1. Field of the Invention
The instant disclosure relates to a vacuum glass structure. In particular, the instant disclosure relates to a flat vacuum glass structure that achieves internal vacuum by means of air extraction through a pumping tube.
2. Description of Related Art
Vacuum in a glass structure can be achieved by first using two glass substrates separated at a suitable distance in between, bonding them with adhesives at the periphery, and then exhausting/extracting air molecules from the internal cavity with a vacuum pump, and further placing the getter material in the cavity. The internal vacuum pressure may range approximately from 10−2 to 10−7 torr. This conventional technique can be applied to vacuum glass components in the Field Emission Display (FED), Vacuum Fluorescent Display (VFD), Plasma Display Panel (PDP), and so forth.
There are several ways for making the vacuum glass. For example, one common approach is to extract gas molecules out of the cavity through a glass pumping tube, and then hermetically seal and truncate the tube. The truncation of the hermetic seal is accomplished by melting the glass pumping tube with a local heating process upon completion of vacuum extraction system. However, because the working temperature required to melt glass is relatively high, the heating point for melting the glass pumping tube can not be too close to the glass substrate, thus to prevent cracking in the glass substrate due to the effect of high thermal gradient. As a result, a small piece of the glass pumping tube will unavoidably remain on the outside of the glass substrate after the fusion and cut-off processes. This type of glass pumping tube would leave a remaining protrusion from the surface of the glass substrate. In applications, although this problem may be reduced through suitable mechanical designs, the conventional design still can not achieve total planarization on the surface of the vacuum glass substrate. Furthermore, basing on numerous relevant experiments, it is shown that the protrusion of the glass pumping tube from the glass substrate is a necessary result from the conventional manufacturing technique, and is inevitable.
In order to resolve the aforementioned issue concerning the protrusion of the glass pumping tube from the glass substrate, a structural design of vacuum glass substrate has been developed. The improved design introduces a recessive gap respectively at the edges of two glass substrates, with the internal end of the pumping tube located inside of the cavity formed by the two glass substrates and the seal, and the axle of the pumping tube being parallel to the surface of the glass substrate, thereby allowing that the external end of the pumping tube after hermetic seal can be located within the geometric space constituting the gap so as to prevent the hermetically sealed pumping tube from protruding out of the two glass substrates.
However, during manufacturing processes, the internal end of the pumping tube is directly installed between the two glass substrates. This may lead to the existence of lower air transferring efficiency, or result in connection blockage in the pumping tube by the seal of the glass frit. Therefore, improvements for the aforementioned vacuum glass substrate structure remains to be desired.
Accordingly, in view of the amendable defects found in prior art as previously described, the inventors of the instant disclosure have proposed the instant disclosure featuring reasonable design and effectiveness in improving the aforementioned drawbacks.
The objective of the instant disclosure is to provide a vacuum glass substrate structure having enhanced of air transferring efficiency and eliminating pumping tube blockage. Besides, it can successfully achieve the planarization of glass surface without additional mechanism designs.
To accomplish the objective above, the instant disclosure provides a vacuum glass substrate structure comprising at least two glass substrates arranged parallel to each other with a constant distance in between and the glass frit applied to join the peripheries of the glass substrates and seal the glass structure.
The glass substrates and the glass frit jointly constitute a hermetically sealed vacuum room. A receiving gap is installed at the periphery of the glass substrate toward the inward direction, and the internal surface of the glass substrate is further installed with an air chamber formed to be in communication with the vacuum room, as well as a glass tube groove for receiving a pumping tube. The air chamber is adjacent to the receiving gap, with the air chamber, the glass tube groove and the receiving gap being connected in series. The pumping tube is located within the receiving gap with the internal end of the pumping tube extending from the receiving gap into the air chamber through the glass tube groove, and is in communication with the air chamber. Glass fit adheres to the external edge of the pumping tube extending into the glass tube groove in order to hermetically seal the glass tube groove, while the external end of the pumping tube does not surpass the geometric space forming the receiving gap and is also sealed.
Preferably, the periphery of the air chamber, G, and the capacity of the air chamber, C, essentially follow the relationship equations as below:
G≧2×Pi×R and
C≧Pi×R2×h,
where Pi indicates the ratio of the circumference of a circle to the diameter (π), R the radius of the external circumference of the pumping tube, and h the interval between the two glass substrates.
The beneficial effects that the instant disclosure can provide include: a structure of air chamber is added to the location where the pumping tube couples to the internal vacuum room, such that during the aforementioned manufacture processes it facilitates to improve air transferring efficiency and eliminate concerns about such as accidental blockage in the pumping tube caused by the adherence of glass frit and the like, thus enhancing the product yield through the design of such an air chamber structure.
Besides, by means of the installation of such a receiving gap structure, the sealed and truncated pumping tube will not protrude out of the rim or surface of the two glass substrates, but accommodated inside of the receiving gap, so as to achieve the objective of planarization in the two glass substrates without any additional mechanism designs to overcome the defects in non-planarization.
In order to further appreciate the features and technical contents of the instant disclosure, references are made to the detailed descriptions and appended drawings as below; however, the appended drawings shown herein are simply referential and illustrative, rather than for limiting the scope of the instant disclosure.
Refer now to
The two glass substrates 2 are arranged parallel to each other and maintained a constant distance in between. A corresponding receiving gap 21 is disposed at the periphery thereof toward an inward direction. A glass tube groove 22 is further recessively disposed on the internal surface of the adjacent sides of the two glass substrates 2. The air chamber 5 is close to the receiving gap 21, and the glass tube groove 22 is connected in series with the air chamber 5 and the receiving gap 21. In addition, a supporter 4 is installed between the two glass substrates 2 thereby separating and supporting the two glass substrates 2 maintaining a constant interval in between.
The pumping tube 4 is placed at the receiving gap 21 in the glass substrate 1, with the internal end of the pumping tube 4 extends from the receiving gap 21 into the air chamber 12 through the glass tube groove 22 so that pumping tube 4 is allowed to communicate with the air chamber 12.
The glass frit 3 may be a glass paste, and is applied to the periphery of the two glass substrates 2 sealing the two glass substrates 2 hermetically (under a solidification condition of 460° C. for 30 minutes). Thus, the glass frit 3 and the two glass substrates 2 jointly form a vacuum room 14. Also, the glass fit 3 sticks to the outer rim of the pumping tube 4 and extends into the glass tube groove 22 to provide a hermetic seal between the edge of the glass tube groove 22 and the air chamber 12. Accordingly, the air chamber 12 can be in gas communication with the vacuum room 14.
To further illustrate the operations of vacuum extraction, a vacuum pump (not shown) is used to extract gas molecules from inside of the vacuum room 14 via the pumping tube 4, placing the vacuum room 14 under a highly vacuum state (10−2˜10−7 torr). During extractions, the internal end of the pumping tube 4 extends into the air chamber 12 and gradually pumps gas molecules out of the vacuum room 14, the inside of vacuum room 14 can thus reach the desired vacuum condition through extractions. Upon reaching the desired vacuum conditions, an appropriate heating devices, e.g., a heating coil 5, is employed to locally heat up the external end of the pumping tube 4 (at a preferred temperature ranging between 600° C. and 700° C.). The location where the pumping tube 4 is locally heated will melt and form a fusion bump thereby enabling completion of hermetic sealing to the pumping tube 4, resulting in evacuation of the vacuum room 14. Finally, as shown in
In the instant disclosure, as shown in
Preferably, the periphery of the air chamber 12, G, and the capacity of the air chamber 12, G, essentially follow the relationship equations as below:
G≧2×Pi×R and
C≧Pi×R2×h,
where Pi indicates the ratio of the circumference of a circle to the diameter (π), R the radius of the external circumference of the pumping tube, and h the interval between the two glass substrates.
In accordance with the equations illustrated as above, it is possible to effectively reduce the bottleneck existing in the air transferring flow and prevent the occurrence of pumping tube blockages. In the design of the instant disclosure, since the air chamber 12 and the pumping tube 4 respectively belong to two different geometrical blocks, due to the required communication between them, the external edge of the pumping tube 4 is therefore taken to define the minima of the volume and circumference in the air chamber 12 without imposing any limits on the geometry thereof. Thus, the air chamber 12 can be of cubic, elliptical, cylindrical, spherical or even irregular shapes, and the geometry of the air chamber 12 is only restricted by the minima of the volume and circumference thereof. However, the profile of the air chamber 12 is by no means limited to the cylinder-like shape shown in the diagram of the instant disclosure and the cross-section of the pumping tube 4 is not limited to be circular, either. The relationships regarding to geometry sizes between the air chamber 12 and the pumping tube 4 can be approximated based on the aforementioned equations or other suitable mathematic formula for further designing geometry sizes of the air chamber and the pumping tube.
In addition, the air chamber 12 can be further used for the placement of the getter material in order to provide and preserve the desired vacuum condition.
Also, in the embodiments shown as
From the illustrations set forth as above, it can be seen that the instant disclosure adds an air chamber structure at the location where the pumping tube links to the internal vacuum room, such that, during the aforementioned manufacture processes, the air transferring efficiency can be enhanced and the concerns about accidental blockage in the pumping tube by the glass frit and the like can be effectively prevented, thus achieving the improvement in product yields by means of the air chamber structure according to the instant disclosure.
Meanwhile, through the design of a receiving gap structure, the truncated pumping tube does not protrude out of the edge or surface of the two glass substrates. Rather, but the truncated end of the tube is contained inside of the receiving gap, such that the objective of surface planarization in the two glass substrates can be successfully achieved without having to install extra mechanism designs to eliminate such a non-planarization defects. Therefore, the instant disclosure advantageously enables applications in products like construction glasses, Field Emission Display (FED), Vacuum Fluorescent Display (VFD), Plasma Display Panel (PDP) etc. requiring both the features of heat isolation and light transmission.
The texts illustrated hereinbefore simply set forth the preferred embodiments of the instant disclosure, rather than limiting the scope of the instant disclosure. All effectively and structurally equivalent changes, modifications and alternations made thereto in accordance with the disclosures and appended drawings of the instant disclosure are therefore deemed as being included in the scope of the instant disclosure defined in the following claims.
This application is a continuation-in-part of U.S. application Ser. No. 12/591,612 filed on Nov. 25, 2009, now pending.
Number | Date | Country | |
---|---|---|---|
Parent | 12591612 | Nov 2009 | US |
Child | 12857547 | US |