The present application relates generally to structures for radiation detectors, radiation detection and digital radiography.
Flat Panel Detectors (FPD) have been used for digital x-ray imaging devices. For example, “Indirect” FPDs form x-ray images by detecting the incoming spatial distribution of x-rays with a scintillating screen, e.g., x-ray conversion layer combined with a 2D photosensor array. Known FPD may use a single screen in either a front illuminated (FI) Mode in which the incoming x-rays pass first through the scintillating screen or in a back illuminated BI mode, in which the x-rays pass first through the photosensor array. However, a large fraction of the incident x-ray beam passes through the screen undetected. Increasing the thickness of the single scintillating layer is not a viable solution because the image quality would then suffer from excessive spatial blur.
While the use of two screens, e.g., a front screen and back screen, sandwiched around an array have been described in documents, the inventors are not aware of any commercial structures, and particular structures for x-ray imaging having this configuration.
Accordingly, disclosed are structures, imaging systems and detectors, that provide improved image quality and dose performance. For example, a structure may comprise two screens. A photosensor array is between the two screens. One of the screens is comprised of a scintillating glass. The scintillating glass serves a dual purpose, serving as a substrate for the deposition of a photosensor array, and also acting as an x-ray detection structure.
In an aspect of the disclosure, the screen comprised of a scintillating glass may be the “back screen” e.g., the screen further from an x-ray source. Further, the front screen may be comprised of a scintillating layer, e.g., phosphors. In an aspect of the disclosure, the phosphors may be a powdered, granular type or a columnar type or nanocrystalline powder type or perovskite scintillator type. In other aspects of the disclosure, the front screen may be comprised of a scintillating glass.
The front screen converts an absorbed portion of incident radiation directed at the structure into light photons and back screen converts an absorbed portion of the incident radiation transmitted through the front screen and the photosensor array into light photons.
The photosensor array is operable to capture the light photons from the front screen and the back screen and convert the captured light photons into electrical signals.
Also disclosed is a structure that comprises a first scintillating screen, a photosensor array and a second scintillating screen. The first scintillating screen converts an absorbed portion of incident radiation directed at the structure into light photons. The photosensor array is between the first scintillating screen and the second scintillating screen. The second scintillating screen is comprised of a scintillating glass. The scintillating glass converts an absorbed portion of the incident radiation transmitted through the first scintillating screen and the photosensor array into light photons. A surface of the first scintillating screen faces the photosensor array and a surface of the scintillating glass faces the photosensor array. The photosensor array is operable to capture at least a portion the light photons from the first scintillating screen and the second scintillating screen and convert the captured light photons into electrical signals.
In an aspect of the disclosure, the photosensor array may comprise a plurality of photosensitive storage elements for capturing the light photons from the first scintillating screen and the second scintillating screen, a plurality of switching elements, a transparent metal bias layer, and a 2D patterned transparent metal layer. One switching element of the plurality of switching elements corresponds to one of the plurality of photosensitive storage elements, respectively.
In an aspect of the disclosure, the scintillating glass and the photosensor array are in direct optical contact with each other.
In an aspect of the disclosure, the surface of the scintillating glass is a substrate for the photosensor array.
In an aspect of the disclosure, one or both of the scintillating screens may have a backing. The color of the backing may be determined based on an application of the structure. For example, the backing may be absorptive or reflective to the light photons emitted.
In an aspect of the disclosure, the 2D patterned transparent metal layer and the transparent metal bias layer may be comprised of indium tin oxide (ITO).
In an aspect of the disclosure, portions of the transparent metal bias layer may not be transparent to the light photons. The portions are aligned with the plurality of switching elements as viewed from the transparent metal bias layer to the 2D patterned transparent metal layer.
In an aspect of the disclosure, a thickness of the second scintillating screen is greater than a thickness of the first scintillating screen.
Also disclosed is an imaging system. The imaging system comprises a processor in communication with one of the structures described herein. The processor is configured to: receive the electrical signals from the structure; and produce an image having a plurality of pixels using the electrical signals. Each switching element and the corresponding photosensitive storage element produce a pixel in the image.
In an aspect of the disclosure, a processor controls each row of switching elements sequentially, thereby connecting the corresponding photosensitive storage elements to a row of amplifiers (for readout), whose outputs are digitized to the pixel values for each row of the image.
Also disclosed is a radiation detector which comprises a first radiation converter, a second radiation converter and a photosensor array between the first radiation converter and the second radiation converter. The second radiation converter is comprised of scintillating glass. The first radiation converter is configured to receive and partially absorb incident penetrating radiation directed towards the radiation detector; and convert the absorbed incident radiation into a burst of a plurality of light photons, a number of which reach the photosensor array and are detected. The second radiation converter is configured to: receive and partially absorb the portion of the incident radiation transmitted through the first radiation converter and the photosensor array; and convert the absorbed radiation into a burst of a plurality of light photons, a number of which reach the photosensor array and are detected. The photosensor array is configured to respond a spatial pattern of the light photons from the first radiation converter and the second radiation converter by converting the light photons into an electrical signal pattern representative of a sum of the spatial pattern of the light photons from the first radiation converter and the spatial pattern of the light photons from the second radiation converter.
An illustration of a portion of a single-screen FPD 700 is shown in
The inventors have improved the absorption for a structure without losing spatial resolution by using two screens for the structure and having one of the screens as both a light detector and a substrate for the photosensor array. The disclosed two screen configurations enable a reduction in dose as well, without losing resolution. This is because the two screens sandwich the photosensor array and the average distance from an absorption event to the array is lessened, thus minimizing the effect of light scatter. The collective thickness of the two screens may be made thicker than the single screen (and thus increasing x-ray absorption) but at the same time having equal or better resolution.
Additionally, the inventors have used a scintillating glass for both the substrate for depositing the photosensor array on as well as for one of the screens. Thus, eliminating a need for a separate and distinct glass substrate to depose the photosensor array on. By using the scintillating glass as the substrate and the screen, the inventors have removed a source of a loss of sharpness due to light spreading within the substrate between the screen and the photosensor array and other deleterious light piping effects. In addition, more light photons from the scintillating glass will reach the photosensor array, due to the elimination of any absorption in a separate substrate layer.
As shown in
The scintillating glass substrate 124 may include x-ray scintillating materials that may capture the incident x-rays 102 and convert the captured x-rays into light photons 103. In some examples, the scintillating glass substrate 124 may be a borosilicate or alumino-borosilicate host glass containing a substantial molar fraction of rare-earth halides like BaF2, GdF3, GdBr3 or TbF3, or other types known in the art. As described herein, the scintillating glass substrate 124 may be a glass ceramic material. The glass ceramic material may consist of luminescent nanocrystals embedded within a glass matrix.
For example, the incident x-rays 102 may not be fully captured by the front screen 10 (scintillating front screen) because the material may not have enough crystals to convert all of the incident x-rays. The uncaptured (and not converted) x-rays may pass through the front screen 10 and the photosensor array 105 and reach the scintillating glass substrate 124. Thus, the scintillating glass substrate 124 facilitates the photosensor array 105 to capture extra photons from the x-rays that would not or could not be converted by the front screen 10.
The surface C of the scintillating glass substrate 124 is smooth. The surface C has a smoothness that meets a standard required for a substrate for electronic components. For example, the smoothness may be about 1 nm RMS. In other aspects of the disclosure, the smoothness may be about 1-about 5 nm RMS. In yet other aspects of the disclosure, the smoothness may be about 5 nm-about 20 nm RMS. In the description, the term “about” indicates that the value listed may be somewhat altered, as long as the alteration does not result in nonconformance of the process or structure to the illustrated disclosure. For example, for some elements the term “about” can refer to a variation of ±0.1%, for other elements, the term “about” can refer to a variation of ±1%, ±10% or ±20%, or any point therein.
In addition, the scintillating glass has a glass transition temperature above 300 degrees C., and preferably above 600 degrees C., in order to provide dimensional stability under TFT array thermal processing conditions.
The front screen 10 may comprise a scintillating phosphor layer or material. For example, the front screen 10 may include phosphor crystals that may capture the incident x-rays 102 and convert the captured x-rays into light photons 103. In some examples, the screen 10 may be a powder or granular type (e.g., GdO2S2:Tb, CaWO4, BaFCl:Eu). In other examples, the screen 10 may be comprised of nanometer-sized particles such as quantum dots, rather than the micron sized particles typical of “standard” screens such as GdO2S2:Tb. In still other examples, the scintillating material may be of the perovskite type. The front screen may emit light photons (e.g., photon bursts) in the visual light region.
In other aspects of the disclosure, the front screen 10 may comprise a structured scintillating layer. For example, the front screen 10 may include scintillating phosphor needle structures that may capture the incident x-rays 102 and convert the captured x-rays into light photons 103. In some examples, the front screen 10 may be a vacuum deposited needle structure composed of CsI:Tl. Where CsI:Tl is used, the front screen 10 may emit light in about 550 nm region. In other aspects of the disclosure, a liquid scintillating material may be used. In some examples, a combination of different types of scintillating materials and types may be used.
The screens 10, 20 may have different thicknesses. As shown in
In other aspects of the disclosure, the front screen 10 may be comprised of a scintillating glass.
In another aspect of the disclosure, the front screen 10 may include a backing layer 15 (also referred to herein as “backing”). The backing 15 is attached or in contact with the surface A. The backing 15 may serve multiple purposes. For example, the backing 15 may provide support for the scintillation portion of the front screen 10. Additionally, the backing layer 15 may have optical characteristic(s) for the wavelength of the light photons created in the front screen 10. For example, the backing 15 may be absorptive for the light photons or reflective of the light photons. The optical characteristic of the backing may be determined based on the application for the structure 1 and desired performance requirements. For example, in an aspect of the disclosure, the diffuse optical reflectance of the backing 15 may be very high (above about 90%) to maximize imaging signal-to-noise ratio, or low (below about 10%) if the objective is to maximize imaging spatial resolution.
In an aspect of the disclosure, the material used for the backing 15 may also depend on the type of scintillating material used for the front screen 10. For example, an amorphous carbon or aluminum layer or a fiber optic may be used as the backing for a CsI:Tl screen. Other types of materials may be used for screens made from powders or granular. For example, the backing layer 15 may be made of a polymeric material such as polyester or PET (polyethylene terephthalate) for a powder screen.
The front screen 10 may also include a protective layer (not shown), if needed. This may depend on the type of screen. The protective layer may be in addition to the backing 15. In other aspects of the disclosure, the backing 15 serves also as the protective layer.
As shown in
The photosensor array 105 may include a plurality of photosensitive storage elements 108 and switching elements 106.
The photosensor array 105 may be produced by direct deposition onto the top surface of the scintillating glass substrate 124, using known TFT array manufacturing methods like plasma enhanced chemical vapor deposition (PECVD).
The photosensitive storage elements 108 produce an electrical signal (charge) in response to light photons from both the front screen 10 and the back screen 20. Given the scattering and possible absorption of the light photons traveling in different directions, not all of the converted light photons by the front screen 10 and the back screen 20 may reach the photosensitive storage elements 108. The electrical signal is proportional to the sum of all the light photons (that reach the photosensitive storage elements from the front screen 10 and back screen 20 and are absorbed in the photosensitive elements). The photosensitive storage elements 108 may be a-Si:H photodiodes, MIS-type sensors, or other sensor types known in the art. The switching elements 106 may be thin film transistor (TFT) elements of the a-Si:H type, metal oxide (MOTFT) types, or other types known in the art. Each switching element 106 corresponds to a photosensitive storage element 108. Each switching element 106 is used to readout the electrical signal from the corresponding storage element 108.
The photosensor array 105 may also include additional layers (not shown in
An example of a photosensor array 105 (which is shown in
The plurality of charge amplifiers 208 are coupled to a multiplexer 210. The multiplexer 210 in turn is coupled to an A/D 215 (converter) which supplies an input to the processor 200. The processor 200 controls the scanning control unit 205 to turn on/off the switching element 106. The processor 200 may store the electrical signals from the storage elements/switches in the memory (not shown in
The scanning control unit 205 turns on/off the switching elements 108 sequentially one row at a time. Other elements of the imaging system are well known to those in the art.
The processor 200 is typically physically integrated with the flat panel detector and may be electronically integrated with gate control chips, amplifier chips, a buffer memory, and an interface to a host computer 250. The chips are typically implemented as application specific integrated circuits (ASICs) which in turn may each handle hundreds of data channels.
The host computer 250 may be a microcontroller or microprocessor or any other processing hardware such as a CPU or GPU. The memory (not shown) may be separate from the processor (as or integrated in the same). For example, the microcontroller or microprocessor includes at least one data storage device, such as, but not limited to, RAM, ROM and persistent storage. In an aspect of the disclosure, the processor may be configured to execute one or more programs stored in a computer readable storage device.
Between the front screen 110 and back screen 120 is the photosensor array 105. This photosensor array 105 is similar to the photosensor array shown in
The transparent metal bias layer 107 is transparent at the wavelength(s) emitted by the scintillating powder phosphor 114, and may be used to apply a reverse bias voltage to the array of photosensitive elements 108. In aspects of the disclosure, the transparent metal bias layer 107 comprises an indium tin oxide (ITO) layer. In other aspects of the disclosure, other transparent metals may be used such as zinc oxide (ZO), fluoride doped tin oxide (FTO), or poly (3,4-ethylenedioxythiophene) (PEDOT).
The transparent metal layer 109 is transparent at the wavelengths emitted by the scintillating glass substrate 124. In an aspect of the disclosure, the transparent metal bias layer 107 and the transparent metal layer 109 may be made of the same material such as ITO. In other aspects of the disclosure, a different metal may be used for the transparent metal layer 109 and the transparent metal bias layer 107.
In an aspect of the disclosure, the transparent metal bias layer 107 may have non-transparent portions 107A. The non-transparent portions 107A are not transparent at the wavelengths emitted by the scintillating powder phosphor 114. The non-transparent portions 107A are aligned with the switching elements 106. The non-transparent portions 107A absorb the light photons from the front screen 110 in order to prevent photoconductive action in the a-Si:H material of the switching elements 106. The non-transparent portions 107A are shown in
In another aspect of the disclosure, the transparent metal layer 109 may also have non-transparent portions, which are not transparent at the wavelength(s) emitted by the scintillating glass substrate 124. The non-transparent portions (of the metal layer 109) may be made in a similar manner as described above.
The scintillating glass substrate 124 in structure 100 may be one of the scintillating glasses described above. The thickness of the scintillating glass substrate 124 may be selected in the range of about 200 to about 2000 microns. The thickness of the scintillating glass substrate 124 may be chosen based on a particular application(s) and consider a signal-to-noise performance for the particular application. In an aspect of the disclosure, a thickness of the scintillating powder phosphor 114 may be less than a thickness of the scintillating glass substrate 124. The relative thickness of the two may be chosen based on particular application(s).
In
The front screen 110 and the back screen 120 may be oriented such that the scintillating powder phosphor 114 and the scintillating glass substrate 124 face each other. In the orientation of the structure 100 shown in
In
Testing and Experimentation
A series of theoretical calculations of detective quantum efficiency vs spatial frequency DQE(f) have been done to show the benefit of the structures described herein. DQE describes the signal-to-noise performance of the detector, and is the accepted standard for comparing systems for medical radiography. Here the scintillating phosphor layer (front screen) was taken to have the known imaging properties of a gadolinium oxysulfide (GOS) screen, and the incoming x-rays were taken to have an RQA9 spectrum, representative of x-ray beams used in medical applications like cone beam computed radiography. The photosensitive light detection layer was taken as sensitive to a front screen and a back screen, e.g., bi-directionally. The results are shown in the graph 500 (see,
As can be seen from curves 502-504, the DQE is improved at all spatial frequencies using the scintillating glass substrate. Further, as seen from curve 502, a thin scintillating glass layer (e.g. 300 microns) improves DQE(f) at both low and high frequencies, meaning improved detection of both large and small objects (large being at low frequencies).
A thicker scintillating glass layer (e.g., 1000 microns) shown in curve 504 improves DQE(f) greatly at low frequencies while not changing performance at high frequencies, meaning much improved detection of large objects (masses) with unchanged detection of small objects.
This suggests that the thickness of the scintillating glass may be set or selected based on the application including the type of object(s) being detected (and size thereof).
Improvements will be higher at higher energies of the x-ray source including cone-beam CR.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements, if any, in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
This application claims the benefit of U.S. Provisional Application No. 62/675,343 filed on May 23, 2018, and U.S. Provisional Application No. 62/788,162 filed on Jan. 4, 2019.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2019/033683 | 5/23/2019 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/226859 | 11/28/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5017782 | Nelson | May 1991 | A |
5198673 | Rougeot et al. | Mar 1993 | A |
5430298 | Possin et al. | Jul 1995 | A |
5596198 | Perez-Mendez | Jan 1997 | A |
5864146 | Karellas | Jan 1999 | A |
6031234 | Albagli et al. | Feb 2000 | A |
6172371 | DeJule et al. | Jan 2001 | B1 |
6541774 | DeJule et al. | Apr 2003 | B1 |
6717174 | Karellas | Apr 2004 | B2 |
7019304 | Albagli et al. | Mar 2006 | B2 |
7078702 | Ringermacher et al. | Jul 2006 | B2 |
7105826 | Ren et al. | Sep 2006 | B2 |
7122804 | Mollov | Oct 2006 | B2 |
7180075 | Brabec | Feb 2007 | B2 |
7569832 | Tredwell et al. | Aug 2009 | B2 |
7745798 | Takahashi | Jun 2010 | B2 |
7956332 | Burr et al. | Jun 2011 | B2 |
8106363 | Yip | Jan 2012 | B2 |
8294112 | Levene et al. | Oct 2012 | B2 |
8338790 | Levene et al. | Dec 2012 | B2 |
8399841 | Hansen et al. | Mar 2013 | B2 |
8558185 | Tredwell | Oct 2013 | B2 |
8569704 | Tredwell | Oct 2013 | B2 |
8629402 | Aylward et al. | Jan 2014 | B2 |
8648310 | Mollov | Feb 2014 | B2 |
8729478 | Tredwell et al. | May 2014 | B2 |
8772728 | Tredwell | Jul 2014 | B2 |
8853652 | Jagannathan et al. | Oct 2014 | B2 |
9012857 | Levene et al. | Apr 2015 | B2 |
9064678 | Ferenc | Jun 2015 | B2 |
9075150 | Tredwell | Jul 2015 | B2 |
9348034 | Tredwell et al. | May 2016 | B2 |
9395451 | Menge | Jul 2016 | B2 |
9864070 | Suponnikov et al. | Jan 2018 | B2 |
10302775 | Kobayashi | May 2019 | B2 |
10371830 | Jacobs et al. | Aug 2019 | B2 |
10444378 | Morf | Oct 2019 | B1 |
10527739 | Chappo et al. | Jan 2020 | B2 |
11041966 | Chappo | Jun 2021 | B2 |
11181488 | Booker et al. | Nov 2021 | B2 |
11460590 | Ubinsky et al. | Oct 2022 | B2 |
20020070365 | Karellas | Jun 2002 | A1 |
20060151708 | Bani-Hashemi | Jul 2006 | A1 |
20080210877 | Altman et al. | Sep 2008 | A1 |
20080245968 | Tredwell et al. | Oct 2008 | A1 |
20110303849 | Tredwell et al. | Dec 2011 | A1 |
20130256538 | Vogtmeier | Oct 2013 | A1 |
20150123119 | Sekine et al. | May 2015 | A1 |
20160322411 | Elen et al. | Nov 2016 | A1 |
20180239034 | Tian | Aug 2018 | A1 |
20190056515 | Kobayashi | Feb 2019 | A1 |
20200174141 | Lubinsky | Jun 2020 | A1 |
Number | Date | Country |
---|---|---|
2017015627 | Jan 2017 | JP |
Entry |
---|
Beckert et al., Medical imaging scintillators from glass-ceramics using mixed rare-earth halides, Sep. 14, 2016, Optical Materials, vol. 60, pp. 513-520. (Year: 2016). |
Canadian Examination Report dated Aug. 19, 2020 received in Canadian Application No. 3,080,643. |
International Search Report dated Aug. 15, 2019 issued in PCT/US2019/033683. |
Written Opinion dated Aug. 15, 2019 issued in PCT/US2019/033683. |
Number | Date | Country | |
---|---|---|---|
20210063586 A1 | Mar 2021 | US |
Number | Date | Country | |
---|---|---|---|
62788162 | Jan 2019 | US | |
62675343 | May 2018 | US |