The invention relates to the design of the tube of a heat exchanger and, more particularly, to the design of a heat exchanger for use in applications where space for the heat exchanger is in short supply, and/or in connection with transcritical vapor compression systems.
Heat exchange efficiency is a concern in connection with heat exchangers, for example heat exchangers used in various refrigeration and other air handling applications. Various types of heat exchangers have been provided, including tubes having fins and the like. The need remains, however, for a heat exchanger configuration which provides excellent heat exchange efficiency while occupying a relatively small space.
It is the primary object of the present invention to provide a heat exchanger meeting this need.
Other objects and advantages of the present invention will appear herein.
According to the invention, the foregoing objects and advantages have been attained.
According to the invention, a refrigeration system is provided which includes a compressor for driving a refrigerant along a flow path in at least a first mode of system operation; a first heat exchanger along the flow path downstream of the compressor in the first mode; a second heat exchanger along the flow path upstream of the compressor in the first mode; and a pressure regulator or expansion device in the flow path downstream of the first heat exchanger and upstream of the second heat exchanger in the first mode, wherein at least one of the first heat exchanger and the second heat exchanger comprises a flat tube heat exchanger.
The flat tube heat exchanger is preferably a heat exchanger defined by a serpentine bending of a single flat tube heat exchanger. Further, the flat tube heat exchanger itself advantageously comprises a conduit for carrying refrigerant, wherein the conduit has a height or minor dimension, and a width or major dimension, and wherein the heat exchanger is arranged with the short dimension facing into the flow of heat exchange medium such as air.
a) and 9(b) are schematic cross sections of embodiments of the flat tube heat exchanger of the present invention.
The invention relates to vapor compression systems and, more particularly, to a heat exchanger tube configuration for such systems, particularly for transcritical vapor compression systems such as those operated with CO2.
For transcritical CO2 refrigeration systems, to maintain peak efficiencies it is critical to minimize the temperature difference between the hot and cold fluid at the exit of the high-side (gas cooler) heat exchanger. Due to higher densities of CO2 in comparison with conventional HFC, for a given temperature, pressure, and mass flux, the refrigerant-side heat transfer coefficients and pressure drop for CO2 are smaller. Thus for CO2 heat exchangers it is imperative to have higher refrigerant mass fluxes which will increase not only CO2 heat transfer coefficients but also CO2 pressure drop. However, the net effect should be to increase overall heat exchanger effectiveness while limiting the CO2 pressure drop below a certain limit such that higher cycle efficiency can be attained.
For some applications, such as bottle or beverage coolers and other refrigeration applications, due to air-side fouling constraints, additional air-side surface area in the form of fins is limited thus limiting the total surface area. This necessitates a heat exchanger to have reduced air-side blockage and significantly reduced resistance on the refrigerant-side i.e. CO2.
Additionally, in the case of an evaporator, the heat exchanger should have uniform refrigerant distribution and satisfactory condensate drainage in order to improve overall heat exchanger effectiveness and reliable operation of the compressor.
The heat exchanger combines the benefits of flat surfaces, single/multiple ports, single serpentine, multiple rows, counterflow, cross-counterflow, high heat transfer coefficients, low cost, suitable materials, corrosion resistant, high burst strength, ease of manufacturing, and reduced air blockage which helps to achieve size, efficiency, cost and reliability constraints of a CO2 bottle cooler refrigeration system.
One of the ways to increase overall heat exchanger effectiveness is to have a flat tube heat exchanger.
As set forth above, in accordance with the present invention, an improved heat exchanger tube configuration is provided which is particularly useful in vapor compression systems which use a transcritical refrigerant, for example, CO2.
As will be set forth below, the flat tube heat exchanger in accordance with the present invention provides enhanced function per space occupied by the heat exchanger tubes, and can therefore be utilized to allow the heat exchanger to take up less space, thereby freeing up such space for use in other capacities. For example, it should readily apparent from a consideration of
As shown, the flat tube heat exchanger in accordance with the present invention is defined by a refrigerant conduit which has a substantially rectangular outer shape and which has an internally-defined flow passage for carrying refrigerant.
The outside shape of flat tube 46, also referring to
With reference also to
From a consideration of
As set forth above, the internal flow path for refrigerant defined within a flat tube heat exchanger can have a variety of different shapes.
b, on the other hand, shows flat tube 46 having flow passages defined as a series of substantially circular flow paths 48, in this case five (5) circular flow paths, which extend in substantially parallel relationship along the length of flat tube 46.
Such a heat exchanger, as described above, provides higher overall heat transfer coefficients owing to higher refrigerant mass fluxes (hence higher CO2 heat transfer coefficient) and lower air-side pressure drop due to reduced air-side blockage by a flat tube compared to a conventional round tube. Based on the flow cross-sectional area of the flat tube, the overall length of the flat tube could be designed such that the CO2 pressure drop is below an acceptable limit enabling higher cycle efficiencies for the range of operating conditions.
Additionally, for operation as an evaporator, the use of a single circuit (one inlet and one outlet) could eliminate CO2 maldistribution, which is inherently present in the case of a heat exchanger (conventional or flat tube) with multiple inlets and outlets. Moreover the heat exchanger orientation should be such that the tubes lie in the vertical plane as shown in
The flat tube heat exchanger could have one or multiple ports. Multiple ports help to withstand high operating pressures, an inherent characteristic of a transcritical CO2 vapor compression refrigeration system, and reduces CO2 pressure drop which in turn helps to improve thermal performance.
The flat tube (single or multi ports) could be easily made out of Copper or Aluminum or other suitable material that can withstand high burst pressures of transcritical CO2 refrigeration system and could be bent and/or brazed at one or both ends to form one continuous serpentine heat exchanger as shown in the drawings. The fins could be connected mechanically or brazed to the flat surface of the tubes. Moreover the tube and/or fin material may be treated (coating, heat etc.) to increase corrosion resistance of such heat exchangers.
In another design, multiple rows of these flat tube single serpentine heat exchangers could be interconnected while maintaining single circuiting and with flow going from one row to another such that it closely resembles counter-flow arrangement (between air and CO2) which is well known for high efficiency. Counter-flow arrangement is very critical for CO2 gas coolers for which the temperature gradient between the hot and cold fluids must be a minimum to maintain peak cycle efficiency.
Such a heat exchanger would be very useful for CO2 bottle cooler applications wherein the design of the heat exchanger is highly constrained by space and cost limitations and existing round-tube plate fin heat exchangers cannot provide a feasible solution.
This invention is especially beneficial for compact commercial refrigeration systems such as bottle coolers etc.
Existing heat exchangers for vapor compression systems are typically round-tube plate-fin heat exchangers with tube diameters of 1-7 mm or larger. For transcritical CO2 vapor compression systems such tubes provide low efficiency due to higher density of CO2 compared with conventional HFC refrigerants like R134a, R404a etc. Flat tube (multiple ports) heat exchangers with flow cross-sectional area much smaller than typical round tube heat exchangers are well known to reduce air-side flow resistance and improve heat transfer coefficients on the refrigerant side. However, use of such heat exchangers is limited by major technical challenges like maldistribution of refrigerant, poor condensate drainage, reduced burst strength, cross-flow arrangement, and high cost and complexity of fabrication including, but not limited to, expensive brazing of multiple tubes connected to manifolds at either ends, brazing of fins to tube surfaces, and low thermal conductivity material of the tubes for ease of brazing etc.
Such a heat exchanger is not found to exist for transcritical CO2 bottle cooler systems wherein minimization of the temperature gradient between hot and cold fluids at the exit of the gas cooler (high-side heat exchanger) is highly critical to maintain peak-efficiency.
For a bottle cooler evaporator, the single serpentine vertical tube configuration eliminates major technical challenges like maldistribution and condensate drainage which otherwise would limit use of such heat exchangers as evaporators, while still maintaining high CO2 heat transfer coefficients and reduced CO2 pressure drop.
The heat exchanger combines benefits of flat surfaces, single or multiple ports, single serpentine, multiple rows, high heat transfer coefficients, low cost, suitable materials, corrosion resistance, high burst strength, ease of manufacturing, and reduced air blockage which helps to achieve size, efficiency, cost and reliability constraints of a bottle cooler refrigeration system.
The compact characteristic of the flat surface heat exchanger can allow changes to the physical location of the heat exchanger inside the beverage cooler such that the entire footprint of the beverage cooler can be reduced while maintaining or increasing the system efficiency. For example, the high-side heat exchanger can be moved to other locations, thereby creating additional space which can be utilized for other purposes such as air management for the hot or cold surfaces etc.
The compact characteristics of such a heat exchanger would also result in reduction in the amount of refrigerant or charge within the refrigeration system and therefore reduce cost which is highly constrained for bottle cooler applications.
As set forth above, range of different specifications of such flat tube heat exchangers could be, tube width or major dimension from 12.7 mm to 101.6 mm; tube height or minor dimension from 0.5 mm to 4 mm; single or multi-port, circular or non-circular ports, flow hydraulic diameter from 0.1 mm to 3 mm; tube pitch or transverse center to center distance between tubes from 5 mm to 50 mm; row pitch or longitudinal center to center distance between tubes from 12.7 mm to 50 mm; fin density from 0 to 20 fins per inch, single or multiple rows up to 20.
A preferred embodiment proposed for the high-side heat exchanger or gas cooler for bottle or beverage cooler applications would have, 25.4 mm tube width, 2.0 mm tube height, 12 circular ports, 11.0 mm port hydraulic diameter, 12.7 mm tube pitch, 4 fins per inch, single row heat exchanger.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, when implemented as a remanufacturing of an existing system or reengineering of an existing system configuration, details of the existing configuration may influence details of the implementation. Accordingly, other embodiments are within the scope of the following claims.
This applications claims the benefit of the filing date of earlier filed provisional application Ser. No. 60/663,957 filed Mar. 18, 2005. Further, copending application docket 05-258-WO, entitled HIGH SIDE PRESSURE REGULATION FOR TRANSCRITICAL VAPOR COMPRESSION SYSTEM and filed on even date herewith, and the aforesaid provisional application Ser. No. 60/663,962, disclose prior art and inventive cooler systems. The disclosure of said applications is incorporated by reference herein as if set forth at length.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US05/47527 | 12/30/2005 | WO | 00 | 9/14/2007 |
Number | Date | Country | |
---|---|---|---|
60663957 | Mar 2005 | US |