Flat panel display, method of high vacuum sealing

Information

  • Patent Grant
  • 6831404
  • Patent Number
    6,831,404
  • Date Filed
    Monday, January 27, 2003
    21 years ago
  • Date Issued
    Tuesday, December 14, 2004
    19 years ago
Abstract
An evacuated cavity is hermetically sealed between a baseplate and faceplate of a flat panel display. Melting a glass powder, or frit, on the perimeter of the viewing area forms the hermetic seal. After melting the frit, a first fluid is circulated through the cavity to speed cooling. To further expedite the cooling of the flat panel display, a second fluid flows externally along the contour of the flat panel display to insure that the cooling is uniform and thereby avoid thermal shock.
Description




FIELD OF THE INVENTION




This invention relates generally to sealing flat panel displays, and more particularly, to cooling flat panel displays during a thermal sealing process.




BACKGROUND OF THE INVENTION




Cathode ray tube (CRT) displays are commonly used in display devices such as televisions and desktop computer screens. CRT displays operate as a result of a scanning electron beam from an electron gun striking phosphors resident on a distant screen, which in turn increase the energy level of the phosphors. When the phosphors return to their original energy level, they release photons that are transmitted through the display screen (normally glass), forming a visual image to a person looking at the screen. A colored CRT display utilizes an array of display pixels, where each individual display pixel includes a trio of color-generating phosphors. For example, each pixel is split into three colored parts, which alone or in combination create colors when activated. Exciting the appropriate colored phosphors thus create the color images.




On the other hand, flat panel displays are becoming more popular in today's market. These displays are being used more frequently, particularly to display the information of computer systems and other devices. Typically, flat panel displays are lighter and utilize less power than conventional CRT display devices.




There are different types of flat panel displays. One type of flat panel display is known as a field emission display (FED). FEDs are similar to CRT displays in that they use electrons to illuminate a cathodoluminescent screen. The electron gun is replaced with numerous (at least one per display pixel) emitter sites. When activated by a high voltage, the emitter sites release electrons, which strike the display screen's phosphor coating. As in CRT displays, the phosphor releases photons which are transmitted through the display screen (normally glass), displaying a visual image to a person looking at the screen. Each pixel can be formed by a trio of color-generating phosphors, each associated with a separate emitter.




In order to obtain proper operation of the flat panel display, it is important for an FED to maintain an evacuated cavity between the emitter sites (acting as a cathode) and the display screen (acting as a corresponding anode). The typical FED is evacuated to a reduced atmospheric pressure of about 10


−6


Torr or less to allow electron emission. In addition, since there is a high voltage differential between the screen and the emitter sites, the reduced pressure is also required to prevent particles from shorting across the electrodes.




Generally, the assembly of a flat panel display comprises a baseplate and a faceplate that are physically bonded together in forming a hermetic seal. For example, a glass powder, or frit, is placed in a continuous pattern along the outside perimeter of the display viewing area and melted at elevated temperatures to provide the desired hermetic seal. Typically, the cavity between the baseplate and faceplate is evacuated through an opening while a thermal cycle melts the frit. Once the display is sealed, it is generally important to uniformly cool the display assembly to minimize any thermal stress or shock that may result from immediate exposure to ambient temperature.




To achieve uniform cooling of the display, however, using conventional methods such as conductive cooling takes long periods of time that can not be afforded in a manufacturing environment. Accordingly, there exists a need for a more rapid cooling process during high vacuum sealing of a flat panel display assembly.




SUMMARY OF THE INVENTION




These and other needs are satisfied by several aspects of the present invention.




In accordance with one aspect of the invention, a method is provided for high vacuum sealing a flat panel display. The method includes lining the edges of a first component plate with a bonding material. A second component plate is positioned over the first component plate. The bonding material is thus sandwiched between the component plates, defining a cavity between the plates. The bonding material between the component plates is heated, followed by channeling a cooling fluid through the cavity. The cooling fluid has a lower temperature than the component plates. The cavity is thereafter evacuated.




In accordance with another aspect of the present invention, a method for manufacturing a flat panel display. The method includes forming a flat panel display assembly with an internal cavity. The assembly is thermally processed in a processing chamber. After thermal processing, a first fluid flows through the cavity, cooling inner surfaces of the assembly by convection. Simultaneously, a second fluid flows within the processing chamber, cooling outer surfaces of the assembly by convection. The cavity can then be sealed.




In accordance with another aspect of the invention, a method is provided for cooling a flat panel display assembly that includes at least two component plates. Cooling is conducted after melting a frit to bond the plates together and define a cavity between the plates. The cooling method includes simultaneously supplying heated gas to inside and outside surfaces of the flat panel display assembly while gradually cooling the gas.




In accordance with another aspect of the present invention, a vacuum-sealed flat panel display is provided. The display includes a middle plate spaced between an upper plate and a lower plate. An upper cavity is thus defined above the middle plate, while a lower cavity is defined below the middle plate. In addition, a divider block extends between the middle plate and the rear plate. The block divides the lower cavity into two compartments, each of the which communicate with the upper cavity through at least one opening in the middle plate.











BRIEF DESCRIPTION OF THE DRAWINGS




These and further aspects of the invention will be readily apparent to those skilled in the art from the following description and the attached drawings, which are meant to illustrate and not to limit the invention, and wherein:





FIG. 1

is a flow chart illustrating a method for high vacuum sealing a flat panel display in accordance with preferred embodiments of the present invention;





FIG. 2A

is a schematic cross-section of an unassembled flat panel display, constructed in accordance with a first embodiment of the present invention, including a faceplate and a baseplate;





FIG. 2B

illustrates a partially assembled flat panel display, with a bond material sandwiched between the baseplate and faceplate of

FIG. 2A

;





FIG. 3

illustrates the flat panel display of

FIG. 2B

while cooling inside a furnace chamber;





FIG. 4

illustrates the flat panel display of

FIG. 3

following vacuum sealing;





FIG. 5

is a schematic cross-section of an assembled flat panel display, constructed in accordance with a second embodiment of the present invention, including a backplate, baseplate and a faceplate with bonding material between the plates;





FIG. 6

illustrates the flat panel display of

FIG. 5

while cooling inside a furnace chamber; and





FIG. 7

illustrates the flat panel display of

FIG. 6

following vacuum sealing.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT




It will be appreciated that, although the preferred embodiments are described with respect to FED devices, the methods taught herein are applicable to other flat panel display devices, such as liquid crystal displays (LCDs), organic light emitting devices (OLEDs), plasma displays, vacuum fluorescent displays (VFDs) and electroluminescent displays (ELDs). The skilled artisan will also readily appreciate that the materials and methods disclosed herein will have application in a number of other contexts where units are assembled and sealed at elevated temperatures.





FIG. 1

is a flow chart exhibiting a preferred process for high vacuum sealing a flat panel display. As shown, the process begins with drilling


202


at least two holes or openings through a baseplate. The drilled holes preferably include holes proximate opposite edges of the baseplate, more preferably proximate diagonally opposite corners. In other arrangements it will be understood that holes can also be formed in the faceplate or a side surface of the display to be assembled.




Following the drilling


202


of holes, a bond material is applied


204


in a pattern that will form a seal between the plates when assembled. The bond material, comprising a frit (glass powder) in the illustrated embodiments, is patterned around the edges of the faceplate, for example, by mixing the frit into a paste and then dispensing or screen printing the frit. In the preferred embodiment, the frit is preferably mixed into a paste and dispensed around the perimeter edges of the faceplate and/or backplate (see embodiment below), thus avoiding oxidation of the cathode on the baseplate while the frit is fired in air before assembly. The skilled artisan will readily appreciate that the bonding material can alternatively be applied to the baseplate (if oxidation of the cathode can be prevented) or to sidewalls on flanges extending from one of the baseplate and faceplate.




Subsequently, the flat panel display is assembled


206


by aligning the faceplate over the baseplate to sandwich the bonding material between the faceplate and baseplate. The skilled artisan will appreciate that spacers maintain a uniform distance between the plates. As a result, a cavity is formed between the faceplate and the baseplate, which will allow the flat panel display to function.




Following the assembly


206


of the flat panel display, a tube is affixed


207


to each of the drilled holes of the baseplate. The tubes can be affixed by using the same or similar frit that was used between the faceplate and baseplate. With the tubes affixed, the drilled holes can serve as input and output ports.




The flat panel display assembly is placed


208


in a chamber, preferably a furnace chamber. The furnace chamber preferably comprises a first input opening and a first output opening to function as a chamber fluid dispenser and chamber fluid exhaust, respectively.




The furnace chamber also preferably comprises a second input opening and second output opening. Preferably, the input and output ports of the flat panel display assembly are connected to communicate with the second input opening and the second output opening of the furnace chamber, thus forming input and output tubulation ports.




After placing


208


and aligning the flat panel display assembly within the preferred furnace chamber, a vacuum is preferably applied to evacuate


210


the furnace chamber and the cavity between the faceplate and baseplate. The furnace chamber can be evacuated by any suitable means, such as conventional vacuum pumping. In this case the inside cavity of the flat panel display is preferably also evacuated, preferably by similar vacuum pumping means through the tubulation ports.




In other arrangements, a reducing atmosphere (e.g., H


2


, CO, etc.) can be maintained within the flat panel display and/or in the furnace, minimizing the risk of oxidizing devices during subsequent thermal processing.




After the furnace chamber and the flat panel display cavity are adequately evacuated


210


or filled with a reducing gas, the temperature within the furnace chamber is elevated high enough to melt


211


the frit sandwiched between the faceplate and the baseplate. The melted frit seals the inside flat panel display cavity from the outside environment. The skilled artisan will readily appreciate that other bonding processes may also require thermal or other energy input.




Once the frit is melted


211


and the flat panel display assembly is sealed off, a cooling fluid is circulated


212


within the cavity, preferably by pumping fluid into the input tubulation port(s) through the cavity and out the output tubulation port(s). Preferably, the ports are arranged to achieve uniform convective cooling within the flat panel display assembly. The fluid, preferably a gas, also preferably comprises a non-oxidizing agent such as nitrogen, argon, etc., to protect the internal components of the flat panel display from oxidation. At the same time, to facilitate uniform cooling across the flat panel display assembly, cooling gas is also preferably circulated within the furnace chamber to provide controlled, convective cooling to the outside of the assembly.




In the final hermetically sealed condition, the components of the flat panel display are subjected to a substantial amount of stress due to the pressure differential between the inside and the outside of the assembly. Accordingly, a similar pressure differential between the inside and outside of the flat panel display during the thermal cycle is most preferably applied. The pressure differential can be applied by evacuating the display after the frit has sealed the package and the temperature has somewhat reduced, such that the frit is solidified. Alternatively, the furnace can be pressurized during the thermal cycle prior to final evacuation of the display. This allows the components of the flat panel display to be subjected to stresses similar or equal to those that the assembly will be subjected to in the final sealed condition. In other words, this configuration allows for the flat panel display to be pre-stressed or conditioned during the sealing process.




Following the cooling


212


of the flat panel display, the inside cavity is preferably evacuated


214


by vacuum pumping through the tubulation ports of the flat panel display. The input and output ports of the flat panel display are pinched off


215


to seal the inside cavity from the outside environment. Pinch-off heaters elevate the temperature of the evacuated input and output ports enough to collapse the ports and seal the openings. The vacuum-sealed flat panel display can then be removed


216


from the furnace chamber.




The sealing process of the preferred embodiments will now be described in more detail with reference to

FIGS. 2-7

.




With reference initially to

FIG. 2A

, components of an unassembled flat panel display are shown. The main components of a flat panel display include a frontal support element or faceplate


10


and a rear support element or baseplate


20


, both which are preferably manufactured of a glass compound. In the illustrated FED embodiment, the baseplate


20


comprises cathode emitter tips while the faceplate includes an anode element and photo-luminescent coating, such as phosphors.




At least two holes


12




a


and


12




b


are formed through the baseplate


20


. Tubes


16




a


and


16




b


are affixed therebelow by any suitable means, forming input and output ports to the interior of the assembly. While illustrated schematically with two holes


12




a


,


12




b


, the skilled artisan will appreciate that multiple holes can be peripherally positioned to obtain uniform flow from inlet ports to outlet ports across the inner surfaces of the flat panel display. Most preferably, two holes are positioned proximate diagonally opposite corners.




Additionally, a bond material is preferably placed on the perimeter edges of the faceplate


10


. The preferred bond material is a frit


5


, comprising glass powder and other additives that, when mixed into a paste, is advantageously used to make a thermally compatible vacuum tight seal between two glass compounds. The frit


5


can be applied using conventional methods.




After firing the frit


5


, the components of

FIG. 2A

are then assembled together to form the flat panel display assembly


30


, as shown in FIG.


2


B. Spacers and alignment markers (not shown) aid in the assembly to produce a uniform space or cavity


18


between the plates. The frit


5


is sandwiched between the faceplate


10


and the baseplate


20


, forming a cavity


18


therebetween.




Prior to or subsequent to the assembly of the flat panel display


30


, it is placed inside a chamber, preferably a furnace chamber


40


. With reference to

FIG. 3

, the furnace chamber


40


comprises at least one inlet


42


and at least one outlet


45


for fluid flow and/or evacuation of the chamber during the sealing process. The illustrated furnace chamber


40


further comprises a second input opening


47


and a second output opening


49


. The flat panel display


30


is aligned within the furnace chamber


40


so that the tubes


16




a


,


16




b


communicate with the second input opening


47


and second output opening


49


, respectively, thus forming an input tubulation port


61


and output tubulation port


62


.




For some flat panel display technologies, it is advantageous for thermal processes (for example, to melt the frit as described below) to be conducted in a reducing atmosphere or vacuum to protect the components of the display from oxidation. In the preferred embodiment, once the flat panel display


30


is assembled and aligned within the furnace chamber


40


, both the chamber


40


and the cavity


18


are preferably evacuated by any suitable means. Using conventional vacuum pumping, the pressure range within the chamber


40


and the cavity


18


is pumped down to preferably between about 10


−9


Torr and 10


−5


Torr, more preferably between about 10


−8


Torr and 10


−6


Torr. During the pump-down (preferably over 2-3 hours) the chamber


40


temperature is preferably elevated to between about 300° C. and 350° C., more preferably between 320° C. and 330° C. to bake-out any moisture contained within the display package


30


. In other arrangements, the cavity


18


can be filled with reducing agents (e.g., H


2


, CO, etc.) rather than being evacuated.




After both the chamber


40


and cavity


18


are adequately evacuated or filled with reducing gas, the temperature within the furnace chamber


40


is raised to a high enough temperature to melt the frit


5


sandwiched between the faceplate


10


and baseplate


20


. By melting the frit


5


, the faceplate


10


and the baseplate


20


are effectively bonded to one another, sealing the cavity


18


from the chamber


40


. To melt the frit, the temperature within the furnace chamber


40


is preferably elevated to between about 300° C. and 550° C., more preferably between about 400° C. and 500° C. for a preferred duration of between about 15 minutes and 30 minutes, more preferably between about 20 minutes and 25 minutes.




Depending of the design of the flat panel display assembly, an external force can also be applied to the outside of the package assembly during the melting process to maintain alignment of the assembly and to help the frit


5


flow. The external force may be applied utilizing fixed clamps, springs clamps, weights, etc.




Subsequent to thermal sealing of the flat panel display assembly


30


, it is generally advantageous to cool the flat panel display assembly


30


to minimize thermal shock resulting from ambient exposure. At the same time, in a manufacturing environment, it is generally desirable to expedite the cooling of the flat panel display assembly


30


to improve production throughput.




Accordingly, an internal cooling fluid


65


is pumped into the input tubulation port


61


and out through the output tubulation port


62


to convectively cool the inside of the flat panel display


30


. The cooling fluid also preferably comprises a non-oxidizing agent such as nitrogen or argon, or a reducing agent such as H


2


or CO, protecting the internal components of the display from oxidation during the process. Preferably, the cooling fluid is initially heated to a temperature below that of the thermal process by between about 5° C. and 10° C., more preferably between about 10° C. and 20° C. The initial flow of gas is heated to minimize any thermal shock induced by the temperature difference between the flat panel display


30


and the cooling fluid. Band heaters (not shown) or any suitable means as is well known in the art can conduct heating of the cooling fluid.




The cooling fluid


65


, comprising argon gas in the illustrated embodiment, is pumped initially at a rate preferably between about 25 sccm and 500 sccm, more preferably between 50 sccm and 100 sccm, at a preferably temperature range between about 300° C. and 500° C., more preferable between about 400° C. and 500° C. Thereafter, the temperature of the cooling gas


65


is decreased at a preferable rate to optimize convective cooling of the flat panel display


30


. Preferably, the temperature of the cooling gas


65


is decreased at a rate of between about 5° C./min and 30° C./min, more preferably between about 10° C./min and 20° C./min. Also, to further optimize convective cooling of the flat panel display


30


, it may be advantageous to increase the flow rate of the cooling gas


65


as its temperature is being decreased. In the preferred embodiment, the flow rate of the cooling gas


65


is increased preferably increased to between about 100 sccm and 1000 sccm, more preferably between about 250 sccm and 750 sccm. As an example, the flow rate of cooling gas


65


can be increased by between about 10 sccm/min to 20 sccm/min. The skilled artisan will readily appreciate that minimizing thermal shock can be achieved by either or both of controlling the cooling gas temperature and controlling the cooling gas flow rate.




To insure that the cooling of the flat panel display


30


is uniform, it is advantageous to pump an external cooling gas


67


into the furnace chamber


40


to provide controlled, convective cooling to outside surfaces of the flat panel display


30


. A preferably inert or non-oxidizing gas, comprising argon in the illustrated embodiment, is pumped into the chamber fluid dispenser


42


at a rate preferably between about 25 sccm and 500 sccm, more preferably between about 50 sccm and 100 sccm. Also, the flow of the external gas


67


is preferably increased at a rate of between about 10 sccm/min and 20 sccm/min. Like the internal cooling gas


65


, the temperature of the external cooling gas


67


is constantly kept lower than the temperature of the cooling assembly


30


. Moreover, the external cooling gas


67


temperature is preferably the substantially same temperature as the internal cooling gas


65


, such that the substrates or plates are uniformly cooled from inside and out and thermal stress cracking is avoided during the aided cool down. Insubstantial differences in actual gas temperature between the internal cooling gas


65


and the external cooling gas


67


may result, for example, by differences in pathlengths from a common heat source to the inner and outer surface of the assembly


30


, respectively.




As a result of exposure to cooling fluids


65


,


67


, the temperature of the flat panel display


30


is desirably brought down to between about 30° C. and 100° C., more preferably between about 30° C. and 50° C., after between about 2 and 3 hours.




Subsequent to the cooling of the flat panel display


30


, the cavity


18


is evacuated through the tubulation ports


61


and


62


. Uniform evacuation can be aided by switching both ports to the vacuum source by means of conventional switch valves. Alternatively, a reducing agent (not shown) such as hydrogen (H


2


), carbon monoxide (CO), etc., may be subsequently back-filled into the cavity


18


, particularly where inert cooling gas was employed prior to evacuation. Introducing H


2


, for example, before a final evacuation of the cavity


18


may be advantageous for the emitter tips (not shown) of the flat panel display


30


.




With reference to

FIG. 4

, once the cavity


18


is evacuated of the cooling gas


65


and any reducing agent, the input and output ports


16




a


,


16




b


are pinched off or sealed to effectively seal the inside cavity


18


from the surrounding environment. Pinch-off heaters, or other sealing mechanisms as are well known in the art, are utilized to seal the input and output ports


16




a


and


16




b


. The pinch-off heaters, for example, elevate the temperature of the evacuated tube ports


16




a


and


16




b


high enough to collapse them and form seals


15




a


and


15




b


at the corresponding drilled holes (


12




a


,


12




b


). Once cooled, evacuated and sealed, the flat panel display


30


is removed from the furnace chamber


40


.




In accordance with a second embodiment,

FIG. 5

illustrates components of an unassembled flat panel display


130


comprising a frontal support or faceplate


110


, middle support or baseplate


120


and a rear support or backplate


125


. This three-piece configuration differs from the two-piece (i.e., faceplate and baseplate) configuration of

FIGS. 2-4

in that the baseplate


120


is thinner than the faceplate


110


and an additional backplate


125


is provided.





FIG. 5

further illustrates similar bond material or frits


105




a


,


105




b


at the perimeter edges of both the backplate


125


and the faceplate


110


, which are fired in air prior to assembly. During this firing, the baseplate


120


is not present, avoiding oxidation of the cathode. When assembled, as is illustrated in

FIG. 5

, the baseplate


120


is sandwiched between the faceplate


110


and the backplate


125


with frits


105




a


,


105




b


on both top and bottom of the baseplate


120


. The sandwiching of the three pieces forms a divided cavity, comprising an upper cavity


118




a


and a lower cavity


118




b


, between the faceplate


110


and backplate


125


.




Holes


112




a


,


112




b


are drilled through the backplate


125


, with tubes affixed to form an input port


116




a


and an output port


116




b


. Additionally, a second set of at least two holes (


112




c


and


112




d


) are also drilled through the baseplate


120


, which will allow for fluid to be pumped through both sides of the baseplate


120


. The holes


112




a


,


112




b


through the backplate


125


are preferably centrally located, whereas the holes


112




c


,


112




d


in the baseplate


120


are preferably peripherally located, as will be better understood from the following discussion.




A divider


135


is most preferably mounted to the interior side of the backplate


125


or baseplate


120


(shown on the backplate


125


). This divider


135


preferably extends across one dimension of the assembly


130


. An additional frit


105




c


is placed on one side of the divider


135


such that, when assembled, it is sandwiched between the baseplate


120


and the divider


135


and divides the lower cavity


118




b


into two compartments.




With reference to

FIG. 6

, an assembled flat panel display


130


is positioned within a furnace chamber


140


, wherein the input and output ports


116




a


,


116




b


correspondingly communicate with the second input and output openings


147


,


149


of the furnace chamber


140


. As a result, input and output tubulation ports


161


,


162


are thus formed.




As mentioned above, for some flat panel display technologies, it is advantageous for thermal processes (for example, to melt the frit as described below) to be conducted in a reducing atmosphere or vacuum to protect the components of the display from oxidation. In the preferred embodiment, once the flat panel display


130


is mounted within the furnace chamber


140


, both the chamber


140


and the cavity


118




a


,


118




b


are accordingly evacuated by any suitable means. Using conventional vacuum pumping, the pressure range within the chamber


140


is preferably pumped down slowly to between about 10


−9


Torr and 10


−5


Torr, more preferably between about 10


−8


Torr and 10


−6


Torr. The cavity


118




a


,


118




b


is preferably pumped down to the same pressure ranges. Desirably, the chamber


140


temperature is elevated to between about 300° C. and 350° C., more preferably between 320° C. and 330° C., during pump-down over 2-3 hours to bake-out any moisture contained within the display package


130


.




Subsequently, the temperature within the furnace chamber


140


is raised to a high enough temperature to melt the frits


105




a


,


105




b


,


105




c


sandwiched above and below the baseplate


120


. By melting the frits


105




a


,


105




b


and


105




c


, the assembly components are effectively bonded to one another, sealing the cavity


118




a


,


118




b


from the chamber


140


. To melt the frits


105




a


,


105




b


and


105




c


, the temperature within the furnace chamber


140


is preferably elevated to between about 300° C. and 550° C., more preferably between about 400° C. and 500° C. for a preferred duration of between about 15 minutes and 30 minutes, more preferably between about 20 minutes and 25 minutes.




Subsequent to melting the frits


105




a


,


105




b


,


105




c


at elevated temperatures, it is generally advantageous to cool the flat panel display


130


in a manner that minimizes thermal shock induced from ambient exposure. However, in a manufacturing environment, it is also generally desirable to expedite the cooling of the flat panel display


130


to improve production throughput.




Accordingly, as shown in

FIG. 6

, cooling fluids


65


,


67


are provided to the interior and exterior of the assembly


130


to provide a uniform convective cooling to inside and outside surface of the flat panel display


130


. Preferred cooling gas compositions, temperatures and flow rates can be as described for the previous embodiment.




Within the assembly


130


, cooling fluid


65


circulates both above and below the baseplate


120


through both portions


118




a


,


118




b


of the cavity by means of the two drilled holes


112




c


,


112




d


. As briefly noted above, the relative positions of the holes


112




a


,


112




b


and holes


112




c


,


112




d


, with respect to each other and to the divider


135


, are selected to optimize uniform distribution of the cooling gas


65


in both portions


118




a


,


118




b


of the cavity. In particular, the lower holes


112




a


,


112




b


are preferably positioned proximate the divider


135


, whereas the central holes


112




c


,


112




d


are preferably located peripherally. Thus, at least one of the lower holes


112




a


,


112




b


communicates with each of the compartments on either side of the divider


135


. Similarly, at least one of the central holes


112




c


,


112




d


communicates with each of the compartments on either side of the divider


135


.




During the cooling process, once the frits have solidified enough to seal the inside of the display


130


from the outside, a pre-stressing pressure differential is established between the inside of the display


130


and the chamber


140


. The differential can be established by any combination of pressurizing and pumping down the display


130


and chamber


140


, but the differential should be equivalent to the final product pressure differential, e.g., about atmospheric in the chamber


140


and about 10


−6


Torr within the display


130


.




Referring to

FIG. 7

, subsequent to cooling the flat panel display


130


, the cavity


118




a


,


118




b


is again evacuated through the tubulation ports


161


,


162


. Uniform evacuation can be aided by switching both ports to the vacuum source by means of conventional switch valves. The input and output ports


116




a


,


116




b


are then pinched off or sealed to effectively seal the inside cavity


118




a


,


118




b


from the surrounding environment, as described above, forming seals


115




a


,


115




b


at the drilled holes


112




a


,


112




b


, respectively. Once cooled, evacuated and sealed, the flat panel display is removed from the furnace chamber


140


.




Several advantages are obtained by the preferred process. For example, circulating fluid to cool by convection more efficiently cools an assembly than by conventional conductive cooling. Fluid pathways formed within the flat panel display allow for an effective circulation of a cooling fluid during a high vacuum sealing process. Additionally, the illustrated arrangements facilitate application of a pressure differential between the inside and outside of a flat panel display, subjecting and conditioning the flat panel display to pressure differentials similar to those of the final sealed product. The same ports used to evacuate the inside of the flat panel display can be used to circulate a fluid to more quickly cool the flat panel displays.




Although this invention has been described in terms of a certain preferred embodiment and suggested possible modifications thereto, other embodiments and modifications may suggest themselves and be apparent to those of ordinary skill in the art are also within the spirit and scope of this invention. Accordingly, the scope of this invention is intended to be defined by the claims that follow.



Claims
  • 1. A vacuum-sealed flat panel display, comprising a middle plate spaced between an upper plate and a lower plate, defining an upper cavity above the middle plate and a lower cavity below the middle plate, and a divider block extending between the middle plate and the lower plate dividing the lower cavity into two compartments, each of the two compartments communicating with the upper cavity through at least one opening in the middle plate; and at least one sealed opening in the lower plate at each of the two compartments.
  • 2. The vacuum-sealed flat panel display of claim 1, wherein the sealed openings have seals comprising pinched-off tubes.
  • 3. The vacuum-sealed flat panel display of claim 1, wherein the sealed openings in the lower plate are located proximate the divider.
  • 4. The vacuum-sealed flat panel display of claim 3, wherein the openings in the middle plate are peripherally located.
  • 5. A flat panel display, comprising:an upper plate, an intermediate plate and a lower plate, wherein an upper cavity is defined between the upper plate and the intermediate plate, and a lower cavity is defined between the intermediate plate and the lower plate; a divider separating the lower cavity into at least two compartments; an inlet opening and an outlet opening in the lower plate on opposite sides of the divider; and a pair of openings in the intermediate plate, one of said openings in the intermediate plate provided between a first of the two compartments and the upper cavity, and the other of said openings in the intermediate plate provided between a second of the two compartments and the upper cavity.
  • 6. The flat panel display of claim 5, wherein the inlet opening and outlet opening in the lower plate are spaced closer to the divider than the pair of openings in the intermediate plate.
  • 7. The flat panel display of claim 5, wherein the inlet opening and the outlet opening are sealed.
  • 8. An intermediate product for use in manufacturing a flat panel display, the intermediate product comprising:a first component plate and a second component plate bonded together and defining a cavity between the plates; an inlet opening and an outlet opening in one of the component plates; a source of a cooling gas joined in fluid communication with said inlet opening; and an outlet tube joined in fluid communication with the outlet opening.
  • 9. The product of claim 8, wherein gas at said source is at a temperature of about 300 to about 500° C.
  • 10. The product of claim 8, further comprising a heater configured to heat said cooling gas to a temperature just below an operating temperature.
  • 11. The product of claim 8, further comprising a pump joined in fluid communication with the source, the inlet opening, the outlet opening and the outlet tube and configured to pump said cooling gas from said source through said openings and through said outlet tube.
  • 12. The product of claim 8, wherein tubes joined to the inlet opening and outlet opening are made of a sealable material.
  • 13. The product of claim 8, wherein the inlet and outlet openings are positioned proximate opposite edges of the same component plate.
  • 14. The product of claim 8, wherein the first component plate comprises a baseplate and the second component plate comprises a faceplate including phosphorescent material.
  • 15. The product of claim 8, wherein the first component plate and second component plate are bonded with a glass powder frit.
  • 16. The product of claim 8, wherein one of the component plates comprises a faceplate, and wherein the other component plate comprises a backplate, wherein the inlet and outlet openings are provided in the backplate; and further comprising a baseplate between the faceplate and the backplate.
  • 17. The product of claim 16, comprising openings in the backplate and the baseplate for channeling cooling fluid through cavities defined between the faceplate and the baseplate and between the baseplate and the backplate during manufacturing of said display.
CROSS REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. patent application Ser. No. 09/804,026, filed Mar. 12, 2001, now U.S. Pat. No. 6,554,672, the entirely of which is hereby incorporated by reference.

REFERENCE TO GOVERNMENT CONTRACT

This invention was made with United States Government support under Contract No. DABT63-93-C-0025 awarded by the Advanced Research Projects Agency (ARPA). The United States Government has certain rights in this invention.

US Referenced Citations (13)
Number Name Date Kind
4018490 Berkenblit et al. Apr 1977 A
5643033 Gnade et al. Jul 1997 A
5672083 Curtin et al. Sep 1997 A
5729086 Jeong et al. Mar 1998 A
5807154 Watkins Sep 1998 A
5844360 Jeong et al. Dec 1998 A
5869919 Sato et al. Feb 1999 A
5903096 Winsor May 1999 A
5985069 Kawabe et al. Nov 1999 A
5986409 Farnworth et al. Nov 1999 A
6006003 Kim Dec 1999 A
6236159 Inoue et al. May 2001 B1
6252349 Inoue et al. Jun 2001 B1
Foreign Referenced Citations (3)
Number Date Country
09304783 Nov 1997 JP
2002158475 May 2002 JP
WO 9917154 Apr 1999 WO
Non-Patent Literature Citations (5)
Entry
“SAES GETTERS-Evaporable Getters”, www.saesgetters.com/pr1.htm, Nov. 30, 1999.
“SAES GETTERS-Nonevaporable Getters (NEG)”, www.saesgetters.com/pr2.htm, Nov. 30, 1999.
“Frit Solder Glass Vehicle”, www.thompson-ato.com/frit.htm, Nov. 29, 1999.
“Glass Transfer Tapes”, www.vitta.com/gtapes.html, Nov. 29, 1999.
“The Challenge of Flat Panel Display Sealing”, Semiconductor International, p. 109, Jan. 1996.