiment of the present invention, there is provided a flat panel display device including: a semiconductor layer of a TFT on a substrate, the semiconductor layer including a channel region, a source region, and a drain region; a gate electrode on the channel region with a gate insulating layer between the gate electrode and the channel region; a capacitor on the gate insulating layer and including a first conductive layer, a first insulating layer, and a second conductive layer of which etched side surfaces are aligned; source and drain electrodes passing through a second insulating layer on the gate electrode and the capacitor, the source electrode contacting the source region and the drain electrode contacting the drain region and the second conductive layer; and a pixel electrode contacting a portion of one of the source and drain electrodes.
The source and drain regions may include same ion impurities.
The flat panel display device may further include a wiring formed of a same material as that of the gate electrode, the wiring being on the gate insulating layer on which the gate electrode is formed and directly contacting the first conductive layer.
The wiring may include at least one conductive material selected from the group consisting of silver (Ag), magnesium (Mg), aluminum (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W), molybdenum tungsten (MoW), aluminum/copper (Al/Cu), and combinations thereof.
Each of the first conductive layer and the second conductive layer of the capacitor may include a transparent conductive material.
The transparent conductive material may include at least one material selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide (IGO), and aluminum zinc oxide (AZO).
The first insulating layer may include a material having a dielectric constant higher than that of the second insulating layer.
The first insulating layer may include a nitride.
The first insulating layer may be only between the first conductive layer and the second conductive layer.
The flat panel display device may further include an organic layer between the source and drain electrodes and the pixel electrode, wherein one of the source and drain electrodes contacts the pixel electrode through a via-hole in the organic layer.
The flat panel display device may further include a counter electrode facing the pixel electrode, and a liquid crystal layer between the pixel electrode and the counter electrode.
The flat panel display device may further include a wiring formed of a same material as that of the gate electrode, the wiring being on the gate insulating layer on which the gate electrode is formed and directly contacting the first conductive layer, wherein the wiring is for receiving a voltage Vcom.
The flat panel display device may further include a counter electrode facing the pixel electrode, and an organic light-emitting layer between the pixel electrode and the counter electrode.
The above and other features and aspects of embodiments according to the present invention will become more apparent by describing in detail exemplary embodiments thereof with reference to the attached drawings in which:
The present invention will now be described more fully with reference to the accompanying drawings, in which exemplary embodiments of the invention are shown.
Referring to
The substrate 10 may be formed of a transparent glass material including SiO2 as a main component. A buffer layer including SiO2 and/or SiNx may be further disposed on the substrate 10 in order to planarize the substrate 10 and prevent penetration of impurity elements.
The buffer layer and the material layer 11 may be deposited by various suitable deposition methods, such as plasma enhanced chemical vapour deposition (PECVD), atmospheric pressure CVD (APCVD), low pressure CVD (LPCVD), or other suitable methods.
In one embodiment, the material layer 11 may be formed of amorphous silicon or polysilicon. Polysilicon may be formed by crystallizing amorphous silicon. Examples of a method of crystallizing amorphous silicon may include rapid thermal annealing (RTA), solid phase crystallization (SPC), excimer laser annealing (ELA), metal induced crystallization (MIC), metal induced lateral crystallization (MILC), sequential lateral solidification (SLS) or other suitable methods.
The first mask process is performed using the first photo-mask M1 including light-transmitting portions M11 and light-blocking portions M12. The first photo-mask M1 is exposed by using an exposure device, and a series of processes of developing, etching, and stripping or washing are performed.
Referring to
Referring to
The gate insulating layer 12 may have a single-layer structure or a multi-layer structure including a silicon oxide, a silicon nitride, and so on.
The metal layer 13 may include at least one conductive material selected from the group consisting of silver (Ag), magnesium (Mg), aluminium (Al), platinum (Pt), palladium (Pd), gold (Au), nickel (Ni), neodymium (Nd), iridium (Ir), chromium (Cr), lithium (Li), calcium (Ca), molybdenum (Mo), titanium (Ti), tungsten (W), molybdenum tungsten (MoW), aluminium/copper (Al/Cu), and combinations thereof.
Referring to
Referring to
In one embodiment, the source and drain regions 21a and 21c are doped with the same ion impurities by using the gate electrode 23, which is formed as a result of the second mask process, as a self-aligned mask.
Although the source and drain regions 21a and 21c are doped with P+type impurities in the second mask process described with reference to
A conventional method of forming a CMOS TFT includes at least two mask processes. However, according to the present embodiment, since the source and drain regions 21a and 21c are doped with the same ion impurities by using the gate electrode 23 as a self-aligned mask, an additional mask process is not necessary. Thus, the number of mask processes is reduced, and manufacturing costs are reduced.
Referring to
Referring to
Referring to
Referring to
Since the lower electrode 34, the dielectric layer 35, and the upper electrode 36 of the capacitor 30 are etched by using the third photoresist P3′ as a mask formed by one photo-mask, namely, the third photo-mask M3, etched side surfaces A of the capacitor 30 are aligned.
Each of the lower electrode 34 and the upper electrode 36 of the capacitor 30 may include a transparent conductive material. The transparent conductive material may be selected from the group consisting of indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide (IGO), and aluminium zinc oxide (AZO). Since the upper electrode 36 and the lower electrode 34 of the capacitor 30 are transparent electrodes, the aperture ratio of the flat panel display device may be increased without reducing the size of the capacitor 30.
Also, the lower electrode 34 of the capacitor 30 may directly contact the wiring 33 of the capacitor 30. If each of the upper electrode 36 and the lower electrode 34 of the capacitor 30 is formed of a transparent electrode having high resistivity, and the wiring 33 is formed of a material having high resistivity, a voltage applied to the capacitor 30 should be increased. However, if the wiring 33 of the capacitor 30 is formed of a material having low resistivity, like a material used to form the gate electrode 23, a voltage applied to the capacitor 30 may be reduced. Furthermore, in the case of a liquid crystal display (LCD) device, a voltage Vcom should be additionally applied to the capacitor 30. In one embodiment, since a voltage Vcom is applied to the wiring 33 of the capacitor 30, which is formed of the same material as that of the gate electrode 23, a load due to wiring resistance may be minimized or reduced.
Also, the first insulating layer 15, formed into the dielectric layer 35 of the capacitor 30, may include an insulating material having a high dielectric constant. In one embodiment, the dielectric layer 35 includes a silicon nitride.
Here, although the second conductive layer 16, the first insulating layer 15, and the first conductive layer 14 are etched through different etching processes, that is, three etching processes, in
Referring to
Referring to
Since the portion of the first insulating layer 15 where the TFT 20 is formed is completely etched in the third mask process, the second insulating layer 17 directly contacts the gate electrode 23 of the TFT 20.
The second insulating layer 17 is formed as an interlayer insulating layer that is directly interposed between the gate electrode 23 and source and drain electrodes 28a and 28c (see
The second insulating layer 17 may include a nitride or an oxide, and may be formed of a material having a dielectric constant less than that of the first insulating layer 15.
Referring to
Referring to
According to the above described embodiments, the TFT 20 and the capacitor 30 of the flat panel display device may be formed through five photo-mask processes. Accordingly, the number of mask processes and manufacturing costs are reduced.
Referring to
In one embodiment, an inorganic insulating layer may be further disposed between the source and drain electrodes 28a and 28c and the organic layer 19.
Referring to
The flat panel display device formed by the method as described above may include a TFT and a capacitor in a pixel through five photo-mask processes. Accordingly, the number of mask processes and manufacturing costs are reduced. Also, if both electrodes of the capacitor are transparent electrodes, the aperture ratio of the flat panel display device may be increased without reducing the size of the capacitor. Also, since a wiring coupled to the capacitor is formed of the same material as that of a gate electrode having low resistance, thus, wiring resistance may be reduced.
Here, although the LCD device is shown in
Since elements illustrated in the drawings may be enlarged or reduced for the convenience of explanation, the present invention is not limited to the sizes or shapes of the elements shown in the drawings. It will be understood by one of ordinary skill in the art that various modifications and equivalents may be made herein. Accordingly, the spirit and scope of the present invention should be defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2010-0052361 | Jun 2010 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5834328 | Jang | Nov 1998 | A |
20080283841 | Yamayoshi | Nov 2008 | A1 |
20090227054 | Cheng | Sep 2009 | A1 |
20090278131 | Kwon et al. | Nov 2009 | A1 |
20110122330 | Tae et al. | May 2011 | A1 |
Number | Date | Country |
---|---|---|
101165908 | Apr 2008 | CN |
1997-0076033 | Dec 1997 | KR |
10-2003-0004782 | Jan 2003 | KR |
10-2008-0049256 | Jun 2008 | KR |
10-2009-0057689 | Jun 2009 | KR |
10-2011-0057062 | May 2011 | KR |
Number | Date | Country | |
---|---|---|---|
20110297945 A1 | Dec 2011 | US |