The present disclosure generally relates to flat panel displays and more particularly, but not exclusively, to providing a modular flat panel display with a non-emitting edge having a length less than (e.g., ½) a length of a non-emitting space between pixels.
Multiple smaller liquid crystal displays (LCD) and organic light-emitting diode (PLED) displays can be combined to form a larger display, especially when desired total display size exceeds 100 inches. This modular approach to form a large display is less expensive and less complex than generating a single display due to the sheer size of a large display. However, this modular approach leads to dark seams between each smaller display, which are visible to a viewer.
A light emitting diode display comprises a first panel, which comprises: a first layer having a substrate; a second layer having a plurality of pixel circuits disposed on a first surface of the substrate; a plurality of light emitting diodes electrically connected to the pixel circuits; and a driver circuit communicatively coupled to the pixel circuits by at least one electrically conductive via traveling through the first layer; an edge of the panel having a non-emitting space having a length less than a length of a non-emitting space within the panel.
A method of manufacturing a light emitting diode (LED) display, comprises: providing a substrate with pixel circuitry on a first surface; forming LED dies over the circuitry; electrically connecting the LED dies to the pixel circuitry; creating a through hole via in the substrate; forming electrical conductive material in the through hole to connect the pixel circuitry to the LED dies; forming electrical drive circuitry; and connecting the electrical drive circuitry to the through hole via that connects to the pixel circuitry.
To more easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure (“FIG.”) number in which that element or act is first introduced.
The description that follows includes systems, methods, techniques, that embody illustrative embodiments of the disclosure. In the following description, for the purposes of explanation, numerous specific details are set forth in order to provide an understanding of various embodiments of the inventive subject matter. It will be evident, however, to those skilled in the art, that embodiments of the inventive subject matter may be practiced without these specific details. In general, well-known instruction instances, protocols, structures, and techniques are not necessarily shown in detail.
In an embodiment the second non-emitting space 130 has a length L1 of approximately (e.g., +1-10%) half of a length L2 of one of the first non-emitting spaces 190. In an embodiment, L1 and be approximately 50-400 um and L2 approximately 100-800 um. For example, for a 4K 150″, the pixel pitch is 0.837 mm (837 um). L1 can be 200 um, L2 can be 400 um; or with larger emitting area L1:100 um, L2 200 um. For a 4K 100″, the pixel pitch is 0.558 mm (558 um), L1 can be 150 um, L2 can be 300 um. In an embodiment, the emitting area is at least about 25% in a pixel, for example, 50%.
The LCD 100 also comprises a though hole conductive via 150 in the first layer 110 electrically connected to LCD driver circuitry 170 on a first surface of the first layer 110 and the thin film transistors on a second surface of the first layer 110. The LCD driver circuitry 170 can be connected to the via 150 via an interconnect 160 also mounted on the first surface of the first layer 110 or located elsewhere and connect to the via 150 by flexible cable.
The via 150 can be conductor-filled or metal coated on an inside surface and bring the circuit connection to the hack (first surface) of the array substrate 110. A filler in the via 150 can be metal, Ag-epoxy or other electrical conducting materials. The via 150 can be made by laser drilling, wet or dry etching, or combination. The via may be located underneath first and/or second non-emitting spaces 190 and 130 so as to not block light at sets 180. Note that while a single via 150 is illustrated, the LCD 100 may have multiple vias (e.g., one via per pixel). The via can be filled by dispensing, printing, electro-plating, vapor deposition, photolithography, direct writing and spraying of filler materials.
Interconnection circuitry 160 can be made by photolithography like semiconductor IC process or printed circuit board process. For example, the interconnect can be made by dispensing, printing, electro-plating, vapor deposition, photolithography, direct writing and masked spraying of conductive materials. Electronic components can be bonded to the printed circuit glass. Sealant structure 140 can be made by dispensing, screen printing, silk printing, photolithographic printing, etc. The Array substrate 110 can be glass, polymer, ceramic, silicon, etc.
In an embodiment, each display 100 of a video wall (multi-panel display) can have a number of pixels needed to achieve final 4k resolution over an entire video wall comprising a plurality of displays 100. If the module 100 has a very high pixel resolution, the non-emitting space 190 is very small. For example a 55″ 2K LCD module the non-emitting space 190 between pixel is only about 100 um (pixel pitch is about 600 um). In an embodiment, a module with the final display resolution, say 4k 165″ (equivalent to 3×3 LCD wall using 55″ module), the pixel pitch of each module 100 need only be 900 um. The non-emitting space 130 at the edge can be made to 200 um making a seamless connection possible as shown in
The backlight module 210 can be a printed circuit board (PCB) with OLED or LED (light emitting diode) mounted on the top and interface contacts to the via 150 in the array substrate 110. The PCB material can be FR4, BT, polymer or glass, etc. Note for ease of description, other elements of the LCD 100 known to one of ordinary skill in art, e.g., a polarizer, films, cover glass, etc. are not shown or described.
The backlight module 210 can be made into the same panel size as the first layer 110 or smaller and can be bonded to the first layer 110 by solder joint, eutectic bonding, or ACF/ACP (anisotropic conductive film or paste) bonding.
In an embodiment, the backlight module 210 can also be an LED or OLED display with self-emitting pixels.
The OLED display 300 can also further comprises a conductive via 150 connecting an interconnect 160 to the second layer. The interconnect 160 is located at a first surface of the first layer 310 and the via 150 can be located anywhere of the array substrate 310 since it does not block any light emitting from the OLED itself. The OLED display also includes OLED driver circuitry 330 coupled to the interconnect 150, and can be located elsewhere and connect to the via 150 by flexible cable. Note for ease of description, components of display 300 known to one of ordinary skill in the art are not illustrated, e.g. cathode and anode.
The conductive via 150 is through the first layer 310.
The edge non-emitting space 140 length L1 can be reduced to approximately (+/−10%) half the length L2 of the inside non-emitting space so that when two modules are connected the combined length is the same as the inside non-emitting space length L2. The via 150 (also referred to as a through hole via—THV) brings a circuit connection to the back of the array substrate 310
The array substrate 310 may be very thin material and there can be a more rigid substrate such as PCB inserted between the array substrate 310 and the OLED driver circuitry 330.
The display 800 may include other components not shown such as non-emitting areas (e.g., black matrix), e.g., between LED pixels, edge sealant, data lines, select/scan lines, and other components, such as those shown in the displays above. Further, an edge of the display 800 (or panel) may have a non-emitting space at one or more edges having a length less than a length of a non-emitting space within the panel such that multiple panels may be aligned together with a total non-emitting space at two edges approximately equal to a non-emitting space within the panel, such as between pixels.
In one aspect, the vias 860 are located at least one-pixel distance from an edge of the display 800. This is because the vias 860 can be created some distance away from the edge of the substrate (glass) to prevent stress that may cause breakage. Additionally, the vias 860 may not be able to made small enough to fit in the less than ½ of the non-emitting pixel gap at the edge (but can be made less than 1 non-emitting pixel gap so it can fit between the pixel larger via dimension are easier to make and easier to fill in conductive material).
This aspect also applies to the OLED display 300 and the LCD display 100.
The following examples describe various embodiments of methods, machine-readable media, and systems (e.g., machines, devices, or other apparatus) discussed herein.
1. A light emitting diode display, comprising a first panel, the first panel comprising:
a first layer having a substrate;
a second layer having a plurality of pixel circuits disposed on a first surface of the substrate;
a plurality of light emitting diodes electrically connected to the pixel circuits; and
a driver circuit communicatively coupled to the pixel circuits by at least one electrically conductive via traveling through the first layer;
an edge of the panel having a non-emitting space having a length less than a length of a non-emitting space within the panel.
2. The light emitting diode display of example 1, wherein the driver circuit is mounted on a second surface of the substrate.
3. The light emitting diode display of any of the prior examples, further comprising an interconnect, at least one powerline and a power circuit, wherein the plurality of pixel circuits are connected to the at least one powerline, which is connected to the interconnect by the at least one electrically conductive via, and the power circuit is connected to the interconnect.
4. The light emitting diode display of any of the prior examples, wherein the interconnect is mounted on a second surface of the substrate.
5. The light emitting diode display of any of the prior examples, wherein the at least one powerline is mounted on the first surface of the substrate.
6. The light emitting diode display of any of the prior examples, wherein the pixel circuit is active matrix.
7. The light emitting diode display of any of the prior examples, wherein the pixel circuit is passive matrix.
8. The light emitting diode display of any of the prior examples, wherein the substrate includes glass.
9. The light emitting diode display of any of the prior examples, wherein the substrate includes polyimide.
10. The light emitting diode display of any of the prior examples wherein the at least one via are at least one-pixel distance from the edge of the panel.
11. A method of manufacturing a light emitting diode (LED) display, comprising:
providing a substrate with pixel circuitry on a first surface;
forming LED dies over the circuitry;
electrically connecting the LED dies to the pixel circuitry;
creating a through hole via in the substrate;
forming electrical conductive material in the through hole to connect the pixel circuitry to the LED dies;
forming electrical drive circuitry; and
connecting the electrical drive circuitry to the through hole via that connects to the pixel circuitry.
12. The method of any of the prior examples, wherein the electrical drive circuitry is mounted on a second surface of the substrate.
13. The method of any of the prior examples, further comprising forming an interconnect, at least one powerline and a power circuit, wherein the plurality of pixel circuits are connected to the at least one powerline, which is connected to the interconnect by the at least one electrically conductive via, and the power circuit is connected to the interconnect.
14. The method of any of the prior examples, wherein the interconnect is mounted on a second surface of the substrate.
15. The method of any of the prior examples, wherein the at least one powerline is mounted on the first surface of the substrate.
16. The method of any of the prior examples, wherein the pixel circuitry is active matrix.
17. The method of any of the prior examples, wherein the pixel circuitry is passive matrix.
18. The method of any of the prior examples, wherein the substrate includes glass.
19. The method of any of the prior examples, wherein the substrate includes polyimide.
20. The method of any of the prior examples, wherein the at least one via are at least one-pixel distance from the edge of the panel.
Although the subject matter has been described with reference to specific example embodiments, it will be evident that various modifications and changes may be made to these embodiments without departing from the broader scope of the disclosed subject matter. Accordingly, the specification and drawings are to be regarded in an illustrative rather than a restrictive sense. The accompanying drawings that form a part hereof show by way of illustration, and not of limitation, specific embodiments in which the subject matter may be practiced. The embodiments illustrated are described in sufficient detail to enable those skilled in the art to practice the teachings disclosed herein. Other embodiments may be utilized and derived therefrom, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. This Description, therefore, is not to be taken in a limiting sense, and the scope of various embodiments is defined only by any appended claims, along with the full rang of equivalents to which such claims are entitled.
Such embodiments of the inventive subject matter may be referred to herein, individually and/or collectively, by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed. Thus, although specific embodiments have been illustrated and described herein, it should be appreciated that any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This application is a continuation-in-part of U.S. patent application Ser. No. 16/923,895 filed Jun. 8, 2020, which claims priority to and incorporates by reference U.S. Patent Application No. 62/881,634 filed Aug. 1, 2019 and U.S. Patent Application No. 62/885,425 filed Aug. 12, 2019.
Number | Name | Date | Kind |
---|---|---|---|
5851411 | An et al. | Dec 1998 | A |
5965916 | Chen | Oct 1999 | A |
9105615 | Ghaii | Aug 2015 | B1 |
9412772 | Ghaii | Aug 2016 | B1 |
20160197134 | Jung | Jul 2016 | A1 |
20190180692 | Fujii | Jun 2019 | A1 |
20190189729 | Zhang | Jun 2019 | A1 |
20200013842 | Lee et al. | Jan 2020 | A1 |
20210033900 | Liu | Feb 2021 | A1 |
Number | Date | Country |
---|---|---|
WO-9941788 | Aug 1999 | WO |
WO-2021021406 | Feb 2021 | WO |
Entry |
---|
“U.S. Appl. No. 16/923,895, Response filed Apr. 21, 2021 to Restriction Requirement dated Apr. 2, 2021”, 4 pgs. |
“U.S. Appl. No. 16/923,895, Restriction Requirement dated Apr. 2, 2021”, 5 pgs. |
“International Application Serial No. PCT/US2020/041239, International Search Report dated Oct. 8, 2020”, 2 pgs. |
“International Application Serial No. PCT/US2020/041239, Written Opinion dated Oct. 8, 2020”, 5 pgs. |
“International Application Serial No. PCT/US2020/041239, International Preliminary Report on Patentability dated Feb. 10, 2022”, 7 pgs. |
Number | Date | Country | |
---|---|---|---|
20210249502 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
62881634 | Aug 2019 | US | |
62885425 | Aug 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16923895 | Jul 2020 | US |
Child | 17240776 | US |