This application claims priority to German Application No. DE 10 2017 223 616.7, filed on Dec. 21, 2017, the contents of which are hereby incorporated by reference in its entirety.
The invention relates to a flat tube for an exhaust gas cooler, in particular for a motor vehicle.
In a motor vehicle, a hot exhaust gas from the diesel engine is usually cooled in an exhaust gas cooler and admixed to the intake air in order to reduce the pollutant quantity—in particular the quantity of nitrogen oxides—in the exhaust gas. Here, a generic exhaust gas cooler comprises a tube bundle of multiple flat tubes for the hot exhaust gas, which on both sides open into a tube sheet. Here, the flat tubes can be rectangular or rounded and have two wide sides located opposite and two narrow sides located opposite in each case. A coolant flows about the flat tubes and absorbs the heat of the hot exhaust gas, as a result of which the hot exhaust gas is cooled. Here, rectangular flat tubes have a higher pressure stability than rounded flat tubes even in the case of large production tolerances. By contrast, the exhaust gas coolers with rounded flat tubes have a lower coolant requirement for preventing boiling.
The efficiency of the diesel engine decreases with the rising temperature of the recirculated exhaust gas. From the prior art, different solutions for increasing the cooling output of the exhaust gas cooler and thereby the efficiency of the diesel engine are already known. Accordingly, rectangular flat tubes are described in EP 2 267 393 B1, WO 2017/140851 A1 and EP 1 682 842 B1, in which multiple turbulence projections—so-called winglets—projecting into the flat tube are moulded onto the wide sides. By way of the turbulence projections, the exhaust gas in the flat tube—a so-called winglet tube—is mixed and because of this also cooled better. In addition, an unobstructed exhaust gas flow through the flat tube can also be prevented along the narrow sides. Disadvantageously, the turbulence projections cannot reach too closely to the rounded narrow sides or too closely to the lateral edge of the flat tube as with a rectangular flat tube, since the turbulence projections can only be stamped in flat regions of the flat tube. In order to nevertheless achieve a comparable cooling output of the exhaust gas cooler, additional lateral projections—as described in DE 10 2012 217 333 A1—can be stamped into the rounded narrow sides.
Usually, the flat tube is produced from a stamped flat tube strip, wherein the flat tube strip comprises a first wide side, a first narrow side, a second wide side, a first part of a second narrow side and a second part of the second narrow side. The first part of the second narrow side adjoins the first wide side and the second part of the second narrow side adjoins the second wide side. During the production, the flat tube strip is folded along the first narrow side so that the first part and the second part of the second narrow side lie against one another. The two parts of the second narrow side are then fixed to one another in a firmly bonded manner—for example by laser welding. A connecting seam then connects the two parts of the second narrow side to the respective second narrow side. The rectangular flat tubes are easier to produce and also have a higher pressure stability at the connecting seam even with large manufacturing tolerances, the flat tubes that are rounded on the narrow sides are more involved in the manufacture, since in particular an accurate arranging of the rounded parts of the narrow sides relative to one another is very complex.
The object of the invention therefore is to state an improved or at least alternative embodiment for a rounded flat tube of the generic type, with which the described disadvantages are overcome.
According to the invention, this object is solved through the subject of the independent claim(s). Advantageous embodiments are subject of the dependent claim(s).
A generic flat tube for an exhaust gas cooler, in particular for a motor vehicle, comprises two flat wide sides and two rounded narrow sides, which in each case in parallel and located opposite one another. In the wide sides, multiple turbulence projections projecting into the flat tubes are moulded, which are elongated and have an angle to the longitudinal direction of the flat tube. The multiple turbulence projections on the wide sides are arranged in two flow rows that are parallel to the longitudinal direction of the flat tube, between which multiple support projections projecting out of the flat tube are moulded. According to the invention, the respective narrow side has an elongated flat region which, via rounded corner regions of the respective narrow side, merges into the wide sides. Here, the flat region extends in the longitudinal direction of the flat tube and perpendicularly to the two wide sides, and is arranged in the middle or the respective narrow side relative to the two wide sides.
The rounded corner region of the respective narrow sides consequently merges into the flat region, which is orientated in the middle in the respective narrow sides and in the longitudinal direction. Here, the narrow side is formed from two corner regions and the flat region connecting the corner regions. Here, the flat tube can be produced from a flat tube strip which comprises the first wide side, the first narrow side, the second wide side and the second narrow side. The second narrow side is divided in the longitudinal direction on the flat region and the flat tube strip then has a corner region each and a flat region part of the second narrow side each. During the production, the flat tube strip can be folded together along the flat region of the first narrow side and the two flat region parts of the second narrow side arranged against one another because of this. Following this, the two flat region parts of the second narrow side can be fixed to one another in a firmly bonded manner—for example by laser welding. A connecting seam then connects the two flat region parts of the second narrow side in a firmly bonded manner to the flat region, so that the two narrow sides in each case are formed from the flat region and the corner regions lying against the flat region on both sides. By way of the flat region parts of the second narrow side, producing the rounded flat tube can be substantially simplified. Furthermore, the flat tube according to the invention has a high pressure stability even with large production tolerances, since in contrast with a conventional rounded flat tube when the second narrow side is subjected to an interior pressure loading through the exhaust gas, the maximum stress is not applied to the connecting seam of the second narrow side. A length of the respective flat region can correspond to a length of the narrow side. A width of the respective flat region extending perpendicular to the two wide sides can be between 0.5 mm and 0.9 mm, preferably between 0.65 mm and 0.75 mm.
In a further development of the flat tube according to the invention it is provided that in the wide sides, nub-like mouldings projecting into the flat tube are moulded, which in each case are arranged between the two flow rows of the turbulence projections and in each case in the longitudinal direction of the flat tube in a row one behind the other. The nub-like mouldings project into the flat tube and lie between the two flow rows of the turbulence projections. The nub-like mouldings project into the flat tube and lie between the two flow rows of the turbulence projections. In this way, the flow cross section of a flow passage between the two flow rows of the turbulence projections in the flat tube can be reduced. In particular, the exhaust gas cannot flow through the flow passage without obstruction and is therefore cooled better. A substantially semi-spherical base of at least some of the nub-like mouldings can have a diameter between 0.5 mm and 2 mm, preferably between 0.8 mm and 1.5 mm. Furthermore, at least some of the nub-like mouldings can have a depth between 0.5 mm and 1.8 mm, preferably between 1.0 mm and 1.5 mm. The cooling output in the flat tube with the nub-like mouldings roughly corresponds to the cooling output in a rectangular flat tube even without lateral projections projecting into the narrow sides. The flat tube can be produced in a simpler manner and the advantages of the rounded flat tube—such as for example a lower coolant requirement for preventing boiling in the exhaust cooler—are retained.
Advantageously it can be provided that the row of the nub-like mouldings in the one wide side and the row of the nub-like mouldings in the other wide side are located opposite. Here, at least some of the nub-like mouldings in the one row alternative with at least some of the nub-like mouldings in the other row in the longitudinal direction. In this way, the nub-like mouldings in the one wide side and the nub-like mouldings in the other wide side alternatingly conduct the flowing exhaust gas onto one another. In the process, too severe a local cross-sectional reduction of the flow passage between the two flow rows of the turbulence projections and too severe a pressure loss in the flat tube are avoided. Advantageously, the cooling output is retained. Furthermore it can be provided that the nub-like mouldings and the support projections are arranged in a row. The row of the nub-like mouldings and of the support projections can be arranged in the middle in the respective wide side relative to the two narrow sides. In this way, the respective wide side can also be moulded symmetrically to the longitudinal direction.
Advantageously, a base of the turbulence projections can have a length between 3.5 mm and 8 mm, preferably between 5 mm and 6 mm. Alternatively or additionally, the turbulence projections can have a depth between 0.5 mm and 1.8 mm, preferably between 1.4 mm and 1.6 mm. Advantageously, the angle of the turbulence projections to the longitudinal direction of the flat tube can be between 18° and 31°, preferably between 22° and 25°. Consequently, the turbulence projections can be moulded longitudinally and by the angle to the longitudinal direction of the flat tube conducts the exhaust gas in the flat tube also transversely to the longitudinal direction. In this way, the flow of the exhaust gas through the flat tube can be specifically influenced and by way of this the cooling output of the exhaust gas cooler increased.
It can also be provided that the turbulence projections in the respective wide side are arranged in the longitudinal direction into at least one x-shaped arranged and into at least one o-shaped arrangement. The x-shaped arrangement and the o-shaped arrangement are symmetrical to the longitudinal direction so that the exhaust gas in the flat tube can be conducted symmetrically to the longitudinal direction. The x-shaped arrangement conducts the exhaust gas in an inflow direction first half of the narrow sides into the middle of the flat tube and in an inflow direction second half out of the middle to the narrow sides. The o-shaped arrangement conducts the exhaust gas in an inflow direction first half from the middle of the flat tube to the narrow sides and in an inflow direction second half from the narrow sides into the middle of the flat tube. In this way, the exhaust gas can be specifically conducted in the flat tube and the cooling output of the exhaust gas cooler increased.
Advantageously, the x-shaped arrangements and the o-shaped arrangements on the respective wide side can alternate in the longitudinal direction. Furthermore, the x-shaped arrangement can be located opposite the one wide side of the o-shaped arrangement of the other wide side. In this way, an excessive local cross-sectional reduction of the flat tube between the wide sides and an excessive pressure loss in the flat tube are avoided, while the cooling output is advantageously retained. The support projections can then be arranged in the o-shaped arrangement of the respective wide side.
Advantageously, the flat tube can be flow-symmetrically designed, wherein the one wide side corresponds to the other wide side that is perpendicularly mirrored (i.e., non-reversed mirrored, flip mirrored, etc.) relative to the longitudinal direction. By way of this, producing the exhaust gas cooler can be simplified in particular since no additional orientation of the flat tube is necessary. The flat tube can have a width between 13 mm and 18 mm, preferably between 15 mm and 17 mm. Alternatively or additionally, a height of the flat tube can be between 3.8 mm and 5 mm, preferably between 4 mm and 4.6 mm. Furthermore, flat tube can have a wall thickness between 0.35 mm and 0.5 mm, preferably between 0.37 mm and 0.42 mm.
Altogether, the flat tube according to the invention can be produced in a simplified manner and has a high pressure stability even with large manufacturing tolerances. Through the nub-like mouldings in the flat tube, the flow cross section of the flow passage between the two flow rows of the turbulence projections can be reduced, furthermore. In particular, unobstructed flowing through of the exhaust gas can thereby be prevented and the cooling output of the exhaust gas cooler be increased even without lateral projections in the narrow side that are expensive to produce. At the same time, the advantages of the rounded flat tube—such as for example a lower coolant requirement for preventing boiling in the exhaust gas cooler—are retained.
Further important features and advantages of the invention are obtained from the subclaims, from the drawings and from the associated figure description by way of the drawings.
It is to be understood that the features mentioned above and still to be explained in the following cannot only be used in the respective combination stated but also in other combinations or by themselves without leaving the scope of the present invention.
Preferred exemplary embodiments of the invention are shown in the drawings and are explained in more detail in the following description, wherein same reference characters relate to same or similar or functionally same components.
It shows, in each case schematically
The narrow sides 3a and 3b each have an elongated flat region 12 (e.g., a planar region), which via rounded corner regions 13 of the respective narrow sides 3a and 3b merges into the wide sides 2a and 2b. Here, the flat region 12 extends in the longitudinal direction 5 of the flat tube 1 and is arranged perpendicularly to the two wide sides 2a and 2b in the middle of the respective narrow sides 3a and 3b. A length of the respective flat region 12 corresponds to a length of the narrow sides 3a or 3b respectively to a length of the flat tube 1. The respective narrow sides 3a and 3b are consequently formed of the corner regions 13 and the flat region 12 connecting the corner regions 13. The flat tube 1 is produced from a stamped flat tube strip 14, wherein the flat tube strip 14 comprises the wide sides 2a and 2b, the narrow side 3a and on both sides a corner region 13 each and in each case a flat region part 12a or 12b of the narrow side 3b, as shown in
During the manufacture, the flat tube strip 14 is folded together on the narrow side 3a along the flat region 12 and the two flat region parts 12a and 12b of the narrow side 3b are fixed to one another in a firmly bonded manner—for example welded. A connecting seam 15 then connects the two flat region parts 12a and 12b in a firmly bonded manner to form the flat region 12, so that the narrow side 3b is formed of the flat region 12 and the corner regions 13 lying against the flat region 12 on both sides. The flat region parts 12a and 12b of the narrow side 3b substantially simplify the production of the flat tube 1. Furthermore, the flat tube 1 according to the invention has a high pressure stability even with large manufacturing tolerances, since in contrast with a conventional rounded flat tube the stress, during an internal pressure loading of the narrow side 3b by the exhaust gas, does not lie on the connecting seam 15 of the narrow side 3b.
Altogether, producing the flat tube 1 according to the invention can be substantially simplified. Furthermore, the flat tube 1 according to the invention has a high pressure stability even with large manufacturing tolerances. Because of the nub-like mouldings 16 in the flat tube 1, the flow passage 10 between the two flow rows 6a and 6b of the turbulence projections 4 can be reduced, furthermore, and because of this the cooling output of the exhaust gas cooler increased.
Number | Date | Country | Kind |
---|---|---|---|
102017223616.7 | Dec 2017 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
2181927 | Townsend | Dec 1939 | A |
3157229 | Wennerberg | Nov 1964 | A |
3757855 | Kun | Sep 1973 | A |
3757856 | Kun | Sep 1973 | A |
3810509 | Kun | May 1974 | A |
4024623 | Kun | May 1977 | A |
4119144 | Kun | Oct 1978 | A |
5175975 | Benson | Jan 1993 | A |
5369883 | So | Dec 1994 | A |
5441105 | Brummett | Aug 1995 | A |
5538077 | So | Jul 1996 | A |
5730213 | Kiser | Mar 1998 | A |
5768782 | Kato | Jun 1998 | A |
5996633 | Kato | Dec 1999 | A |
6209629 | Halt | Apr 2001 | B1 |
6286201 | Prater | Sep 2001 | B1 |
6453988 | Nakado | Sep 2002 | B1 |
6470964 | Nakado | Oct 2002 | B1 |
6698509 | Rong | Mar 2004 | B2 |
6935418 | Valaszkai | Aug 2005 | B1 |
6938685 | Duerr | Sep 2005 | B2 |
6997248 | Shabtay | Feb 2006 | B2 |
7055586 | Sakakibara | Jun 2006 | B2 |
7610949 | Palanchon | Nov 2009 | B2 |
7618598 | Reinke | Nov 2009 | B2 |
7661415 | Nakamura | Feb 2010 | B2 |
7857039 | Nakamura | Dec 2010 | B2 |
7934541 | Park | May 2011 | B2 |
8235098 | Agee | Aug 2012 | B2 |
8267163 | Stewart | Sep 2012 | B2 |
9243851 | Viswanathan | Jan 2016 | B2 |
10520261 | Brunner | Dec 2019 | B2 |
20050081379 | Askani | Apr 2005 | A1 |
20060201665 | Yu | Sep 2006 | A1 |
20070107882 | Geskes et al. | May 2007 | A1 |
20070209788 | Jing et al. | Sep 2007 | A1 |
20090188655 | Agee | Jul 2009 | A1 |
20120067557 | Geskes et al. | Mar 2012 | A1 |
20150247680 | Brunner et al. | Sep 2015 | A1 |
20170205153 | Hermida Dom Nguez | Jul 2017 | A1 |
20180017024 | Hermida Dominguez | Jan 2018 | A1 |
20200049413 | Ojiro | Feb 2020 | A1 |
Number | Date | Country |
---|---|---|
101033925 | Sep 2007 | CN |
201302409 | Sep 2009 | CN |
201514141 | Jun 2010 | CN |
202582316 | Dec 2012 | CN |
102004045923 | May 2005 | DE |
102012217333 | Mar 2014 | DE |
2267393 | Dec 2010 | EP |
1682842 | Jun 2014 | EP |
2 090 651 | Jul 1982 | GB |
2017140851 | Aug 2017 | WO |
Entry |
---|
Chinese Office Action dated Jan. 4, 2022 for copending Chinese Appl. No. 201811533742.5 (with English translation). |
English abstract for CN201514141. |
English abstract for CN201302409. |
English abstract for CN202582316. |
Chinese Office Action dated Mar. 3, 2021 for copending Chinese Appl. No. 201811533742.5. |
Chinese Office Action dated Apr. 8, 2022 for copending Chinese App. No. 201811533742.5 (with machine English translation). |
Excerpt from “Petroleum refinery equipment”, edited by Sinopec Beijing Design Institute, Sinopec publishing house, pp. 293-294, Jun. 1, 2001 (referred to as E4 in the Chinese Office Action dated Apr. 8, 2022). |
Number | Date | Country | |
---|---|---|---|
20190195575 A1 | Jun 2019 | US |