1. Field of the Invention
The present invention relates to the field of displaying techniques, and in particular to a flat panel display device, a stereoscopic display device, and a plasma display device.
2. The Related Arts
The state-of-the-art liquid crystal display device comprises a front bezel, a panel, and a backlight module, of which the backlight module comprises a back frame, a reflector plate, a light guide, and a lighting assembly.
Currently, a variety of display panels of different sizes are available in the market to meet different needs of general consumers. For example, in the field of television set, the sizes of liquid crystal panels include 31.5, 42, 46, 48, and 55 inches. Different back frame molds are provided for liquid crystal planes of different sizes.
Referring to
The technical issue to be addressed by the present invention is to provide a flat panel display device, a stereoscopic display device, and a plasma display device, which help lowering the material cost and mold cost and also satisfies a foolproof structure for frame in order to reduce operation errors and increase manufacturing efficiency.
To address the above technical issue, the present invention adopts a technical solution that provides a flat panel display device, which comprises a backlight system and a display panel, wherein: the backlight system comprises a light source, a light homogenization mechanism, and a back frame; the back frame carries the light source and the light homogenization mechanism, the light homogenization mechanism guiding light from the light source to a light incidence surface of the display panel; at least first and second primary assembling pieces, the first and second two primary assembling pieces having two ends both comprising a joint section, the first and second primary assembling pieces being joined with the corresponding joint sections; wherein the two joint sections of the first primary assembling piece comprise different positioning marks and each of the joint sections of the second primary assembling piece mating the first primary assembling piece comprises a corresponding positioning mark.
Wherein, the positioning marks comprise digits, characters, patterns, or a foolproof structure formed by mating corresponding joint sections of the first primary assembling piece and the second primary assembling piece.
Wherein, the joint section of the first primary assembling piece forms a recess and the recess has a chamfer, the second primary assembling piece having an end serving as a joint section that comprises another chamfer mating said chamfer, said chamfer and said another mating each other to form the foolproof structure.
Wherein, the chamfers comprise triangular chamfers, rectangular chamfers, circular chamfers, or serrated chamfers.
Wherein, the joint section of the first primary assembling piece comprises a recess, the recess having a side wall having an end forming a serration structure, the second primary assembling piece having an end serving as a joint section that comprises another serration structure mating said serration structure, said serration structure and said another serration structure mating each other to form the foolproof structure.
Wherein, the joint section of the first primary assembling piece has a bottom forming a projection and the second primary assembling piece has a bottom forming a recess mating the projection, the projection being fit into the recess to form the foolproof structure.
Wherein, the projection comprises a rectangular projection, a circular projection, a trapezoidal projection, or a conic projection.
Wherein, the projection is formed on a side surface or a bottom surface of the joint section of the first primary assembling piece.
Wherein, the first primary assembling piece has an end forming at least two joint sections that have a structure mating a corresponding end of the second primary assembling piece, the first primary assembling piece using one of the joint sections thereof to join the corresponding end of the second primary assembling piece, the at least two joint sections being arranged to space from each other in a lengthwise direction of the first primary assembling piece.
Wherein, the joint sections comprise recesses formed in the surface of the first primary assembling piece, the second primary assembling piece having an end having a surface forming at least two protrusions that are arranged to space from each other in a lengthwise direction of the second primary assembling piece, the protrusions being receivable in the recesses to join the first primary assembling piece and the second primary assembling piece to each other.
Wherein, the recess of the first primary assembling piece forms in a bottom thereof a first through hole, the second primary assembling piece forming in a corresponding location a second through hole, the back frame comprising a fastener, the fastener extending through the first through hole and the second through hole to join the first primary assembling piece and the second primary assembling piece to each other.
Wherein, the joint sections comprise recesses formed in the surface of the first primary assembling piece, the second primary assembling piece having an end having a surface forming protrusions at corresponding positions that are arranged to space from each other in a lengthwise direction of the second primary assembling piece, the protrusions being receivable in the recesses to join the first primary assembling piece and the second primary assembling piece to each other.
Wherein, the back frame comprises a third primary assembling piece and a fourth primary assembling piece; and the first primary assembling piece, the second primary assembling piece, the third primary assembling piece, and the fourth primary assembling piece are connected to each other to form a main frame structure of the back frame.
Wherein, the back frame comprises secondary assembling pieces arranged in the main frame structure, the secondary assembling pieces being joined to the main frame structure, the secondary assembling pieces comprising a first secondary assembling piece and a second secondary assembling piece, the first secondary assembling piece having two ends respectively joined to at least two primary assembling pieces of the first primary assembling piece, the second primary assembling piece, the third primary assembling piece, and the fourth primary assembling piece, the second secondary assembling piece having two ends respectively joined to at least two primary assembling pieces of the first primary assembling piece, the second primary assembling piece, the third primary assembling piece, and the fourth primary assembling piece.
Wherein, the two ends of the first secondary assembling piece are respectively joined to the first primary assembling piece and the second primary assembling piece that are adjacent to each other and the two ends of the second secondary assembling piece are respectively joined to the third primary assembling piece and the fourth primary assembling piece that are adjacent to each other; or the two ends of the first secondary assembling piece are respectively joined to the first primary assembling piece and the third primary assembling piece that are opposite to each other and the two ends of the second secondary assembling piece are respectively joined to the first primary assembling piece and the third primary assembling piece that are opposite to each other, the second primary assembling piece, the fourth primary assembling piece, the first secondary assembling piece, and the second secondary assembling piece being arranged parallel to each other.
Wherein, the back frame comprises at least one bracing piece, which is releasably fixed to one or more of the first primary assembling piece, the second primary assembling piece, the third primary assembling piece, the fourth primary assembling piece, the first secondary assembling piece, and the second secondary assembling piece, the bracing piece forming a bump.
To address the above technical issue, the present invention adopts a technical solution that provides a stereoscopic display device, which comprises a liquid crystal lens grating, a backlight system, and a display panel, the liquid crystal lens grating being arranged on a light exit surface of the display panel; the backlight system comprises a light source, a light homogenization mechanism, and a back frame; the back frame carries the light source and the light homogenization mechanism, the light homogenization mechanism guiding light from the light source to a light incidence surface of the display panel; the back frame comprises at least first and second primary assembling pieces, the first and second two primary assembling pieces having two ends both comprising a joint section, the first and second primary assembling pieces being joined with the corresponding joint sections; wherein the two joint sections of the first primary assembling piece comprise different positioning marks and each of the joint sections of the second primary assembling piece mating the first primary assembling piece comprises a corresponding positioning mark.
To address the above technical issue, the present invention adopts a technical solution that provides a plasma display device, which comprises a plasma display panel and a back frame, the back frame being arranged at a back side of the plasma display panel; the back frame comprises at least first and second primary assembling pieces, the first and second two primary assembling pieces having two ends both comprising a joint section, the first and second primary assembling pieces being joined with the corresponding joint sections; wherein the two joint sections of the first primary assembling piece comprise different positioning marks and each of the joint sections of the second primary assembling piece mating the first primary assembling piece comprises a corresponding positioning mark.
The efficacy of the present invention is that to be distinguished from the state of the art, the present invention provides a flat panel display device, a stereoscopic display device, and a plasma display device that comprise at least two primary assembling pieces, of which the first primary assembling piece forms at least two joint sections, the first primary assembling piece using one of the joint sections to join a corresponding end of the second primary assembling piece so as to make a back frame mold simple in structure, reduce the cost of back frame mold, save material used for back frame, and lowers down the cost. Through forming corresponding positioning marks on the joint sections of the primary assembling pieces, a foolproof structure for frame is provided to help an operator to easily assemble a back frame without making mistakes, reduce operation errors and increase efficiency.
Referring to
In the instant embodiment, the backlight system 21 comprises a light source 25, a light homogenization mechanism 24, and a back frame 23. The back frame 23 carries the light source 25 and the light homogenization mechanism 24. When the backlight system 21 is an edge lighting type, the light homogenization mechanism 24 is a light guide; and when the backlight system 21 is a direct type, the light homogenization mechanism 24 is a diffuser plate. The back frame 23 comprises at least a first primary assembling piece and a second primary assembling piece, and the at least a first and a second primary assembling pieces constitute a main frame structure 27 of the back frame 23.
Referring also to
Further referring to
An example that the joint section 2611 and the joint section 2621 are both provided with mated foolproof structure to serve as positioning marks will be described.
The joint section 2611 and the joint section 2621 are taken as an example for description as follows.
Referring to
Certainly, when the joint section 2611 and the joint section 2621 are designed as axially symmetric, the joint section 2611 can be provided with a projection, while the joint section 2621 that mates it is provided at a corresponding position a recess, so that the projection and the recess collectively form a foolproof structure (as shown in
Referring to
Referring to
With such structures, an operator may easily and correctly assemble a back frame. The projection can be a rectangular projection, a circular projection, a trapezoidal projection, or a conic projection. The projection can be arranged on a side surface or a bottom surface of a joint section.
It is noted that the shape of the projection is not limited to the above embodiments and the number, size, and position of the projection can be set according to practical applications, provided that the mating recesses can be stacked therewith in a concave-convex stacking manner. No limitation is imposed herein.
Referring to
The embodiments of the present invention employ a joining operation to form a back frame in order to simplify the structure of the back frame and save the material used for the back frame so as to reduce the manufacturing cost of a backlight display device. Further, the joint sections of the first primary assembling piece 261 and the second primary assembling piece 262 are provided, at corresponding locations, with positioning marks, which may comprise digits, characters, and mating foolproof structure, whereby joining can be carried out with the joining marks to satisfy the frame foolproof design that helps an operator to easily assemble a back frame without making mistakes and thus reducing operation errors and improving efficiency.
It is noted all the embodiments described above that comprises positioning mark provided on the joint sections described above are also applicable to various embodiments of back frame, backlight system, and flat panel display device that will be described.
Referring also to
Further, the back frame 23 further comprises secondary assembling pieces arranged inside and joined to the main frame structure 27.
A detailed description will be given to the back frame 23 of the flat panel display device 20 according to the present invention, which comprises four primary assembling pieces and two secondary assembling pieces.
Referring to
Specifically, an end of the first primary assembling piece 231 is joined to an end of the second primary assembling piece 232, another end of the second primary assembling piece 232 is joined to an end of the third primary assembling piece 233, another end of the third primary assembling piece 233 is joined to an end of the fourth primary assembling piece 234, and another end of the fourth primary assembling piece 234 is joined to another end of the first primary assembling piece 231 in order to form the rectangular main frame structure 27. The first primary assembling piece 231, the second primary assembling piece 232, the third primary assembling piece 233, and the fourth primary assembling piece 234 are all aluminum pieces or galvanized steel pieces. In the instant embodiment, the first primary assembling piece 231, the second primary assembling piece 232, the third primary assembling piece 233, and the fourth primary assembling piece 234 are straight linear, yet in other embodiments, it is apparent to those skilled in the art to make all the first primary assembling piece 231, the second primary assembling piece 232, the third primary assembling piece 233, and the fourth primary assembling piece 234 L-shaped, or some being straight linear and the remaining being L-shaped. For example, in
Referring to
Referring to
Referring to
Collectively referring to
The bracing pieces 2371, 2372, 2373, 2374, 2375, 2376, and 2377 may be provided with bumps (not labeled) so that the back frame 23 may fix components, such as circuit boards, with such bumps.
Molds for making the back frame 23 will be described. In the instant embodiment, the first primary assembling piece 231 and the third primary assembling piece 233 are of the same size and shape so that they can be made by stamping with the same mold. The second primary assembling piece 232, the fourth primary assembling piece 234, the first secondary assembling piece 235, and the second secondary assembling piece 236 are of the same size and shape so that they can be made by stamping with the same mold, making it possible to share the mold. Thus, the back frame 23 of the present invention can be made by stamping with only two small-sized molds, and compared to the conventional back frame 10 that requires a large-sized mold, the molds for making the back frame 23 of the present invention are simple in structure and small in size and thus the cost of mold for the back frame 23 can be lowered. Further, compared to the whole back frame structure of the conventional back frame 10, the back frame 23 of the present invention can significantly save material used and thus reduce the manufacturing cost of the flat panel display device 20.
Referring to
Specifically, the first primary assembling piece 231 has an end having a surface forming joint sections 2311, 2312, and the joint sections 2311, 2312 are arranged in a spaced manner in a lengthwise direction of the first primary assembling piece 231. The joint sections 2311, 2312 are formed by forming recesses having a shape mating an end of the second primary assembling piece 232 in the first primary assembling piece 231 in order to receive the end of the second primary assembling piece 232 therein.
Referring to
To assemble a large-sized back frame 23, the joint section 2311 that is close to the very end of the first primary assembling piece 231 is first taken and a second primary assembling piece 232 having a corresponding width is selected. Afterwards, an end of the second primary assembling piece 232 is positioned in the recess of the joint section 2311. And then, means, such as screwing, fastening, or welding, is applied to join and fix the end of the second primary assembling piece 232 to the joint section 2311. To assemble a small-sized back frame 23, the joint section 2312 that is distant from the very end of the first primary assembling piece 231 is first chosen and a second primary assembling piece 232 having a corresponding width is selected. Afterwards, an end of the second primary assembling piece 232 is positioned in the recess of the joint section 2312. And then, means, such as screwing, fastening, or welding, is applied to join and fix the end of the second primary assembling piece 232 to the joint section 2312.
Referring to
Furthermore, as shown in
Further, as shown in
As shown in
As shown in
In a practical application, the other end of the first primary assembling piece 231 and both ends of the third primary assembling piece 233 are all provided with two joint sections having a structure identical to that of the joint sections 2311, 2312. The ends of the second primary assembling piece 232 and the ends of the fourth primary assembling piece 234 may be subjected to specific designs or no design at all according to different applications. For example:
(1) In a first situation, as shown in
(2) In a second situation, it is similar to the first situation, but as shown in
This also applicable to an embodiment of the main frame structure 27 of the back frame 23 that is formed by only joining two L-shaped primary assembling pieces.
In summary, the present invention provides a back frame 23 having a first primary assembling piece that is provided with at least two joint sections. The number of the joint section can be selected according to the requirement of customers. In the instant embodiment, a description is given to an example comprising two joint sections 2311, 2312. Thus, to prepare the molds for making the back frame 23, only two sets of mold are needed, namely one mold for a first primary assembling piece and the other mold for a second primary assembling piece. The first primary assembling piece may be provided with a plurality of joint sections for joining operation in order to form various sizes for the back frame 23. To assemble the back frame 23, based on the desired size of the back frame 23, the corresponding one of the joint sections is selected. With the joint section, the second primary assembling piece is joined to the joint section of the first primary assembling piece and the other joint section of the first primary assembling piece that is located outward of the joining location of the second primary assembling piece is trimmed off to obtain a desired size of the back frame 23. Compared to the conventional technology that requires different back frame molds for making different sizes of back frame 10, the back frame of the flat panel display device 23 according to the present invention requires only a mold for the first primary assembling piece and a mold for the second primary assembling piece 28 so that mold sharing among various sizes of product can be realized and the molds used are of simple structures, allowing of reduction of expenditure of the molds for back frames.
The present invention also provides a mold for making a back frame of flat panel display device. The back frame mold is provided with a main pattern for forming a primary assembling piece of the back frame and the main pattern comprises a sub-pattern that forms at least two joint sections on an end of the primary assembling piece. The primary assembling piece comprises the previously discussed first primary assembling piece and second primary assembling piece, corresponding to the above mentioned main pattern; and the joint section comprises the previously discussed joint section of the first primary assembling piece, corresponding to the above mentioned sub-pattern. Repeated description is omitted herein.
The present invention also provides a method for making a back frame of flat panel display device. As shown in
Step 501: manufacturing at least two primary assembling pieces, wherein the at least two primary assembling pieces have joint sections mate each other to form a foolproof structure as described in any one of the above embodiment; and
Step 502: selecting one joint section of at least two joint sections according to a size of the back frame to join a corresponding end of the second primary assembling piece and using the joint section to join the at least two primary assembling pieces.
In the instant embodiment, when other joint sections are present between the joining location of the second primary assembling piece and the end of the first primary assembling piece, before or after the step of selecting one joint section of the at least two joint sections according to a size of the back frame to join the corresponding end of the second primary assembling piece, the other joint sections of the first primary assembling piece that are located outward of the joining position of the second primary assembling piece are trimmed off. The first primary assembling piece comprises the previously discussed first primary assembling piece, and the second primary assembling piece comprises the previously discussed second primary assembling piece, and repeated description will be omitted herein.
As shown in
The backlight system 21 comprises a light source 25, a light homogenization mechanism 24, and a back frame 23. The back frame 23 carries the light source 25 and the light homogenization mechanism 24. When the backlight system 21 is an edge lighting type, the light homogenization mechanism 24 is a light guide; and when the backlight system 21 is a direct type, the light homogenization mechanism 24 is a diffuser plate. The back frame 23 comprises at least a first primary assembling piece and a second primary assembling piece, and the at least one first and second primary assembling pieces constitute a main frame structure 27 of the back frame 23.
Certainly, the backlight system 21 can be of the structure of any embodiment of backlight system discussed above.
It is noted that the flat panel display device 20 of the present invention can be a liquid crystal display device or a liquid crystal television.
The present invention also provides a stereoscopic display device 30, as shown in
The present invention also provides a plasma display device 40, as shown in
With the above discussed manners, the present invention provides a flat panel display device, a stereoscopic display device, and a plasma display device that have a mold for back frame that is of a simple structure, reduce the cost of back frame mold, and save the material used for the back frame, so as to lower down the cost of flat panel display device, and joining operation is carried out with mating foolproof structures provided on joint sections of at least two primary assembling pieces so as to satisfy the need for foolproofing and to help an operator to easily assembly the back frame without making mistakes, thereby reducing operation errors and increasing efficiency.
Embodiments of the present invention have been described, but are not intending to impose any undue constraint to the appended claims of the present invention. Any modification of equivalent structure or equivalent process made according to the disclosure and drawings of the present invention, or any application thereof, directly or indirectly, to other related fields of technique, is considered encompassed in the scope of protection defined by the clams of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2011103674040 | Nov 2011 | CN | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CN11/82782 | 11/23/2011 | WO | 00 | 12/23/2011 |