The invention relates to a flat gasket, in particular to an exhaust-side gasket for an internal combustion engine.
Metal gaskets are being used today for seals of this kind. The selection of material for such a gasket is based on the highest temperature, or the temperature of continuous operation, respectively. Due to the fact that modern driving mechanisms and motors have increasingly more stringent requirements with respect to the sealing technology and since both the combustion pressures and combustion temperatures are constantly increasing, ever higher-quality materials have to be used in order to satisfy these requirements.
In EP 0 955 489 B1, a metal gasket with different surface pressure areas is described, which contains a first, a second and a third metal plate, whereby the first and the second metal plates have beaded areas and the third metal plate is operatively connected to the first and the second metal plates by means of beading over an internal area.
JP 02286859 A describes a cylinder-head gasket with locking elements for accommodating inserts in the area of the middle clearance hole.
The objective of the invention is to provide a flat gasket, in particular an exhaust-side gasket for internal combustion engines, in which, by optimization of the applied materials, on the one hand, a price reduction compared to the traditional flat gaskets is ensured, and on the other hand a simpler constructive design is achieved.
This objective is achieved by means of a flat gasket, in particular an exhaust-side gasket for an internal combustion engine, built by a sealing element having at least one layer and provided with a recess, said sealing element consisting of high-quality, in particular very temperature-resistant metallic material, as well as of a carrier element accommodating the sealing element and made of low-grade metallic material, wherein the carrying element accommodates and guides the sealing element in such a way that the sealing element can be fixed and mounted.
Further advantageous embodiments of the subject matter of the invention are indicated in the dependent claims.
Therefore, with the subject matter of the invention a kind of hybrid solution consisting of two different materials is created, wherein only the relatively narrow sealing area, which is subjected to high temperatures only, is built by a sealing element made of very high-quality temperature-resistant material. In the carrier element for this sealing element, a metal sheet of considerably less expensive material can be used, which basically serves only to implement the respective layer thickness, to connect, if necessary, several sealing elements one to the other and to form the entire gasket in a manner so as to be fixed and mounted.
By means of a specific combination of suitable materials, it is possible to achieve a considerable cost-effective advantage compared to the solutions used until now, so that now the entire gasket need not be made anymore of high-quality materials but only the materials that are partially used in the sealing area.
The connection between the sealing element and the carrier element is achieved advantageously on a mechanical basis by means of interlocking.
A flat gasket according to the invention can be advantageously used as exhaust flange sealing.
In addition, a method for manufacturing of a flat gasket is proposed, wherein one, at least one-ply sealing element with a predefined contour is punched out so that one single carrier element or several elements, which are connected to one carrier element, are punched out, whereby the carrier element has a punch hole and on the side of the sealing element studs are stamped from the sealing element or elements, so that the studs are at least partially expanded, so that the sealing element is applied individually on the studs or on the carrier element, respectively, and that additional studs are reformed to create a snap connection in the direction of the sealing element.
This type of mechanical connection can be easily produced and can be created with the technologies currently available on the market.
With the help of a corresponding pressing operation, the studs can function as additional sealing means. They can, for example, be used for micro-sealing when certain material, which is soft enough and can flux, is used as a carrier metal sheet. The studs can serve also as stopper elements insofar as the material of the carrier metal sheet is sufficiently strong or rigid. Another advantage of the clamping with such studs is that the thermal conduction or the heat dissipation, respectively, can be configured to the number and the shape of the studs. In this way it is possible to combine very different materials with very different temperature ranges with each other.
In addition, by using this type of clamping it is possible to determine whether and how much clearance (radial clearance) there is or has to be between the sealing element and the carrier element. In this way, differences between the thermal expansion and thermally conditioned stresses associated therewith can be balanced for both materials.
In particular, Ni—Cr—Fe alloys are suitable as materials for the sealing element, whereby other temperature-resistant alloys can also be used. The carrier element can consist of commercially available steel, e.g. cold-rolled strip.
The subject matter of the invention is presented in the figures below by means of one design embodiment and is described as follows. The figures show the following:
FIGS. 1 and 2—the basic design of the flat gasket according to the present invention consisting of a carrier element and a sealing element;
FIGS. 3 and 4—cross sections through variants of the connection between the carrier element and the sealing element;
FIG. 5—alternative design embodiment to
FIG. 6—alternative design embodiment to
Both the carrier element 2 and the sealing element 4 are stamped from suitable plate-like primary products, whereby the punch hole 3 of the carrier element 2 corresponds to the outside perimeter of the elongated sealing element 2. In addition, the studs 5 are stamped out on the side of the punch hole and are expanded in the opposite direction. The sealing element 2 is mounted on the individual bottom studs 5 and then the top studs 5 are reformed in the direction of sealing element 2, so that it—as can be seen in
Number | Date | Country | Kind |
---|---|---|---|
102008006676.1 | Jan 2008 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/DE08/02048 | 12/6/2008 | WO | 00 | 7/29/2010 |