Information
-
Patent Grant
-
6525463
-
Patent Number
6,525,463
-
Date Filed
Tuesday, June 1, 199925 years ago
-
Date Issued
Tuesday, February 25, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Day; Michael H.
- Haynes; Mack
Agents
- Renner, Otto, Boisselle & Sklar, LLP
-
CPC
-
US Classifications
Field of Search
US
- 313 495
- 313 496
- 313 497
- 313 309
- 313 336
- 313 351
- 313 421
- 313 422
- 313 423
- 335 210
- 335 213
- 315 366
- 315 1693
-
International Classifications
- H01J150
- H01J6306
- H01J2946
-
Abstract
A flat panel display device comprises a cathode on a first substrate for emitting electrons, a magnetic plate including first region focusing electrons emitted from the cathode to display an image and second region for applying the uniform magnetic field into the holes in the first region, and a fluorescent layer on the second substrate, on which the electrons outputted from the holes are impacted. In the second region, there are holes having the same shape and pitch as the first region.
Description
BACK GROUND OF THE INVENTION
The present invention relates to a flat panel display device, and more particular to an electron supplying device of the flat panel display device having a magnetic plate supplying the uniform magnetic field to holes thereof to form an electron beam to be impacted to the screen.
The cathode ray tube (CRT) used for the display device such as television and personal computer, etc., has problem that the size is increased in accordance with the display area. In order to overcome this problem the flat panel display including a liquid crystal display device, a field emission display device, a plasma display panel device, and a vacuum fluorescent display device has been introduced recently. Since these flat panel display device requires the high level technology such as the semiconductor device process, however, the manufacturing process is complex and the cost is increased. In case of the fabrication of the large size device, further, there are problem such as the image quality deterioration and the color shift phenomenon.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a magnetic plate having a first region including a plurality of holes in which the magnetic field is applied and a second region formed in the outer peripheral portion of the first region to apply the uniform magnetic field into the holes all over the first region of the magnetic plate.
It is another object of the present invention to provide an electron supplying device for focusing the electrons to be flowing into the holes to generate an electron beam.
It is another object of the present invention to provide a flat panel display device in which the electron beam generated by the magnet of the magnetic plate is impacted into a screen to display the image.
In order to achieve the object, the magnetic plate according to one aspect of the present invention comprises a first region having a plurality of holes for focusing the electron inputted from the outside of the magnetic plate by the magnetic field to generate the electron beam; and a second region formed in the outer peripheral portion of the first region to supply the uniform magnetic field to the holes all over the first region.
The holes of the circular shape or the rectangular shape in the first region are arranged in a plurality of rows and columns at uniform pitch. In the second region, further, a plurality of holes is also arranged in the same shape and pitch as the first region.
The electron supplying device according to the other aspect of the present invention comprises a cathode for emitting the electrons; a magnetic plate having a first region and a second region, the first region including a plurality of holes for focusing the electrons emitted from the cathode to generate the electron beam by the magnetic field, the holes being arranged in two dimension matrix, the second region being formed in the outer peripheral portion of the first region to apply the uniform magnetic field into the holes all over the first region; a grid electrode for controlling the flow of the electrons flowing into the holes of the magnetic plate, the grid electrode being positioned between the cathode and the magnetic plate, and first and second anodes for accelerating the electrons flowing into the holes, the first and second anodes being arranged parallel along both sides of the columns of the holes in the surface of the magnetic plate that do not face the cathode.
The holes of the circular shape or the rectangular shape are arranged in a plurality of rows and columns at uniform pitch in the first region. In the second region, further, a plurality of holes is arranged in the same shape and pitch as the first region. The grid electrodes are arranged in matrix on the surface of the cathode or the surface of the magnetic plate facing to the cathode, and the holes are formed at the intersection of the grid electrodes. The grid electrodes and the anodes are formed in only the first region, but could be extended to the second region. The first and second anodes are electrically connected to the neighboring the first and second anodes, respectively.
The flat panel display device according to the another aspect of the present invention comprises a cathode for emitting the electrons; a magnetic plate having a first region and a second region, the first region including a plurality of holes for focusing the electrons emitted from the cathode to generate the electron beam by the magnetic field, the holes being arranged in a plurality of rows and columns, the second region being formed in the outer peripheral portion of the first region to apply the uniform magnetic field into the holes all over the first region; a plurality grid electrodes for controlling the flow of the electrons flowing into the holes of the magnetic plate, the grid electrodes being formed between the cathode and the magnetic plate; first and second anodes for accelerating the electrons flowing into the holes, the first and second anodes being parallel arranged along both sides of the column of the holes in the surface of the magnetic plate that do not face the cathode; a screen having a fluorescent layer over the surface facing the surface of the magnetic plate on which the anodes are arranged; and a controlling signal supplying means for supplying the controlling signal to the grid electrodes and the anodes to control selectively the stream of the electrons impacted into the fluorescent layer from the cathode.
The holes of circular shape or the rectangular shape are arranged in a plurality of rows and columns at pitch b in the first region and a plurality of holes having the same shape and pitch as the first region are formed in the second region. The grid electrodes are arranged in matrix in the surface of the cathode or the surface of the magnetic plate opposing to the cathode, and the holes are arranged at the intersection of the grid electrodes. The grid electrodes and the anodes are formed in only the first region, but could be extended to the second region. The first and second anodes are electrically connected to the neighboring the first and second anodes, respectively.
The fluorescent layer includes a plurality of red, green, and blue elements to be repeated thereon. The refractive signal is applied to the first and second anodes to refract the electrons flowing out the holes of the magnetic plate, so that the refracted electrons are impacted to each element of the fluorescent layer to generate the image on the screen.
The cathode, the magnetic plate, and the screen spaced in uniform gap by a spacer are sealed and then evacuated. The spacer is smaller than the width of the second region of the magnetic plate, so that the spacer is positioned in a part area or the whole area of the second region.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a view showing an electron supplying device of the present invention.
FIG. 2A
is a view showing a magnetic field passing through the holes of the electron supplying device according to the present invention.
FIG. 2B
is a view showing the trajectory of the electrons passing through the holes of the electron supplying device according to the present invention.
FIG. 3
is a view indicating the practical magnetic field caused by the magnetic plate applied to the present invention.
FIG. 4
is a graph of the intensity of the magnetic field caused by the magnetic plate shown in FIG.
3
.
FIG. 5
is a view indicating a first embodiment of the present invention.
FIG. 6
is a graph of the intensity of the magnetic field caused by the magnetic plate shown in FIG.
5
.
FIG. 7
is a view showing a second embodiment of the present invention.
FIG. 8
is a sectional view of the display device according to the present invention.
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the electron supplying device will be described in detail accompanying drawings.
The flat panel display device of this invention includes the advantage of the conventional CRT. In addition, the flat panel display device of this invention has the simplified structure and the low production cost. In this invention, that is, a screen of the conventional CRT is used, further a plane cathode device is used to emit uniformly the electrons and the permanent magnetic plate having holes formed therein in a matrix is used to focus the electrons. This display device had been disclosed in U.K. patent Nos. 204,981-204,988.
FIG. 1
is a view showing the flat panel display device according to the present invention. As shown in figure, the flat panel display device of the present invention comprises a first substrate having a cathode
13
for emitting the electrons, a second substrate
30
including a glass plate on which a fluorescent layer having the repeated red(R), blue(B), and green(G) fluorescent elements is formed, the magnetic plate
20
between the first substrate
10
and second substrate
30
to focus the electrons emitted from the cathode
13
. The second substrate
30
having the fluorescent layer
33
is a screen that the image is displayed. Not shown in figure, a third anode layer is formed over the fluorescent layer
33
. The magnetic plate
20
is the permanent magnetic plate having a plurality of holes
23
arranged in the matrix. Controlling grid electrodes
28
are formed in the first surface of the magnetic plate
20
, facing to the cathode
13
. In the second surface of the magnetic plate
20
facing to the fluorescent layer
33
, first anodes
25
a
and second anodes
25
b
are arranged along both side of holes
23
in the row direction. The grid electrodes
28
include the first and second grid electrodes arranged in a plurality of rows and columns, and the holes
23
are arranged at the intersection of the first and second grids.
In above flat panel display device, the electrons emitted from the cathode
13
are attracted to the controlling grid electrode
28
by applying the voltage thereto and then flowing into the holes
23
. By the magnetic plate
20
, the magnetic field having certain intensity is applied into the holes
23
. The electrons flowing into the holes
23
are accelerated by the first and second anodes
25
a,
25
b
on the second surface of the magnetic plate
20
and refracted by the voltage difference between the first and second anodes
25
a,
25
b.
In other word, the electrons travels straight to the fluorescent layer
33
through the holes
23
in case where there is no voltage difference between the first and second anodes
25
a,
25
b,
so that the traveled electrons are impacted into the green element of the pixel having the ordered R,G,B elements. In case where the voltage of the first anodes
25
a
is different from that of the second anodes
25
b,
the electrons are refracted by the voltage difference between the first and second anodes
25
a,
25
b.
As a result, the electrons are impacted into the red element or the blue element of the pixel. Since approximate voltage of 10 keV is applied to the third anode
33
over the fluorescent layer
33
, the electron beam from the holes
23
is accelerated toward the fluorescent layer
33
.
FIG. 2A
is a view showing the magnetic field passing through the holes
23
and the trajectory of the electrons caused by the magnetic field, and
FIG. 2B
is a schematic view showing the electric field passing through the holes
23
and the trajectory of the electrons caused by the electric field. At this time, only the magnetic field by the magnet around the single hole is represented for the simplified description. As shown in
FIG. 2B
, the electrostatic potential Va is applied between the first and second surface of the magnetic plate
20
by the voltage difference between the grid electrodes
28
and the first and second anodes
25
a,
25
b,
and the electrostatic potential Vd is applied between the first and second anodes
25
a,
25
b
arranged in both side of the upper portion of the hole
23
.
The electrons emitted from the cathode
13
have the relative low velocity near the first surface of the magnetic plate
20
. That is, the electrons in this region form the electron cloud-state having the random travelling direction. As the electrons are attracted by the electrostatic potential Va, the velocity of the electrons in the vertical direction is increased. If the electrons are moving in the same direction of the magnetic field, since there is no lateral force on the electrons, the electrons are traveled along the electric field. Since the electrons generally travel in the different direction from the direction of the magnetic field, however, the electrons are acted by the force in the different direction from that of the electric field.
The electrons moving in the magnetic field are acted by the magnetic field perpendicular to the direction of the velocity of the electrons and the direction of the electric field (Fleming's right handed law). Therefore, the electrons are moving in circular motion in the uniform magnetic field. However, these electrons are helically moving because of the acceleration of the electrons caused by the electric field. The radius of the helix is dependent upon the intensity of the magnetic field and the velocity of the electrons, so that the period of the helix may be controlled with the velocity of the electrons. When the surface of the magnetic plate
20
is referred to ‘x-y plane’, the radius r of the helix is mv/qB in the x-y plane (where, m is mass of the electron, v is velocity of the electron, and q is amount of the electric charge). Comparing with the intensity of the magnetic field in the center of the holes
23
, the intensity of the magnetic field near the second surface of the magnetic plate
20
is decreased in half and the radius thereof is becomes double. Further, the radius of the helix is continuously increased in accordance with the travelling of the electrons into the fluorescent layer
33
from the holes
23
. Although the electron beam is diverged by the rapid decrease of the magnetic field, the diverging effect may be decreased by the acceleration of the electrons by the third anode.
FIG. 2A
indicates the magnetic field
60
passing through the holes
23
by only the magnet of the magnetic plate
20
around the holes
23
, but the practical magnetic field
60
is also caused by the other portion of the magnet of the magnetic plate
20
. Referring to
FIG. 3
, the magnetic field
60
passing through the holes
23
is also generated by the magnet of the magnetic plate
20
apart from the holes
23
at least one pitch. At that time, the magnetic field caused by the magnetic plate around the holes
23
is most significant, but the magnetic field by other portion is also important.
FIG. 4
is a graph showing the intensity of the magnetic field in the magnetic plate including thirty holes having 0.2 mm of the hole diameter and 0.6 mm of the hole pitch. In the figure, x-axis is the length of the magnetic plate
20
and the y-axis is the intensity of the magnetic field. The periphery of the magnetic plate
20
corresponds to x=0. As shown in
FIG. 4
, the uniform magnetic field of 900 G is applied at the inside of the magnetic plate
20
. At the inside of the holes
23
, the intensity of the magnetic field in the central portion of the magnetic plate
20
is different from intensity in the peripheral portion. In other word, the magnetic field passing through the fifth hole
23
from the periphery of the magnetic plate
20
is approximately 2600 G, while the field in the central portion thereof is approximately 2800 G. This field is gradually decreased as approaches the peripheral portion. The field passing through the holes
23
of the central portion is caused by the magnet around the holes
23
and the magnet within the certain area from the holes
23
. However, the magnet area generating the field passing through the holes
23
is decreased in the peripheral portion of the magnetic plate
20
, thus the intensity of the magnetic field is also decreased. As shown
FIG. 4
, the magnet area affecting the field at the inside of the holes
23
is approximately five times of the pitch of the holes
23
.
The difference of the magnetic intensities in the central and peripheral portion causes the deterioration of the image quality when the magnetic plate
20
is used in the flat panel display device. The electrons emitted from the cathode
13
are gathered near entrance of the holes
23
as the voltage is applied to the grid electrodes
28
, but the electrons are flowing into the holes
23
by the magnetic field passing through the holes
23
. Thus, the variation of the magnetic field causes the amount of the electrons flowing into the holes
23
, which means the variation of electron density impacting to the fluorescent layer
33
. In the display device, the brightness is dependent upon the density of the electron impacting the fluorescent layer
33
. Therefore, the difference of the magnetic field in the central and peripheral portions of the magnetic plate
20
causes the variation of the brightness on the screen.
FIG. 5
is a view showing the magnetic plate according to the first embodiment of the present invention. As shown in figure, the magnetic plate
20
comprises a first region
70
including a plurality of holes
23
and a second region
71
in the outer peripheral portion the first region
70
. The holes
23
are arranged in the matrix of n×m in the first region. The holes
23
are not formed in the second region
71
. The holes
23
may be formed in the rectangular shape, preferred in the circular shape. Further, it is possible to form the holes
23
in any shape to focus the electron. The image is displayed in the first region
70
. The number of the holes
23
is identical with that of the pixel. Corresponding to the number of the holes
23
in the first region
70
of the magnetic plate
20
, that is, there are pixels of n×m on the screen. The diameter of the holes
23
is ‘a’ and pitch is ‘b’. The second region
71
formed in the predetermined width applies the magnetic field to the holes
23
in the peripheral portion of the first region
70
to supply the uniform magnetic field to the holes
23
all over the first region
70
.
FIG. 6
is a graph indicating the magnetic field of the magnetic plate shown in FIG.
5
. At that time, the diameter a of the holes
23
is 0.2 mm, the pitch b is 0.6 mm, and the width c of the second region is
2
b,
i.e., 1.2 mm. In this figure, zero of the x-axis is the boundary line between the firs and second regions
70
,
71
, the left part thereof indicate the first region
70
and right part the second region
71
. Comparing the graphs of
FIGS. 6 and 4
, the uniform magnetic field is applied to the total holes
23
in the first region
70
, corresponding to the representation area of the screen, by the magnets of the first and second regions
70
,
71
in
FIG. 6
, while the magnetic fields of different intensities are respectively applied to the holes
23
in the central and peripheral portions (fifth holes from the boundary of the representation area) of the first region
70
in FIG.
4
. Thus, the uniform amount of electrons is flowing into the holes
23
, so that the brightness of the image on the screen becomes uniform.
Referring back to
FIG. 5A
, the grid electrodes
28
arranged in matrix are formed in the first region
70
on the first surface of the magnetic plate
20
facing the cathode
13
. The grid electrodes
28
include a plurality of first and second grid electrodes
28
a,
28
b
which correspond to the n+1 rows and m+1 columns of the matrix. The first and second grid electrodes
28
a,
28
b
can be formed on the cathode
13
. In other word, the first and second grid electrodes
28
a,
28
b
can be formed at any position between the cathode
13
and the magnetic plate
20
. Further, the first and second grid electrodes
28
a,
28
b
can be extended to the second region
71
. Each hole
23
is position at the intersection of the first and second grid electrodes
28
a,
28
b.
On the second surface of the magnetic plate
20
, as shown in
FIG. 5B
, a plurality of first and second anodes
25
a,
25
b
are arranged along the both side of the columns of the holes
23
. Generally, the voltage applied to the cathode
13
is 0V and the voltage applied to the first and second anodes is 100V. By the difference of the voltage applied to the cathodes
13
and the anodes
25
a,
25
b,
the electrons flowing into the holes
23
are accelerated. Further, the electrons are refracted by the difference of the voltage applied to the first anodes
25
a
and the second anodes
25
b
to achieve R, G, and B of the pixel of the fluorescent layer
33
.
There are four possible state for anodes
25
a,
25
b
causing the electron refraction. This possible state will be described in detail accompanying
FIG. 2B
as follow.
When the first and second anodes
25
a,
25
b
are turned off, there is no acceleration voltage Va between the cathode
13
and the anodes
25
a,
25
b,
so that the electrons is not flowing into the holes. As a result, the magnetic plate
20
cannot be used in the display device.
When the first and second anodes
25
a,
25
b
are turned on, the symmetric acceleration voltage Va is applied to the electron beam. By the acceleration voltage Va, the electron beam is accelerated and travelling straight. Therefore, the electron beam from the holes
23
is impacted at the G element of the pixel.
If the first anode
25
a
is turned on and the second anode
25
b
is turned off, there is asymmetric acceleration voltage Va. Thus, the electrons are accelerated at the inside of the holes
23
and attracted to the first anode
25
a,
then impacted to the R element of the pixel.
When the first anode
25
a
is turned off and the second anode
25
b
is turned on, the electrons are accelerated and attracted to the second anode
25
b.
As a result, the electron beam is impacted to the B element of the pixel.
The first substrate
10
, the magnetic plate
20
and the second substrate
30
are spaced in uniform distance each other by a transparent or opaque spacer(not shown in figure). In this invention, the spacer is positioned in the second region
71
of the magnetic plate
20
.
If the spacer is positioned in the first region
70
of the magnetic plate
20
, the representation area, the image quality is deteriorated because the spacer in the first region
70
blocks the electron beam impacted to the pixel corresponding to the spacer. To overcome this problem, the spacer is positioned only in the second region
71
of the magnetic plate
20
in this invention.
Further, the anodes
25
a,
25
b
may be extended to the second region
71
.
FIG. 7
is view showing the magnetic plate of the flat panel display according to the second embodiment of the present invention. As shown in
FIG. 7
, the difference from the first embodiment is merely the holes
23
in the second region
71
of the magnetic plate
20
. Thus, only the first surface of the magnetic plate
20
will be described to explain the second embodiment of the present invention. In
FIG. 7
, the magnet of the second region
71
having width d applies the magnetic field passing through the fifth holes
23
from the boundary between the first and second regions
70
,
71
. Thus, the uniform magnetic field is applied to the holes
23
all over the first region
70
. The width d of the second region
71
of the second embodiment is larger than width c of the second region of the first embodiment (i.e., d>c). This is caused by the holes
23
in the second region
71
of the magnetic plate
20
. Since the second region
71
of the second embodiment does not include the magnet corresponding to the holes
23
, the area of the second region
71
of the second embodiment should be larger than that of the first embodiment to apply the uniform magnetic field into the holes
23
all over the first region
70
.
By larger area of the second region
71
, the magnetic plate
20
is securely mounted on the flat panel display device. Since the spacer has the certain width, a part of the spacer is overlapped in the first region
70
, the representation area, if the width of the first region
70
is too narrow. Thus, the portion in which the image does not displayed is generated. If the narrower spacer is used in the flat panel display device to overcome this problem, it is impossible to mount securely the magnetic plate
20
, the first substrate
10
, and the second substrate
30
. In the second embodiment, thus, the magnetic plate
20
, the first substrate
10
, and the second substrate
30
can be mounted securely as a flat panel display device by forming the holes
23
in the second region
71
, as described above.
As shown in
FIG. 7
, the holes
23
in the second region
71
are arranged in the same shape and pitch as the first region
70
. However, these holes
23
may be arranged in the different shape and the irregular pitch. That is, the holes
23
in the second region
71
of the second embodiment does not limited to the particular shape and pitch.
FIG. 8
is a sectional view showing the flat panel display device in which the magnetic plate is used. As shown in figure, the first substrate
10
, the magnetic plate
20
, and the second substrate
30
arranged in uniform distance are sealed and then evacuated. The cathode
13
is mounted over the first substrate
10
, and the fluorescent layer
33
having R, G, and B elements to be repeated and the third anode
37
are positioned over the second substrate
30
. The width of the second region
71
of the magnetic plate
20
is c. In
FIG. 8
, the width of the spacer
42
is also c. At this time, the width of the spacer
42
can be determined narrower than that of the second region
71
.
As described above, since the magnetic plate of the present invention comprises the first region representing the image and the second region having predetermined width, the uniform magnetic field can be applied into the holes all over the first region. Further, the distance between the first and second substrates is maintained uniformly by the spacer in the second region having predetermined width, so that the secure flat panel display device may be fabricated. Since the larger area of the second region can be formed by the holes therein, in addition, the flat panel display device is fabricated more securely.
While the invention has been described in its preferred embodiments, this should not be construed as limitation on the scope of the present invention. Accordingly, the scope of the present invention should be determined not by the embodiments illustrated, but by the appended claims and their legal equivalents.
Claims
- 1. A flat panel display device comprising:a cathode for emitting electrons: a magnetic plate having a first region and a second region, the first region having a plurality of holes for focusing electrons to be inputted from the cathode to form an electron beam by the magnetic field therein, the second region being formed from a peripheral portion of the magnetic plate, the second region including means for applying the magnetic field to the holes at the peripheral portion of the first region so as to supply a uniform magnetic field to the holes all over the first region; a plurality of grid electrodes for controlling the electrons flowing into the inside of the holes, the grid electrodes being formed between the cathode and the magnetic plate; a screen having a fluorescent layer over a surface thereof facing the magnetic plate, the screen being impacted with the electron beam outputted from the magnetic plate to display an image, the screen having a plurality of pixels; a plurality anodes for accelerating the electrons flowing into the holes, the anode being disposed between the magnetic plate and the screen; and a control signal supplying means for supplying a control signal to the grid electrodes and the anodes to control selectively the stream of electrons impacted on the screen through the holes, wherein the number of the holes of the first region is same as the number of the pixels of the screen.
- 2. The device according to claim 1, wherein the holes are formed in the circular shape.
- 3. The device according to claim 1, wherein the holes are formed in the rectangular shape.
- 4. The device according to claim 1, wherein the grid electrodes are formed in the first region on the surface of the magnetic plate facing the cathode.
- 5. The device according to claim 4, wherein the grid electrodes are extended to the second region.
- 6. The device according to claim 1, wherein the grid electrodes are formed on the surface of the cathode facing the magnetic plate.
- 7. The device according to claim 1, wherein the holes are arranged in a plurality of rows and columns.
- 8. The device according to claim 7, wherein the holes are arranged in uniform pitch.
- 9. The device according to claim 7, wherein the grid electrodes are formed in matrix and the holes are positioned at the intersection thereof.
- 10. The device according to claim 1, further comprising a plurality of holes formed in the second region.
- 11. The device according to claim 10, wherein the shape and the pitch of the holes in the second region are substantially identical to those of the holes in the first region.
- 12. The device according to claim 1, wherein the anodes are formed in the first region on the surface of the magnetic plate not facing the cathode.
- 13. The device according to claim 12, wherein the anodes include a plurality of first anodes and second anodes arranged parallel to each other along both sides of the columns of the holes.
- 14. The device according to claim 13, wherein the first and second anodes are respectively connected to the neighboring first and second anodes.
- 15. The device according to claim 12, wherein the anodes are extended to the second region of the magnetic plate.
- 16. The device according to claim 15, wherein the anodes include a plurality of first anodes and second anodes arranged parallel to each other along both sides of the columns of the holes.
- 17. The device according to claim 16, wherein the first and second anodes are respectively connected to the neighboring first and second anodes.
- 18. The device according to claim 1, wherein the fluorescent layer includes a plurality of red, green, and blue elements to be repeated.
- 19. The device according to claim 1, further comprising refracting means for supplying a refracting signal to the anodes to impact the electrons from the holes into the elements of the fluorescent layer so as to generate the image of the screen.
- 20. The device according to claim 1, further comprising a third anode for accelerating the electrons outputted from the magnetic plate, the third anode being formed over the fluorescent layer.
- 21. The device according claim 1, further comprising at least one spacer between the cathode and the magnet plate, and the magnetic plate and the screen forming the substantial vacuum-state space between thereof.
- 22. The device according to claim 21, wherein the spacer is positioned over at least a part of the second region.
- 23. The device according to claim 1, wherein the second region does not include holes.
- 24. The device according to claim 1, wherein the plurality of holes are spaced apart according to a prescribed pitch, and wherein the second region has a width that is twice the pitch of the holes.
- 25. The device according to claim 1, wherein the holes are circular and the second region has a width that is six times the diameter of a hole.
Priority Claims (1)
Number |
Date |
Country |
Kind |
98-21714 |
Jun 1998 |
KR |
|
US Referenced Citations (5)
Number |
Name |
Date |
Kind |
5889363 |
Beeteson et al. |
Mar 1999 |
A |
6002204 |
Beeteson et al. |
Dec 1999 |
A |
6181059 |
Beeteson |
Jan 2001 |
B1 |
6208091 |
Beeteson et al. |
Mar 2001 |
B1 |
6246165 |
Beeteson |
Jun 2001 |
B1 |
Foreign Referenced Citations (6)
Number |
Date |
Country |
2 304 981 |
Mar 1997 |
GB |
2 304 983 |
Mar 1997 |
GB |
2 304 984 |
Mar 1997 |
GB |
2 304 985 |
Mar 1997 |
GB |
2 304 986 |
Mar 1997 |
GB |
2 304 987 |
Mar 1997 |
GB |