This invention generally relates to supporting systems for flat roof structures.
At the present time, flat roof structures include steel posts having steel beams affixed to the tops thereof by some method such as welding. In most instances these structures are relatively large and must be assembled at the site. Fixing the steel posts and steel beams by welding at the site is very difficult and inconvenient. First, the welding equipment, which is generally electric, requires large amounts of electrical power, is expensive to provide at the site, and requires special personnel to operate. Second, the government requires special inspectors on hand, at the site to inspect every weld as it is made. These inspectors must be paid for by the company doing the construction. Further, in many instances the welds must be relatively large or long and are relatively expensive without even considering the expenses mentioned above.
It would be highly advantageous, therefore, to remedy the foregoing and other deficiencies inherent in the prior art.
Accordingly, it is an object of the present invention to provide a new and improved flat roof structure that can be easily bolted together at the site and does not require any on-site welding.
It is another object of the present invention to provide a new and improved flat roof structure that is relatively simple and inexpensive to install.
It is another object of the present invention to provide a new and improved flat roof structure that does not require welding equipment and other special tools on-site to install.
Briefly, to achieve the desired objects of the instant invention in accordance with a preferred embodiment thereof, a flat roof support structure is provided that includes a plurality of vertical columns, an elongated generally horizontally oriented beam associated with and positioned atop each vertical column, and attachment structure fixing the upper end of each vertical column to a mounting area of the associated elongated beam. The attachment structure includes U-shaped attachment members affixed to opposed sides of the vertical columns at the upper end of each column with the attachment members opening in an outwardly directed orientation parallel to the elongated beam. At least one attachment plate is fixedly attached to one side of each elongated beam in the mounting area. The attachment plate extends downwardly below a lower surface of the elongated beam a distance equal to at least a portion of the U-shaped attachment members so as to overlap the portion. Attachment devices fix the at least one attachment plate to the U-shaped attachment members and are assembled on-site.
The desired objects of the instant invention are further achieved in accordance with a method of providing and assembling a flat roof support structure including the steps of providing a plurality of vertical columns and providing an elongated generally horizontally oriented beam associated with and adapted to be positioned atop each vertical column. The method further includes the off-site steps of affixing U-shaped attachment members to opposed sides of the vertical columns at the upper end of each column with the attachment members opening in an outwardly directed orientation parallel to the elongated beam and affixing at least one attachment plate to one side of each elongated beam in a mounting area. A portion of the attachment plate extends downwardly below a lower surface of the elongated beam a distance equal to at least a portion of the U-shaped attachment members. The method further includes the on-site steps of assembling the plurality of vertical columns and the associated generally horizontally oriented beams by mounting each column of the plurality of vertical columns in an upright fixed orientation and positioning the associated beams with the mounting area above the upper end of the column so that the downwardly extending portion of the attachment plate overlaps the at least a portion of the U-shaped attachment members and using attachment devices affixing the overlapping portion of the attachment plate to the U-shaped attachment members in the mounting area of each vertical column and associated generally horizontally oriented beam, whereby the beams and columns are fixedly attached on-site without welding.
The foregoing and further and more specific objects and advantages of the instant invention will become readily apparent to those skilled in the art from the following detailed description of a preferred embodiment thereof taken in conjunction with the drawings, in which:
Turning now to
For purposes of this disclosure it should be understood that structure 10 is chiefly assembled at the site and it is highly desirable that each step of the assembly procedure be as simple as possible. Basically, each of the components mentioned above (i.e. column 12, beams 14, purlins 18, and roof sections 20) are provided as individual items from an off-site factory/shop and assembled on site into structure 10. By providing the items separately each item can be relatively easily handled by workmen conveying the items to the site and by workmen doing the assembling at the site. At this point it is important to understand that no welding is performed at the site since that would require substantial additional equipment and electrical power, as well as government inspectors on site at substantial additional cost.
Briefly, the assembly procedure includes fixing a lower end 22 of each column 12 in the ground or in a base that serves as the ground. One end of a cantilever beam 14 is affixed to the upper end 16 of each column 12 by structure that will be explained in detail below. Cantilever beams 14 and the structure affixing them to ends 16 of columns 12 are pre-designed to provide a desired slope to the roof. For example, the slope may be at any desired degree from a downward slope of 10° as illustrated in
Referring additionally to
Short section of U-shaped attachment members 42 and 43 are affixed to side walls 36 and 37, respectively, at upper end 16 of each column 12. In this specific, example members 42 and 43 are approximately 15 inches long and are attached to column 12 by pre-welding at the factory/shop with the U-shape opening outwardly to form four attachment flanges 45, one at each corner of column 12. U-shaped attachment members 42 and 43 may be preformed in the factory/shop in a manner and from materials similar to that described above for channels 30. For example, each U-shaped member has a major wall approximately 5 inches wide and side walls approximately 3 inches wide.
A pair of attachment plates 50 is fixedly attached to opposed sides of the mounted end (i.e. the mounting area) of each cantilever beam 14 by welding in the factory/shop. Each attachment plate 50 is generally rectangular in shape with an upper edge 52 that may be angled to match the upper surface of cantilever beam 14, a left edge 53 (as seen in
A plurality of spaced apart bolt holes 60 are formed through each attachment plate 50 and through flanges 45 of U-shaped attachment members 42 and 43. In this specific example and for maximum strength bolt holes 60 in each flange 45 are spaced approximately three inches apart and approximately six inches from the lower edge 54 of attachment plates 50. It will be understood that bolt holes 60 can most efficiently be drilled or otherwise formed in the factory/shop, however, they can be formed or drilled by the workers during assembly if preferred. While bolts are preferred for attaching plate 50 to attachment members 42 and 43, it will be understood that other “attachment devices” easily attached at the scene with normal hand-operated tools (as opposed to welding) can be used. Such “attachment devices” may include for example, bolts, screws, rivets, and other mechanically locking devices.
Turning now to
Briefly, the assembly procedure includes fixing a lower end 22′ of each column 12′ in the ground or in a base that serves as the ground. An attachment portion of a T-section beam 14′ is affixed to the upper end 16′ of each column 12′ by attachment structure 17′ that will be explained in detail below. T-section beams 14′ and the structure affixing them to ends 16′ of columns 12′ are pre-designed to provide a desired slope to the roof. With T-section beams 14′ fixedly attached, purlins 18′ are attached to the upper surface of T-section beams 14′ in a direction perpendicular to T-section beam 14′. At this point additional purlin braces 19′ can be affixed to purlins 18′ between T-section beams 14′ if desired or deemed necessary. Roof sections 20′ are then attached to the upper surfaces of purlins 18′ in any well known manner (see for example the structure disclosed in the above identified copending patent application) and using any well known attachment devices such as screws, bolts, etc.
Referring additionally to
Short sections of U-shaped attachment members 42′ and 43′ are affixed to side walls 36′ and 37′, respectively, at upper end 16′ of each column 12′. In this specific, example members 42′ and 43′ are approximately 15 inches long and are attached to column 12′ by pre-welding at the factory/shop with the U-shape opening outwardly to form four attachment flanges 45′, one at each corner of column 12′. U-shaped attachment members 42′ and 43′ may be preformed in the factory/shop in a manner and from materials similar to that described above for channels 30′. For example, each U-shaped member has a major wall approximately 5 inches wide and side walls approximately 3 inches wide.
A pair of attachment plates 50′ is fixedly attached to opposed sides of the mounted end of each T-section beam 14′ by welding in the factory/shop. Each attachment plate 50′ is generally rectangular in shape with an upper edge 52′ that may be angled to match the upper surface of T-section beam 14′, a left edge 53′ (as seen in
A plurality of spaced apart bolt holes 60′ are formed through each attachment plate 50′ and through flanges 45′ of U-shaped attachment members 42′ and 43′. In this specific example and for maximum strength bolt holes 60′ in each flange 45′ are spaced approximately three inches apart and a short distance from the lower edge 54′ of attachment plates 50′. It will be understood that bolt holes 60′ can most efficiently be drilled or otherwise formed in the factory/shop, however, they can be formed or drilled by the workers during assembly if preferred.
Referring additionally to
Turning to
In this specific example, short U-shaped attachment members 76 are affixed to opposite side walls 78 and 79, respectively, of lower portion 72. Also, short U-shaped attachment members 80 are affixed to opposite side walls 82 and 84, respectively, of upper portion 74. In this specific, example each of the four members 76 and 80 are approximately 15 inches long and are attached to the column portions 72 and 74, respectively, by pre-welding at the factory/shop with the U-shape opening outwardly to form four attachment flanges 86, one at each corner of the column portions 72 and 74. U-shaped attachment members 42 and 43 may be preformed in the factory/shop in a manner and from materials similar to that described above for channels 30. For example, each U-shaped member has a major wall approximately 6 inches wide and side walls approximately 3 inches wide.
An elongated steel plate 90 is then bolted to the inner surface of each flange 86 by means of bolts 92. In this specific example, each of the four steel plates 90 are approximately thirty inches long by two and one half inches wide by five eighths inches thick. It will be understood that bolt holes for bolts 92 through steel plates 90 and mating holes through flanges 86 can most efficiently be drilled or otherwise formed in the factory/shop, however, they can be formed or drilled by the workers during assembly if preferred.
Turning to
A steel plate 108 is affixed to each of the opposed short sides of lower portion 104 and similar steel plates 110 are affixed to the opposed short sides of upper portion 106 of the column. In this specific example, steel plates 108 and 110 all are approximately fifteen inches long, six inches wide and five eighths inches thick. Also steel plates 108 are formed with a collar 112 affixed to the upper edge thereof. Collar 112 extends completely around the upper end of lower portion 104 and, in this specific embodiment is approximately twenty one inches long by 12 inches wide by one and one fourth inches thick. Collar 112 is affixed to the upper ends of plates 108 by welding or the like. Similarly, steel plates 110 are formed with a collar 114 affixed to the lower edge thereof. Collar 114 extends completely around the lower end of upper portion 106 and, in this specific embodiment is approximately twenty one inches long by 12 inches wide by one and one fourth inches thick. Collar 114 is affixed to the lower ends of plates 110 by welding or the like. Both collars 112 and 114 have bolt holes 116 formed therethrough adjacent the corners thereof. The welds fixing collars 112 and 114 to plates 108 and 110, respectively are performed at the shop/factory. Also, it will be understood that bolt holes 116 through collars 112 and 114 can most efficiently be drilled or otherwise formed in the factory/shop, however, they can be formed or drilled by the workers during assembly if preferred. At the site bolts 120 are inserted through holes 116 to firmly splice lower portion 108 and upper portion 110 fixedly together into one continuous column.
Turning to
A steel plate 136 is affixed to each of the opposed short sides of lower portion 132 and similar steel plates 138 are affixed to the opposed short sides of upper portion 134 of the column. In this specific example, steel plates 136 and 138 all are approximately fifteen inches long, six inches wide and five eighths inches thick. In addition, each of the two lower steel plates 136 has an outwardly directed flange 140 extending the length of the upper edge and each of the two upper steel plates 138 has an outwardly directed flange 142 extending the length of the lower edge. Each flange 140 and 142 has a pair of bolt holes 144 formed therein and when upper portion 138 is aligned with lower portion 136 bolt holes 144 in the flanges are aligned so that bolts 146 can be inserted and tightened to firmly splice lower portion 136 and upper portion 138 fixedly together into one continuous column.
Turning now to
Thus, it will be understood that the new and improved flat roof structure can be easily bolted together at the site and does not require any on-site welding or any special tools. All welding, and bolt holes if desired, can be performed off-site at the shop/factory prior to transportation of the components to an assembly site. At the site the workers or construction people only need to bolt components together so that assembly requires a minimum amount of work and time. Also, in instances where components may be too large to transport conveniently (e.g. vertical columns) smaller components can be formed and then assembled with a minimum of effort at the site.
Various changes and modifications to the embodiment herein chosen for purposes of illustration will readily occur to those skilled in the art. To the extent that such modifications and variations do not depart from the spirit of the invention, they are intended to be included within the scope thereof which is assessed only by a fair interpretation of the following claims.
Having fully described the invention in such clear and concise terms as to enable those skilled in the art to understand and practice the same, the invention claimed is:
This application claims the benefit of U.S. Provisional Patent Application No. 61/481,747, filed 3 May 2011.
Number | Date | Country | |
---|---|---|---|
61481747 | May 2011 | US |