Fleet pan to provide measurement and location of a stored transport item while maximizing space in an interior cavity of a trailer

Information

  • Patent Grant
  • 9551788
  • Patent Number
    9,551,788
  • Date Filed
    Tuesday, March 24, 2015
    9 years ago
  • Date Issued
    Tuesday, January 24, 2017
    7 years ago
  • Inventors
  • Examiners
    • Cheung; Calvin
    Agents
    • Raj Abhyanker, P.C.
Abstract
A trailer of a semi-trailer truck includes a cargo container having affixed at a height of approximately forty-six inches from a base of the cargo container a hole that is approximately two and one half inches in diameter. A fleet pan enclosure in a form of a housing encompassing a communications circuitry, a global positioning device and an ultrasound sensor projects into an interior cavity of the cargo container through the hole. The global positioning device provides an accurate reporting of a location of the semi-trailer truck to a central server. An antenna of a communication circuitry is fully encompassed within the housing. The location at which the housing is affixed provides for an effective measuring and reliable locating of a stored transport item inside the interior cavity of the cargo container through the hole.
Description
FIELD OF TECHNOLOGY

This disclosure relates generally to automotive technology and, more particularly, to a method, a device and/or a system of an enclosure in a form of a fleet pan to provide measurement and location of a stored transport item while maximizing space in an interior cavity of a trailer.


BACKGROUND

A transportation services provider (e.g., a logistics provider) may be compensated based on available room inside of a cargo area of a trailer of a transportation vehicle (e.g., a semi-trailer truck). For this reason, the transportation service provider may determine a maximum volume the cargo area can hold based on available room inside the trailer. This information may be used to determine whether the transportation services provider can adequately service a particular customer request. When available space inside of the cargo area is short, the transportation services provider may need to turn down work.


Furthermore, a transportation services provider may be compensated based, at least in part, on how much time is needed to load and/or unload a trailer of a transportation vehicle. For this reason, the transportation service provider may determine when the storage state of a trailer changes.


Therefore, a focal point used in optimizing trailer utilization may be whether, when, where and to which extent the trailer is loaded. Sensors (e.g. weight sensors, wave sensors) employed in an interior space of the cargo area may not accurately measure an inventory level. Further, these sensors occupying the interior space of the cargo area may reduce available space for the transportation of goods. For example, 450 sq. ft. of space may no longer be available for the transportation of goods when sensors are placed in the interior space of the cargo area of the trailer. The problem is further compounded because modern trailers (e.g., DuraPlate™ composite panel based trailers) may not have a liner gap inside the walls of the trailers in which to place electronics. Because of this, valuable space inside the cargo area of the trailer may be wasted. To save space, the transportation services provider may elect to not install sensors. However, new problems may arise such as drivers may embark on long journeys, when, in fact, their cargo area is not used to its full capacity (e.g., may even be empty). This may lead to wasted time, fuel, efficiency, customer dissatisfaction, and/or ultimately, loss of revenue for the transportation services provider.


SUMMARY

Disclosed are a method, a device and/or a system of a fleet pan to provide measurement and location of a stored transport item while maximizing space in an interior cavity of a trailer.


In one aspect, a trailer of a semi-trailer truck includes a cargo container having affixed at a height of approximately forty-six inches from a base of the cargo container a hole that is approximately two and one half inches in diameter. The trailer includes a fleet pan enclosure in a form of a housing encompassing a communications circuitry, a global positioning device, and an ultrasound sensor to project into an interior cavity of the cargo container through the hole. The global positioning device provides an accurate reporting of a location of the semi-trailer truck to a central server. An antenna of the communications circuitry is fully encompassed within the housing. The location at which the housing is affixed provides for an effective measuring and/or reliable locating of a stored transport item inside the interior cavity of the cargo container through the hole.


An emitting face of the ultrasound sensor may be tight-sealed to prevent moisture from entering an ultrasound sensor housing with a hydrophobic material. A risk of water damage to the ultrasound sensor may be minimized through a tight-sealing of the emitting face of the ultrasound sensor. A low-ultrasound-attenuation material may be utilized to produce a tight seal of an ultrasound sensor emitting face. An ultrasound wave emanating from the ultrasound sensor emitting face may be permitted maximal penetration of such that the ultrasound wave is focusable in a manner that the ultrasound wave accurately measures a height of the stored transport item in a storage location of the interior cavity of the trailer to optimize asset planning and/or managing of the stored transport item.


The low-ultrasound-attenuation material may be shaped to produce a cast acoustic emitting face with a curvature such that a shape of a wave-front of the ultrasound wave produced by the ultrasound sensor is focused on a desired point. An accuracy of the measurement of the height of the stored transport item may be maximized in the storage location of the interior cavity of the trailer to optimize asset planning and/or managing of the stored transport item. A current state of a transport item may be determined to be a loaded state, a partially loaded state, and/or an empty state based on a reading of an ultrasonic sensor. A compliance of a driver of a motorized cabin may be audited based on a communication between the central server and the communication circuitry within the fleet pan enclosure.


The fleet pan enclosure may be created from a LEXAN polycarbonate offering impact resistance, dimensional stability and/or signal clarity such that the antenna of the communication circuitry may communicate externally with the central server while still being fully encompassed within the housing.


In another aspect, an apparatus includes a housing encompassing a communication circuitry, a global positioning device and an ultrasound sensor affixed on a vertical face of an exterior front surface of a trailer toward a driver cabin of a semi-trailer truck. The global positioning device provides an accurate reporting of a location of the semi-trailer truck to a central server. An antenna of the communications circuitry is fully encompassed within the housing. The ultrasound sensor peers inside an interior cavity of the trailer through a hole formed on the vertical face between the housing and the interior cavity. The location at which the housing is affixed provides for an effective measuring and/or reliable locating of a stored transport item through the hole.


In yet another aspect, a cargo container includes a fleet pan enclosure in a form of a housing encompassing a communications circuitry, a global positioning device, and an ultrasound sensor to project into an interior cavity of the cargo container through a hole. The cargo container having affixed at a height of approximately forty-six inches from a base of the cargo container, the hole that is approximately two and one half inches in diameter. The global positioning device provides an accurate reporting of a location of a semi-trailer truck to a central server. An antenna of the communications circuitry is fully encompassed within the housing. The location at which the housing is affixed provides for an effective measuring and/or reliable locating of a stored transport item inside the interior cavity of the cargo container through the hole.


The method, apparatus, and system disclosed herein may be implemented in any means for achieving various aspects, and may be executed in a form of a non-transitory machine-readable medium embodying a set of instructions that, when executed by a machine, cause the machine to perform any of the operations disclosed herein. Other features will be apparent from the accompanying drawings and from the detailed description that follows.





BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of this invention are illustrated by way of example and not limitation in the Figures of the accompanying drawings, in which like references indicate similar elements and in which:



FIG. 1 is a network view illustrating a fleet pan enclosure affixed in a cargo container providing an accurate reporting of a location of a semi-trailer truck to a central server, according to one embodiment.



FIG. 2A is a fleet pan component view of the fleet pan enclosure of FIG. 1, according to one embodiment.



FIG. 2B is a fleet pan mounting view of the fleet pan enclosure of FIG. 1, according to one embodiment.



FIG. 3 is a storage location identification view of the semi-trailer truck of FIG. 1, according to one embodiment.



FIG. 4 is a table view of the fleet pan enclosure of FIG. 1, according to one embodiment.



FIG. 5 is a user interface view illustrating the monitoring of the location of a semi-trailer truck affixed with fleet pan enclosure of FIG. 1, according to one embodiment.



FIG. 6 is a critical path view illustrating a flow based on time in which critical operations of the fleet pan enclosure of the semi-trailer truck of FIG. 1 are established, according to one embodiment.



FIG. 7 is a process flow diagram of the fleet pan enclosure of the semi-trailer truck of FIG. 1, according to one embodiment.



FIG. 8 is a schematic diagram of exemplary data processing devices that can be used to implement the methods and systems disclosed herein, according to one embodiment.





Other features of the present embodiments will be apparent from the accompanying drawings and from the detailed description that follows.


DETAILED DESCRIPTION

Example embodiments, as described below, may be used to provide a method, a device and/or a system of a fleet pan to provide measurement and location of a stored transport item while maximizing space in an interior cavity of a trailer.


In one embodiment, a trailer 102 of a semi-trailer truck 104 includes a cargo container 106 having affixed at a height 306 of approximately forty-six inches from a base 108 of the cargo container 106 a hole 110 that is approximately two and one half inches in diameter. The trailer 102 includes a fleet pan enclosure 112 in a form of a housing 114 encompassing a communications circuitry 116, a global positioning device 118, and an ultrasound sensor 120 to project into an interior cavity 122 of the cargo container 106 through the hole 110. The global positioning device 118 provides an accurate reporting of a location (e.g., using location function 124 of the central server 126) of the semi-trailer truck 104 to a central server 126. An antenna 134 of a communications circuitry 116 is fully encompassed within the housing 114. The location (e.g., using location function 124 of the central server 126) at which the housing 114 is affixed provides for an effective measuring and/or reliable locating (e.g., using current state function 310 of the central server 126) of a stored transport item 136 inside the interior cavity 122 of the cargo container 106 through the hole 110.


An emitting face 202 of the ultrasound sensor 120 may be tight-sealed to prevent moisture from entering an ultrasound sensor housing 204 with a hydrophobic material. A risk of water damage to the ultrasound sensor 120 may be minimized through a tight-sealing 208 of the emitting face 202 of the ultrasound sensor 120. A low-ultrasound-attenuation material may be utilized to produce a tight seal of an ultrasound sensor emitting face 206. An ultrasound wave 302 emanating from the ultrasound sensor emitting face 206 may be permitted maximal penetration of such that the ultrasound wave 302 is focusable in a manner that the ultrasound wave 302 accurately measures a height 306 of the stored transport item 136 in a storage location 304 (e.g., using current state function 310 of the central server 126) of the interior cavity 122 of the trailer 102 to optimize asset planning and/or managing of the stored transport item 136.


The low-ultrasound-attenuation material may be shaped to produce a cast acoustic emitting face 202 with a curvature such that a shape of a wave-front of the ultrasound wave 302 produced by the ultrasound sensor 120 is focused on a desired point 308. An accuracy of the measurement of the height 306 of the stored transport item 136 may be maximized in the storage location 304 of the interior cavity 122 of the trailer 102 to optimize asset planning and/or managing of the stored transport item 136. A current state (e.g., using the current state function 310 of the central server 126) of a transport item may be determined to be a loaded state (e.g., using the loaded state algorithm 312 of the central server 126), a partially loaded state (e.g., using the partially loaded state algorithm 314 of the central server 126), and/or an empty state (e.g., using the empty state algorithm 316 of the central server 126) based on a reading of an ultrasonic sensor. A compliance (e.g., using the compliance function 318 of the central server 126) of a driver 320 of a motorized cabin 322 may be audited based on a communication (e.g., using communication function 324 of the central server 126) between the central server 126 and the communications circuitry 116 within the fleet pan enclosure 112.


The fleet pan enclosure 112 may be created from a LEXAN polycarbonate offering impact resistance, dimensional stability and/or signal clarity such that the antenna 134 of the communications circuitry 116 may communicate (e.g., using communication function 324 of the central server 126) externally with the central server 126 while still being fully encompassed within the housing 114.


In another embodiment, an apparatus includes a housing 114 encompassing a communications circuitry 116, a global positioning device 118 and an ultrasound sensor 120 affixed on a vertical face of an exterior front surface of a trailer 102 toward a driver cabin of a semi-trailer truck 104. The global positioning device 118 provides an accurate reporting of a location (e.g., using location function 124 of the central server 126) of the semi-trailer truck 104 to a central server 126. An antenna 134 of the communications circuitry 116 is fully encompassed within the housing 114. The ultrasound sensor 120 peers inside an interior cavity 122 of the trailer 102 through a hole 110 formed on the vertical face between the housing 114 and the interior cavity 122. The location (e.g., using the location function 124 of the central server 126) at which the housing 114 is affixed provides for an effective measuring and/or reliable locating (e.g., using current state function 310 of the central server 126) of a stored transport item 136 through the hole 110.


In yet another embodiment, a cargo container 106 includes a fleet pan enclosure 112 in a form of a housing 114 encompassing a communications circuitry 116, a global positioning device 118, and an ultrasound sensor 120 to project into an interior cavity 122 of the cargo container 106 through a hole 110. The cargo container 106 having affixed at a height 306 of approximately forty-six inches from a base 108 of the cargo container 106 the hole 110 that is approximately two and one half inches in diameter. The global positioning device 118 provides an accurate reporting of a location (e.g., using location function 124 of the central server 126) of a semi-trailer truck 104 to a central server 126. An antenna 134 of a communications circuitry 116 is fully encompassed within the housing 114. The location at which the housing 114 is affixed provides for an effective measuring and/or reliable locating (e.g., using current state function 310 of the central server 126) of a stored transport item 136 inside the interior cavity 122 of the cargo container 106 through the hole 110.



FIG. 1 is a network view 150 illustrating a fleet pan enclosure 112 affixed in a cargo container 106 providing an accurate reporting of a location of a semi-trailer truck 104 to a central server 126, according to one embodiment. Particularly, FIG. 1 illustrates a trailer 102, a semi-trailer truck 104, a cargo container 106, a base 108, a hole 110, a fleet pan enclosure 112, a housing 114, a communications circuitry 116, a global positioning device 118, an ultrasound sensor 120, an interior cavity 122, a location function 124, a central server 126, a processor 128, a memory 130, a network 131, a database 132, an antenna 134, a stored transport item 136, a service provider 138, and a user device 140, according to one embodiment.


The trailer 102 may be a nonmotorized vehicle designed to be hauled by a motor vehicle (e.g., a truck, utility vehicles, and/or a tractor). The semi-trailer truck 104 may be a large vehicle that consists of a towing engine, known as a tractor and/or a truck, attached to one or more semi-trailers to carry freight. The cargo container 106 may be a large vessel of standardized dimensions that may be loaded with cargo. In some embodiments, the cargo container may be loaded from one form of transport to another for freight. In other embodiments, the cargo container 106 may be a permanent part of the trailer 102. In some embodiments, the cargo container 106 may include a liner. The base 108 may be the lowest part of the cargo container 106 on which goods are kept for freighting. The hole 110 may be a hollow place in the solid body of cargo container 106 that may be used for affixing the fleet pan enclosure 112. The fleet pan enclosure 112 may be a system and/or a device used for remotely monitoring a number of semi-trailer truck(s) 104 engaged in freighting under the same ownership, according to one embodiment.


The housing 114 may be a rigid casing that encloses and protects the various components of the fleet pan enclosure 112. The communications circuitry 116 may be a system of circuits performing an exchange of information to follow the movement of semi-trailer truck 104 affixed with the fleet pan enclosure 112. The global positioning device 118 may be a space-based satellite navigation system that provides location and time information of the semi-trailer truck 104 affixed with the fleet pan enclosure 112 to the service provider 138 in all weather conditions, anywhere, where there is an unobstructed line of sight to four or more GPS satellites. The ultrasound sensor 120 may be a system and/or a device to both send and receive the sound wave to evaluate the attributes (e.g., to accurately detect objects and measure distances) of a target (e.g., stored transport item 136), according to one embodiment.


The interior cavity 122 may be the empty space in the inner part of the cargo container 106 to which the fleet pan enclosure 112 is affixed. The location function 124 may be a named section of a program that performs a specific task of tracking down the geographical place of the cargo container 106 to which the fleet pan enclosure 112 is affixed. The central server 126 may be a computer system that provides local area networking services to multiple users (e.g., service provider 138) by managing resources and services of the network 131, while handling requests by the service provider 138 from different computers to access the said resources. The processor 128 may be a logic circuitry that responds to and processes the basic instructions that drives the central server 126 for monitoring the semi-trailer truck 104. The memory 130 may be an electronic holding place for instructions and data that the processor 128 of the central server 126 can reach quickly. The network 131 may be a group of computing devices (e.g., hardware and software) that are linked together through communication channels to facilitate communication and resource-sharing among a wide range of entities (e.g., service provider 138). The database 132 may be a collection of information that is organized to be easily accessed, managed, and/or updated by the service provider 138, according to one embodiment.


The antenna 134 may be a conductor that can transmit, send and receive signals (e.g., microwave, radio or satellite signals) from the fleet pan enclosure 112 affixed in the semi-trailer truck 104. The stored transport item 136 may be the goods that need to be shifted by means of semi-trailer truck 104. The service provider 138 may be a company (e.g., a logistics provider) that provides its freighting and/or transportation services using the semi-trailer truck 104 to its customers. The user device 140 may be a computing device (e.g., mobile device, tablet, desktop computer and/or tablet) that is made for portability for data storage, processing, and/or display technologies and run various types of application software that enables the service provider 138 to access the central server 126, according to one embodiment.


The current location of semi-trailer truck 104 may be established by the fleet pan enclosure 112 affixed in the hole 110 of the cargo container 106. In circle ‘1’, the fleet pan enclosure 112 may project into the interior cavity 122 of the cargo container 106 through the hole 110. In circle ‘2’, the fleet pan enclosure 112 may be communicatively coupled to the central server 126 through the network 131. In circle ‘3’, the service provider 138 may be communicatively coupled to the central server 126 through the network 131, according to one embodiment.



FIG. 2A is a fleet pan component view 250A of the fleet pan enclosure 112 of FIG. 1, according to one embodiment. Particularly, FIG. 2A builds on FIG. 1 and further adds an emitting face 202, an ultrasound sensor housing 204, and a tight-sealing 208, according to one embodiment.


The emitting face 202 may be the uppermost layer of the ultrasound sensor 120 releasing the sound waves to evaluate the attributes (e.g., to accurately detect objects and measure distances) of a target (e.g., stored transport item 136). The ultrasound sensor housing 204 may be a rigid casing that encloses and protects the various components of the ultrasound sensor 120. The tight-sealing 208 may be a non-porous impervious material coating that is used to close off or fasten to prevent moisture to enter the ultrasound sensor housing 204, according to one embodiment.


In circle ‘4’, the fleet pan enclosure 112 may be in a form of a housing 114. The housing 114 may enclose the communications circuitry 116, the global positioning device 118 and the ultrasound sensor 120 within its casing. In circle ‘5’, the ultrasound sensor housing 204 may cover the ultrasound sensor 120. The emitting face 202 of the ultrasound sensor 120 may have a tight-sealing 208, according to one embodiment.


In some embodiments, the fleet pan enclosure 112 may comprise the ultrasound sensor 120, to evaluate the attributes of a target (e.g. stored transport item 136, etc.). In other embodiments, other types of sensors may be used to evaluate such attributes, including, but not limited to, optical sensors, cameras, laser rangefinders, and/or other distance measuring technology. As an option, optical sensors or cameras may be used in conjunction with machine vision software and/or hardware. Furthermore, a camera may be used to provide an image to at least one of a driver, a client, a dispatcher, an inspector, and/or a third party.



FIG. 2B is a fleet pan mounting view 250B of the fleet pan enclosure 112 of FIG. 1, according to one embodiment. Particularly, FIG. 2B builds on FIG. 1 and FIG. 2A and further adds an ultrasound sensor emitting face 206, according to one embodiment.


The ultrasound sensor emitting face 206 may be the uppermost layer of the ultrasound sensor 120 releasing the sound waves to evaluate the attributes (e.g., to accurately detect objects and measure distances) of a target (e.g., stored transport item 136), according to one embodiment.


In circle ‘6’, the fleet pan enclosure 112 may be mounted on the outside of the trailer 102 through the hole 110, according to one embodiment. In one embodiment, the fleet pan enclosure 112 may be mounted such that the hole 110 is approximately forty-six inches from the base of the cargo container. In other embodiments, the hole 110 may be located between thirty and forty-eight inches from the base of the cargo container.


In various embodiments, the fleet pan enclosure 112 may be mounted on a trailer 102 which is loaded with cargo, without requiring the unloading of the cargo. As a specific example, a drilling template may be positioned such that the cargo sensor hole 110 is within 40 to 46 inches from the interior base of the cargo container, and secured to the trailer nose with screws. Using the template, mounting holes and the cargo sensor hole 110 may be drilled into the outside of the trailer. In the scenario where the trailer has an interior liner, a hole may be cut into the outside of the trailer which may receive, at least in part, the fleet pan enclosure, such that the ultrasound sensor emitting face, or its equivalent, may sit flush with liner. Furthermore, a cargo sensor hole may be cut into any liner which may be inside the trailer. The fleet pan enclosure may then be mounted on the outside of the trailer. The use of a vacuum system in conjunction with drills or other cutting equipment may reduce or prevent contamination of the interior of the loaded trailer and the cargo it holds.



FIG. 3 is a storage location identification view 350 of the semi-trailer truck 104 of FIG. 1, according to one embodiment. Particularly, FIG. 3 builds on FIG. 1, FIG. 2A and FIG. 2B and further adds an ultrasound wave 302, a storage location 304, a height 306, a desired point 308, a current state function 310, a loaded state algorithm 312, a partially loaded state algorithm 314, an empty state algorithm 316, a compliance function 318, a driver 320, a motorized cabin 322, and a communication function 324, according to one embodiment.


The ultrasound wave 302 may be the swaying motion of an oscillating sound pressure with a frequency greater than the upper limit of the human hearing range emitted by the ultrasound sensor 120 in order to evaluate the attributes (e.g., to accurately detect objects and measure distances) of a target (e.g., stored transport item 136). The storage location 304 may be a particular position or place for holding the goods in the interior cavity 122 of the cargo container 106. The height 306 may be the vertical measurement of the goods held in the interior cavity 122 from the base 108 of the cargo container 106 attributed using the ultrasound sensor 120. The desired point 308 may be the anticipated end to which the ultrasound wave 302 is focused by the ultrasound sensor 120 in order to measure the dimensions of the goods held in the interior cavity 122 of the cargo container 106, according to one embodiment.


The current state function 310 may be a named section of a program that performs a specific task of finding the present condition of availability of the area for holding the goods in the interior cavity 122 of the cargo container 106. The loaded state algorithm 312 may be a process or set of rules to be followed in calculations for finding if the interior cavity 122 of the cargo container 106 is filled to the capacity. The partially loaded state algorithm 314 may be a process or set of rules to be followed in calculations for finding if the interior cavity 122 of the cargo container 106 is filled to a limited extent of its capacity. The empty state algorithm 316 may be a process or set of rules to be followed in calculations for finding if the interior cavity 122 of the cargo container 106 is not filled to its full capacity, according to one embodiment.


The compliance function 318 may be a named section of a program that performs a specific task of directing the driver 320 of the semi-trailer truck 104 to act in accordance with the directive of the service provider 138. The driver 320 may be the person driving the semi-trailer truck 104. The motorized cabin 322 may be the private compartment for the driver 320 in the front portion of the semi-trailer truck 104. The communication function 324 may be a named section of a program that performs a specific task of exchanging the information regarding the tracking of semi-trailer truck 104 and its current state (e.g., using the current state function 310 of the central server 126) of availability of space in the interior cavity 122 of the cargo container 106, according to one embodiment.


In circle ‘7’, the ultrasound sensor 120 may emanate the ultrasound wave 302 to enable maximum penetration at a desired point 308 to measure height 306 of the stored transport item 136. In various embodiments, the determination of the current storage state of the cargo container may be triggered by one or more events, including, but not limited to, a heartbeat message (e.g. a periodic signal, a response to an external signal, etc.), a vibration detected in deep sleep (e.g. activation of an accelerometer while in a power conservation state, etc.), the loading and/or unloading of the cargo container (e.g. sounds, vibrations, motions, and/or manual signals associated with the loading or unloading of the cargo container, etc.), the start and/or end of a trip (e.g. changes in GPS coordinates, vibrations, acceleration, sound, and/or manual signals associated with the start and/or end of a trip, etc.), and/or a predefined period of time after the end of a trip (e.g. 1 hour after arriving at GPS coordinates of intended destination and motion has stopped, etc.).


In circle ‘8’, the current state of the availability of the area for holding the goods in the interior cavity 122 of the cargo container 106 may be communicated to the central server 126 through the network 131. In circle ‘9’, the compliance may be communicated to the driver 320 through the network 131, according to one embodiment.



FIG. 4 is a table view of the fleet pan enclosure 112 of FIG. 1, according to at least one embodiment. Particularly, FIG. 4 is a table view 450 showing the fields associated with the service provider 138, trailer 102 and its corresponding storage state at departure time 402 field, distance with duration 404 field, current location 406 field, current storage state 408 field, storage space available 410 field, loading? 412 field, and a destination location 414 field, according to one embodiment.


Particularly, FIG. 4 illustrates an example of two records for a service provider 138 with two fleets of trailer having three trailers in each fleet. The service provider 138 may be sending two fleets of semi-trailer truck(s) 104 each having one trailer 102 from 1702 Lenox Road, Schenectady, N.Y. 12308, USA to Kansas City, Mo., USA as shown in the destination location 414 field. The service provider 138 may be able to monitor the storage state of ‘trailer 1’ as ‘loaded’ in the ‘storage state at departure time 402’ field. The service provider 138 may find the distance traveled by the semi-trailer truck 104 of ‘trailer 1’ and the time taken for travel in the ‘distance (miles) duration 404’ field. The service provider 138 may track the current position and the corresponding storage state of the semi-trailer truck 104 in the respective fields as shown in the ‘current location 406’ field and the ‘current storage state 408’ field. The availability of the storage space in the trailer may be shown in the ‘storage space available 410’ field. Depending upon the space available, the trailer may be loaded per the service provider's 138 instructions as shown in the ‘loading? 412’ field. The service provider 138 may monitor the destination location of the ‘trailer 1’ in the ‘destination location 414’ field, according to one embodiment.



FIG. 5 is a user interface view 550 illustrating the monitoring of the location of a semi-trailer truck 104 of FIG. 1, according to one embodiment. Particularly, FIG. 5 illustrates the current location 406 and current storage state 408 of the trailer 102 being monitored by the service provider 138. The service provider 138 may be able to establish the identification 502 of a particular semi-trailer truck 516 and the fleet that it belongs to as illustrated in the user interface. The service provider 138 may monitor the mileage 504 showing the distance traveled by the semi-trailer truck 516, the delivery status 506 of the semi-trailer truck 516, the speed 508 of the semi-trailer truck 104, the current trip distance 510 of the semi-trailer truck 516, the location 512 of the semi-trailer truck 516, and the cargo status 514 of a particular semi-trailer truck 516, according to one embodiment.



FIG. 6 is a critical path view 650 illustrating a flow based on time in which critical operations of the fleet pan enclosure 112 of the semi-trailer truck 104 of FIG. 1 are established, according to one embodiment. In operation 602, a service provider 138 affixes a fleet pan enclosure 112 in a form of a housing 114 encompassing a communications circuitry 116, a global positioning device 118, and an ultrasound sensor 120 at a hole 110 at a height of approximately forty-six inches from a base 108 of the cargo container 106. In operation 604, the fleet pan enclosure 112 projects the ultrasound sensor 120 of into an interior cavity 122 of the cargo container 106 through the hole 110. In operation 606, the fleet pan enclosure 112 provides an accurate reporting of a location of the semi-trailer truck 104 to the central server 126. In operation 608, the fleet pan enclosure 112 provides for an effective measuring and reliable locating of a stored transport item inside the interior cavity 122 of the cargo container 106 through the hole 110. In operation 610, the central server 126 provides an indication to the dispatcher of the semi-trailer truck 104 based on the current state of the stored transport item 136, according to one embodiment.



FIG. 7 is a process flow diagram 750 of the fleet pan enclosure 112 of the semi-trailer truck 104 of FIG. 1, according to one embodiment. In operation 702, a hole 110 at a height of approximately forty-six inches from a base 108 of a cargo container 106 that is approximately two and one half inches in diameter may be affixed. In operation 704, a housing 114 encompassing a communications circuitry 116, a global positioning device 118, and an ultrasound sensor 120 may be formed. In operation 706, an ultrasonic wave may be projected into an interior cavity 122 of the cargo container 106 through the hole 110. In operation 708, an accurate reporting of a location of the semi-trailer 102 may be provided to a central server 126 by using the fleet pan enclosure 112. In operation 710, an effective measuring and reliable locating of a stored transport item 136 inside the interior cavity 122 of the cargo container 106 through the hole 110 may be provided, according to one embodiment.



FIG. 8 is a schematic diagram of generic computing device 880 that can be used to implement the methods and systems disclosed herein, according to one or more embodiments. FIG. 8 is a schematic diagram of generic computing device 880 and a mobile device 850 that can be used to perform and/or implement any of the embodiments disclosed herein. In one or more embodiments, mobile communication device and/or user device 140 of FIG. 1 may be the generic computing device 800.


The generic computing device 800 may represent various forms of digital computers, such as laptops, desktops, workstations, personal digital assistants, servers, blade servers, mainframes, and/or other appropriate computers. The mobile device 850 may represent various forms of mobile devices, such as smartphones, camera phones, personal digital assistants, cellular telephones, and other similar mobile devices. The components shown here, their connections, couples, and relationships, and their functions, are meant to be exemplary only, and are not meant to limit the embodiments described and/or claimed, according to one embodiment.


The generic computing device 800 may include a processor 802, a memory 804, a storage device 806, a high speed interface 808 coupled to the memory 804 and a plurality of high speed expansion ports 810, and a low speed interface 812 coupled to a low speed bus 814 and a storage device 806. In one embodiment, each of the components heretofore may be inter-coupled using various buses, and may be mounted on a common motherboard and/or in other manners as appropriate. The processor 802 may process instructions for execution in the generic computing device 800, including instructions stored in the memory 804 and/or on the storage device 806 to display a graphical information for a GUI on an external input/output device, such as a display unit 816 coupled to the high speed interface 808.


In other embodiments, multiple processors and/or multiple buses may be used, as appropriate, along with multiple memories and/or types of memory. Also, a plurality of computing device 800 may be coupled with, with each device providing portions of the necessary operations (e.g., as a server bank, a group of blade servers, and/or a multi-processor system).


The memory 804 may be coupled to the generic computing device 800. In one embodiment, the memory 804 may be a volatile memory. In another embodiment, the memory 804 may be a non-volatile memory. The memory 804 may also be another form of computer-readable medium, such as a magnetic and/or an optical disk. The storage device 806 may be capable of providing mass storage for the generic computing device 800. In one embodiment, the storage device 806 may be includes a floppy disk device, a hard disk device, an optical disk device, a tape device, a flash memory and/or other similar solid state memory device. In another embodiment, the storage device 806 may be an array of the devices in a computer-readable medium previously mentioned heretofore, computer-readable medium, such as, and/or an array of devices, including devices in a storage area network and/or other configurations.


A computer program may be comprised of instructions that, when executed, perform one or more methods, such as those described above. The instructions may be stored in the memory 804, the storage device 806, a memory coupled to the processor 802, and/or a propagated signal.


The high speed interface 808 may manage bandwidth-intensive operations for the generic computing device 800, while the low speed interface 812 may manage lower bandwidth-intensive operations. Such allocation of functions is exemplary only. In one embodiment, the high speed interface 808 may be coupled to the memory 804, the display unit 816 (e.g., through a graphics processor and/or an accelerator), and to the plurality of high speed expansion ports 810, which may accept various expansion cards.


In the embodiment, the low speed interface 812 may be coupled to the storage device 806 and the low speed bus 814. The low speed bus 814 may be comprised of a wired and/or wireless communication port (e.g., a Universal Serial Bus (“USB”), a Bluetooth® port, an Ethernet port, and/or a wireless Ethernet port). The low speed bus 814 may also be coupled to the scan unit 828, a printer 826, a keyboard, a mouse 824, and a networking device (e.g., a switch and/or a router) through a network adapter.


The generic computing device 800 may be implemented in a number of different forms, as shown in the figure. In one embodiment, the computing device 800 may be implemented as a standard server 818 and/or a group of such servers. In another embodiment, the generic computing device 800 may be implemented as part of a rack server system 822. In yet another embodiment, the generic computing device 800 may be implemented as a general computer 820 such as a laptop or desktop computer. Alternatively, a component from the generic computing device 800 may be combined with another component in a mobile device 850. In one or more embodiments, an entire system may be made up of a plurality of generic computing device 800 and/or a plurality of generic computing device 800 coupled to a plurality of mobile device 850.


In one embodiment, the mobile device 850 may include a mobile compatible processor 832, a mobile compatible memory 834, and an input/output device such as a mobile display 846, a communication interface 852, and a transceiver 838, among other components. The mobile device 850 may also be provided with a storage device, such as a microdrive or other device, to provide additional storage. In one embodiment, the components indicated heretofore are inter-coupled using various buses, and several of the components may be mounted on a common motherboard.


The mobile compatible processor 832 may execute instructions in the mobile device 850, including instructions stored in the mobile compatible memory 834. The mobile compatible processor 832 may be implemented as a chipset of chips that include separate and multiple analog and digital processors. The mobile compatible processor 832 may provide, for example, for coordination of the other components of the mobile device 850, such as control of user interfaces, applications run by the mobile device 850, and wireless communication by the mobile device 850.


The mobile compatible processor 832 may communicate with a user through the control interface 836 and the display interface 844 coupled to a mobile display 846. In one embodiment, the mobile display 846 may be a Thin-Film-Transistor Liquid Crystal Display (“TFT LCD”), an Organic Light Emitting Diode (“OLED”) display, and another appropriate display technology. The display interface 844 may comprise appropriate circuitry for driving the mobile display 846 to present graphical and other information to a user. The control interface 836 may receive commands from a user and convert them for submission to the mobile compatible processor 832.


In addition, an external interface 842 may be provide in communication with the mobile compatible processor 832, so as to enable near area communication of the mobile device 850 with other devices. External interface 842 may provide, for example, for wired communication in some embodiments, or for wireless communication in other embodiments, and multiple interfaces may also be used.


The mobile compatible memory 834 may be coupled to the mobile device 850. The mobile compatible memory 834 may be implemented as a volatile memory and a non-volatile memory. The expansion memory 858 may also be coupled to the mobile device 850 through the expansion interface 856, which may comprise, for example, a Single In Line Memory Module (“SIMM”) card interface. The expansion memory 858 may provide extra storage space for the mobile device 850, or may also store an application or other information for the mobile device 850.


Specifically, the expansion memory 858 may comprise instructions to carry out the processes described above. The expansion memory 858 may also comprise secure information. For example, the expansion memory 858 may be provided as a security module for the mobile device 850, and may be programmed with instructions that permit secure use of the mobile device 850. In addition, a secure application may be provided on the SIMM card, along with additional information, such as placing identifying information on the SIMM card in a non-hackable manner.


The mobile compatible memory may include a volatile memory (e.g., a flash memory) and a non-volatile memory (e.g., a non-volatile random-access memory (“NVRAM”)). In one embodiment, a computer program comprises a set of instructions that, when executed, perform one or more methods. The set of instructions may be stored on the mobile compatible memory 834, the expansion memory 858, a memory coupled to the mobile compatible processor 832, and a propagated signal that may be received, for example, over the transceiver 838 and/or the external interface 842.


The mobile device 850 may communicate wirelessly through the communication interface 852, which may be comprised of a digital signal processing circuitry. The communication interface 852 may provide for communications using various modes and/or protocols, such as, a Global System for Mobile Communications (“GSM”) protocol, a Short Message Service (“SMS”) protocol, an Enhanced Messaging System (“EMS”) protocol, a Multimedia Messaging Service (“MMS”) protocol, a Code Division Multiple Access (“CDMA”) protocol, Time Division Multiple Access (“TDMA”) protocol, a Personal Digital Cellular (“PDC”) protocol, a Wideband Code Division Multiple Access (“WCDMA”) protocol, a CDMA2000 protocol, and a General Packet Radio Service (“GPRS”) protocol.


Such communication may occur, for example, through the transceiver 838 (e.g., radio-frequency transceiver). In addition, short-range communication may occur, such as using a Bluetooth®, Wi-Fi, and/or other such transceiver. In addition, a GPS (“Global Positioning System”) receiver module 854 may provide additional navigation-related and location-related wireless data to the mobile device 850, which may be used as appropriate by a software application running on the mobile device 850.


The mobile device 850 may also communicate audibly using an audio codec 840, which may receive spoken information from a user and convert it to usable digital information. The audio codec 840 may likewise generate audible sound for a user, such as through a speaker (e.g., in a handset of the mobile device 850). Such a sound may comprise a sound from a voice telephone call, a recorded sound (e.g., a voice message, a music files, etc.) and may also include a sound generated by an application operating on the mobile device 850.


The mobile device 850 may be implemented in a number of different forms, as shown in the figure. In one embodiment, the mobile device 850 may be implemented as a smartphone 848. In another embodiment, the mobile device 850 may be implemented as a personal digital assistant (“PDA”). In yet another embodiment, the mobile device, 850 may be implemented as a tablet device.


Various embodiments of the systems and techniques described here can be realized in a digital electronic circuitry, an integrated circuitry, a specially designed application specific integrated circuits (“ASICs”), a piece of computer hardware, a firmware, a software application, and a combination thereof. These various embodiments can include embodiment in one or more computer programs that are executable and/or interpretable on a programmable system including one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, one input device, and one output device.


Various embodiments of the systems and techniques described here can be realized in a digital electronic circuitry, an integrated circuitry, a specially designed application specific integrated circuits (“ASICs”), a piece of computer hardware, a firmware, a software application, and a combination thereof. These various embodiments can include embodiment in one or more computer programs that are executable and/or interpretable on a programmable system includes programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, input device, and output device.


These computer programs (also known as programs, software, software applications, and/or code) comprise machine-readable instructions for a programmable processor, and can be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the terms “machine-readable medium” and/or “computer-readable medium” refers to any computer program product, apparatus and/or device (e.g., magnetic discs, optical disks, memory, and/or Programmable Logic Devices (“PLDs”)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions as a machine-readable signal. The term “machine-readable signal” refers to any signal used to provide machine instructions and/or data to a programmable processor.


To provide for interaction with a user, the systems and techniques described here may be implemented on a computing device having a display device (e.g., a cathode ray tube (“CRT”) and/or liquid crystal (“LCD”) monitor) for displaying information to the user and a keyboard and a mouse 824 by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, and/or tactile feedback) and input from the user can be received in any form, including acoustic, speech, and/or tactile input.


The systems and techniques described here may be implemented in a computing system that includes a back end component (e.g., as a data server), a middleware component (e.g., an application server), a front end component (e.g., a client computer having a graphical user interface, and/or a Web browser through which a user can interact with an embodiment of the systems and techniques described here), and a combination thereof. The components of the system may also be coupled through a communication network.


The communication network may include a local area network (“LAN”) and a wide area network (“WAN”) (e.g., the Internet). The computing system can include a client and a server. In one embodiment, the client and the server are remote from each other and interact through the communication network.


An example embodiment will now be described. The ACME Freightage Inc. may provide the transportation services in remote areas of the United States. ACME Freightage may deal with varied categories of small and medium size businesses. The ACME Freightage Inc. may be compensated based on available room inside of a cargo area of a trailer of the transportation vehicle (e.g., a semi-trailer truck). The ACME Freightage Inc. may have employed sensors (e.g. weight sensors, wave sensors) in the interior spaces of the cargo area of its trailer of the transportation vehicles. The ACME Freightage Inc. may have later found that these sensors were inefficient in accurately measuring the inventory levels in its trailer due to restricted penetration of its sensory waves. In addition to this, these sensors may be occupying the interior space of the cargo area reducing the available space for the transportation of goods. Due to incorrect information of the available space, the ACME Freightage Inc. may be unable to adequately service its varied range of customer requests and may need to turn down work resulting into loss of revenue.


To address its undermining losses, the ACME Freightage Inc. may have decided to invest in embodiments described herein (e.g., use of various embodiments of the FIGS. 1-8) for optimum utilization of interior spaces of the cargo area of its trailers. The use of technologies described in various embodiments of the FIGS. 1-8 enabled the fleet managers of ACME Freightage Inc. to remotely monitor and manage not only their employees (e.g., driver 320), but also its entire fleets of vehicles and asset utilization in real-time. The various embodiments of the FIGS. 1-8 may have also provided the ACME Freightage Inc. the ability to an easy-to-use mobile interface, giving it real-time visibility into their daily operations along with helping fleet managers to automate manual business processes and optimize performance by providing a rich data platform for maximizing trailer utilization.


The use of technologies described in various embodiments of the FIGS. 1-8 may have enabled trailer management system of the ACME Freightage Inc to instantly connect trailer fleet managers to a host of powerful, easy-to-use analytics and insights via web-based, highly intuitive fleet tracking dashboards, customizable trailer tracking reports and exception-based alerts. Armed with this intelligence, fleet managers of the ACME Freightage Inc. may have the ability to automate yard checks; better manage and distribute trailer pools; improve detention billing; increase the efficiencies and productivity of dispatch operations; secure trailers and high-value cargo; deter fraud and unauthorized trailer use; improve driver and customer satisfaction; integrate with existing third-party trucking software; and maximize trailer utilization for a more profitable fleet. The ACME Freightage Inc. may now utilize their cargo area to its full capacity. This may have lead the ACME Freightage Inc. to save time, fuel, increase efficiency, customer satisfaction, and/or ultimately, prevent loss of revenue for its transportation services raising its profit.


A number of embodiments have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the claimed invention. In addition, the logic flows depicted in the figures do not require the particular order shown, or sequential order, to achieve desirable results. In addition, other steps may be provided, or steps may be eliminated, from the described flows, and other components may be added to, or removed from, the described systems. Accordingly, other embodiments are within the scope of the following claims.


It may be appreciated that the various systems, methods, and apparatus disclosed herein may be embodied in a machine-readable medium and/or a machine accessible medium compatible with a data processing system (e.g., a computer system), and/or may be performed in any order.


The structures and modules in the figures may be shown as distinct and communicating with only a few specific structures and not others. The structures may be merged with each other, may perform overlapping functions, and may communicate with other structures not shown to be connected in the figures. Accordingly, the specification and/or drawings may be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A trailer of a semi-trailer truck, comprising: a cargo container having a hole with dimensions approximately two and one half inches in diameter, and the hole being located at a height of approximately forty-six inches from a base of the cargo container; anda fleet pan enclosure in a form of a housing encompassing a communications circuitry, a global positioning device and an ultrasound sensor to project into an interior cavity of the cargo container through the hole, wherein the global positioning device to provide an accurate reporting of a location of the semi-trailer truck to a central server,wherein an antenna of the communications circuitry is fully encompassed within the housing,wherein the location at which the housing is affixed provides for an effective measuring and reliable locating of a stored transport item inside the interior cavity of the cargo container through the hole,wherein an emitting face of the ultrasound sensor is tight-sealed to prevent moisture from entering an ultrasound sensor housing with a hydrophobic material, andwherein a risk of water damage to the ultrasound sensor is minimized through a tight-sealing of the emitting face of the ultrasound sensor.
  • 2. The trailer of the semi-trailer truck of claim 1, wherein a low-ultrasound-attenuation material is utilized to produce a tight seal of an ultrasound sensor emitting face, andwherein an ultrasound wave emanating from the ultrasound sensor emitting face is permitted maximal penetration of such that the ultrasound wave is focusable in a manner that the ultrasound wave accurately measures a height of the stored transport item in a storage location of the interior cavity of the trailer to optimize asset planning and managing of the stored transport item.
  • 3. The trailer of the semi-trailer truck of claim 2, wherein the low-ultrasound-attenuation material is shaped to produce a cast acoustic emitting face with a curvature such that a shape of a wave-front of the ultrasound wave produced by the ultrasound sensor is focused on a desired point, andwherein an accuracy of the measurement of the height of the stored transport item maximized in the storage location of the interior cavity of the trailer to optimize asset planning and managing of the stored transport item.
  • 4. The trailer of the semi-trailer truck of claim 3, wherein a current state of a transport item is determined to be at least one of a loaded state, a partially loaded state, and an empty state based on a reading of an ultrasonic sensor, andwherein a compliance of a driver of a motorized cabin is audited based on a communication between the central server and the communication circuitry within the fleet pan enclosure.
  • 5. The trailer of the semi-trailer truck of claim 3 wherein the fleet pan enclosure is created from a LEXAN polycarbonate offering impact resistance, dimensional stability and signal clarity such that the antenna of the communication circuitry to communicate externally with the central server while still being fully encompassed within the housing.
  • 6. An apparatus, comprising: a housing encompassing a communication circuitry, a global positioning device and an ultrasound sensor affixed on a vertical face of an exterior front surface of a trailer toward a driver cabin of a semi-trailer truck, wherein the global positioning device to provide an accurate reporting of a location of the semi-trailer truck to a central server,wherein an antenna of the communications circuitry is fully encompassed within the housing,wherein the ultrasound sensor peers inside an interior cavity of the trailer through a hole formed on the vertical face between the housing and the interior cavity,wherein the location at which the housing is affixed provides for an effective measuring and reliable locating of a stored transport item through the hole,wherein an emitting face of the ultrasound sensor is tight-sealed to prevent moisture from entering an ultrasound sensor housing with a hydrophobic material, andwherein a risk of water damage to the ultrasound sensor is minimized through a tight-sealing of the emitting face of the ultrasound sensor.
  • 7. The apparatus of claim 6, wherein a low-ultrasound-attenuation material is utilized to produce a tight seal of an ultrasound sensor emitting face; andwherein an ultrasound wave emanating from the ultrasound sensor emitting face is permitted maximal penetration of such that the ultrasound wave is focusable in a manner that the ultrasound wave accurately measures a height of the stored transport item in a storage location of the interior cavity of the trailer to optimize asset planning and managing of the stored transport item.
  • 8. The apparatus of claim 7, wherein the low-ultrasound-attenuation material is shaped to produce a cast acoustic emitting face with a curvature such that a shape of a wave-front of the ultrasound wave produced by the ultrasound sensor is focused on a desired point, andwherein an accuracy of the measurement of the height of the stored transport item maximized in the storage location of the interior cavity of the trailer to optimize asset planning and managing of the stored transport item.
  • 9. The apparatus claim 8, wherein a current state of a transport item is determined to be at least one of a loaded state, a partially loaded state, and an empty state based on a reading of an ultrasonic sensor, andwherein a compliance of a driver of a motorized cabin is audited based on a communication between a base terminal and the communication circuitry within the housing.
  • 10. The apparatus claim 9 wherein a fleet pan enclosure is created from a LEXAN polycarbonate offering impact resistance, dimensional stability and signal clarity such that the antenna of the communication circuitry to communicate externally with the central server while still being fully encompassed within the housing.
  • 11. A cargo container, comprising: a fleet pan enclosure in a form of a housing encompassing a communications circuitry, a global positioning device and an ultrasound sensor to project into an interior cavity of the cargo container through a hole, wherein the cargo container having a hole with dimensions approximately two and a half inches in diameter, and the hole being located at a height of approximately forty-six inches from a base of the cargo container,wherein the global positioning device to provide an accurate reporting of a location of a semi-trailer truck to a central server,wherein an antenna of the communications circuitry is fully encompassed within the housing,wherein the location at which the housing is affixed provides for an effective measuring and reliable locating of a stored transport item inside the interior cavity of the cargo container through the hole,wherein an emitting face of the ultrasound sensor is tight-sealed to prevent moisture from entering an ultrasound sensor housing with a hydrophobic material, andwherein a risk of water damage to the ultrasound sensor is minimized through a tight-sealing of the emitting face of the ultrasound sensor.
  • 12. A cargo container, comprising: a fleet pan enclosure in a form of a housing encompassing a communications circuitry, a global positioning device and an ultrasound sensor to project into an interior cavity of the cargo container through a hole, wherein the cargo container having a hole with dimensions approximately two and a half inches in diameter, and the hole being located at a height of approximately forty-six inches from a base of the cargo container,wherein the global positioning device to provide an accurate reporting of a location of a semi-trailer truck to a central server,wherein an antenna of the communications circuitry is fully encompassed within the housing,wherein the location at which the housing is affixed provides for an effective measuring and reliable locating of a stored transport item inside the interior cavity of the cargo container through the hole, andwherein a low-ultrasound-attenuation material is utilized to produce a tight seal of an ultrasound sensor emitting face.
  • 13. The cargo container of claim 12, wherein an ultrasound wave emanating from the ultrasound sensor emitting face is permitted maximal penetration of such that the ultrasound wave is focusable in a manner that the ultrasound wave accurately measures a height of the stored transport item in a storage location of the interior cavity of a trailer to optimize asset planning and managing of the stored transport item.
  • 14. The cargo container of claim 13, wherein a current state of a transport item is determined to be at least one of a loaded state, a partially loaded state, and an empty state based on a reading of an ultrasonic sensor.
  • 15. The cargo container of claim 13, wherein a compliance of a driver of a motorized cabin is audited based on a communication between the central server and the communication circuitry within the fleet pan enclosure.
  • 16. The cargo container of claim 13, wherein the fleet pan enclosure is created from a LEXAN polycarbonate offering impact resistance, dimensional stability and signal clarity such that the antenna of the communication circuitry to communicate externally with the central server while still being fully encompassed within the housing.
  • 17. The cargo container of claim 12, wherein the low-ultrasound-attenuation material is shaped to produce a cast acoustic emitting face with a curvature such that a shape of a wave-front of the ultrasound wave produced by the ultrasound sensor is focused on a desired point, andwherein an accuracy of the measurement of the height of the stored transport item maximized in the storage location of the interior cavity of the trailer to optimize asset planning and managing of the stored transport item.
US Referenced Citations (512)
Number Name Date Kind
4067061 Juhasz Jan 1978 A
4633407 Freienstein et al. Dec 1986 A
4654821 Lapp Mar 1987 A
4663725 Truckenbrod et al. May 1987 A
4675539 Nichol Jun 1987 A
4695946 Andreasen et al. Sep 1987 A
4701845 Andreasen et al. Oct 1987 A
4727360 Ferguson et al. Feb 1988 A
4837700 Ando et al. Jun 1989 A
4884242 Lacy et al. Nov 1989 A
4891650 Sheffer Jan 1990 A
4907150 Arroyo et al. Mar 1990 A
5119301 Shimizu et al. Jun 1992 A
5122959 Nathanson et al. Jun 1992 A
5208756 Song May 1993 A
5218367 Sheffer et al. Jun 1993 A
5223844 Mansell et al. Jun 1993 A
5276865 Thorpe Jan 1994 A
5289369 Hirshberg Feb 1994 A
5299132 Wortham Mar 1994 A
5307277 Hirano Apr 1994 A
5390125 Sennott et al. Feb 1995 A
5408411 Nakamura et al. Apr 1995 A
5424952 Asayama Jun 1995 A
5457439 Kuhn Oct 1995 A
5515419 Sheffer May 1996 A
5521579 Bernhard May 1996 A
5610815 Gudat et al. Mar 1997 A
5684474 Gilon et al. Nov 1997 A
5686888 Welles, II et al. Nov 1997 A
5708820 Park et al. Jan 1998 A
5712789 Radican Jan 1998 A
5751245 Janky et al. May 1998 A
5805103 Doi et al. Sep 1998 A
5867804 Pilley et al. Feb 1999 A
5870029 Otto et al. Feb 1999 A
5877956 Frank et al. Mar 1999 A
5917433 Keillor et al. Jun 1999 A
5923243 Bleiner Jul 1999 A
5949974 Ewing et al. Sep 1999 A
5978236 Faberman et al. Nov 1999 A
6029111 Croyle Feb 2000 A
6067044 Whelan et al. May 2000 A
6075441 Maloney Jun 2000 A
6091323 Kawai Jul 2000 A
6148291 Radican Nov 2000 A
6154152 Ito Nov 2000 A
6181029 Berglund et al. Jan 2001 B1
6202023 Hancock et al. Mar 2001 B1
6204764 Maloney Mar 2001 B1
6226389 Lemelson et al. May 2001 B1
6233563 Jefferson et al. May 2001 B1
6240365 Bunn May 2001 B1
6249217 Forbes Jun 2001 B1
6266008 Huston et al. Jul 2001 B1
6275773 Lemelson et al. Aug 2001 B1
6317693 Kodaka et al. Nov 2001 B2
6338011 Furst et al. Jan 2002 B1
6339369 Paranjpe Jan 2002 B1
6339745 Novik Jan 2002 B1
6363320 Chou Mar 2002 B1
6385539 Wilson et al. May 2002 B1
6388580 Graham May 2002 B1
6393582 Klecka et al. May 2002 B1
6393584 McLaren et al. May 2002 B1
6394480 Brennan May 2002 B1
6415227 Lin Jul 2002 B1
6483434 Umiker Nov 2002 B1
6502080 Eichorst et al. Dec 2002 B1
6510381 Grounds et al. Jan 2003 B2
6512465 Flick Jan 2003 B2
6577921 Carson Jun 2003 B1
6584403 Bunn Jun 2003 B2
6701234 Vogelsang Mar 2004 B1
6704810 Krehbiel, Jr. et al. Mar 2004 B1
6714857 Kapolka et al. Mar 2004 B2
6717527 Simon Apr 2004 B2
6720920 Breed et al. Apr 2004 B2
6737963 Gutta et al. May 2004 B2
6748320 Jones Jun 2004 B2
6771970 Dan Aug 2004 B1
6816090 Teckchandani et al. Nov 2004 B2
6832153 Thayer et al. Dec 2004 B2
6844827 Flick Jan 2005 B2
6856902 Mitchem Feb 2005 B1
6871137 Scaer et al. Mar 2005 B2
6873963 Westbury et al. Mar 2005 B1
6904359 Jones Jun 2005 B2
6930638 Lloyd et al. Aug 2005 B2
6931309 Phelan et al. Aug 2005 B2
6985087 Soliman Jan 2006 B2
7015824 Cleveland Mar 2006 B2
7035856 Morimoto Apr 2006 B1
7039520 Draeger et al. May 2006 B2
7065445 Thayer et al. Jun 2006 B2
7072764 Donath et al. Jul 2006 B2
7091835 Boulay et al. Aug 2006 B2
7096392 Sim-Tang Aug 2006 B2
7099934 Ewing et al. Aug 2006 B1
7154390 Giermanski et al. Dec 2006 B2
7170390 Quinones et al. Jan 2007 B2
7174243 Lightner et al. Feb 2007 B1
7177738 Diaz Feb 2007 B2
7212134 Taylor May 2007 B2
7215255 Grush May 2007 B2
7242303 Patel et al. Jul 2007 B2
7253731 Joao Aug 2007 B2
7266378 Norta et al. Sep 2007 B2
7283046 Culpepper et al. Oct 2007 B2
7289019 Kertes Oct 2007 B1
7302344 Olney et al. Nov 2007 B2
7308611 Booth Dec 2007 B2
7327238 Bhogal et al. Feb 2008 B2
7339469 Braun Mar 2008 B2
7343306 Bates et al. Mar 2008 B1
7346439 Bodin Mar 2008 B2
7346790 Klein Mar 2008 B1
7405658 Richards Jul 2008 B2
7446649 Bhogal et al. Nov 2008 B2
7455225 Hadfield et al. Nov 2008 B1
7467325 Eisen et al. Dec 2008 B2
7472202 Parupudi et al. Dec 2008 B2
7479877 Mortenson et al. Jan 2009 B2
7486176 Bhogal et al. Feb 2009 B2
7489993 Coffee et al. Feb 2009 B2
7527288 Breed May 2009 B2
7552008 Newstrom et al. Jun 2009 B2
7555370 Breed et al. Jun 2009 B2
7571051 Shulman Aug 2009 B1
7574195 Krasner et al. Aug 2009 B2
7580782 Breed et al. Aug 2009 B2
7593999 Nathanson Sep 2009 B2
7600150 Wu Oct 2009 B2
7617037 Desens et al. Nov 2009 B2
7650210 Breed Jan 2010 B2
7652568 Waugh et al. Jan 2010 B2
7657354 Breed et al. Feb 2010 B2
7668931 Parupudi et al. Feb 2010 B2
7672756 Breed Mar 2010 B2
7693626 Breed et al. Apr 2010 B2
7701363 Zlojutro Apr 2010 B1
7725216 Kim May 2010 B2
7746228 Sensenig et al. Jun 2010 B2
7751944 Parupudi et al. Jul 2010 B2
7755541 Wisherd et al. Jul 2010 B2
7769499 McQuade et al. Aug 2010 B2
7774633 Harrenstien et al. Aug 2010 B1
7817033 Motoyama Oct 2010 B2
7876239 Horstemeyer Jan 2011 B2
7893818 Smoyer et al. Feb 2011 B2
7899591 Shah et al. Mar 2011 B2
7899621 Breed et al. Mar 2011 B2
7916026 Johnson et al. Mar 2011 B2
7950570 Marchasin et al. May 2011 B2
7971095 Hess et al. Jun 2011 B2
7987017 Buzzoni et al. Jul 2011 B2
8009034 Dobson et al. Aug 2011 B2
8009086 Grossnickle et al. Aug 2011 B2
8095304 Blanton et al. Jan 2012 B2
8103450 Takaoka Jan 2012 B2
8103741 Frazier et al. Jan 2012 B2
8106757 Brinton et al. Jan 2012 B2
8111154 Puri et al. Feb 2012 B1
8126601 Kapp et al. Feb 2012 B2
8181868 Thomas et al. May 2012 B2
8185767 Ballou et al. May 2012 B2
8201009 Sun et al. Jun 2012 B2
8237591 Holcomb et al. Aug 2012 B2
8255144 Breed et al. Aug 2012 B2
8279067 Berger et al. Oct 2012 B2
8299920 Hamm et al. Oct 2012 B2
8306687 Chen Nov 2012 B2
8311858 Everett et al. Nov 2012 B2
8326813 Nizami et al. Dec 2012 B2
8330626 Adelson Dec 2012 B1
8330817 Foster Dec 2012 B1
8368561 Welch et al. Feb 2013 B2
8380426 Konijnendijk Feb 2013 B2
8398405 Kumar Mar 2013 B2
8407139 Palmer Mar 2013 B1
8452771 Kurciska et al. May 2013 B2
8462021 Welch et al. Jun 2013 B2
8467324 Yousefi et al. Jun 2013 B2
8489907 Wakrat et al. Jul 2013 B2
8502661 Mauro et al. Aug 2013 B2
8504233 Ferguson et al. Aug 2013 B1
8504512 Herzog et al. Aug 2013 B2
8510200 Pearlman et al. Aug 2013 B2
8527135 Lowrey et al. Sep 2013 B2
8565963 Burke, Jr. Oct 2013 B2
8587430 Ferguson et al. Nov 2013 B2
8612137 Harris et al. Dec 2013 B2
8626152 Farrell et al. Jan 2014 B2
8655544 Fletcher et al. Feb 2014 B2
8655983 Harris et al. Feb 2014 B1
8671063 Ehrman et al. Mar 2014 B2
8700249 Carrithers Apr 2014 B1
8718536 Hannon May 2014 B2
8725326 Kapp et al. May 2014 B2
8725342 Ferguson et al. May 2014 B2
8762009 Ehrman et al. Jun 2014 B2
8766797 Hamm et al. Jul 2014 B2
8770480 Gulli Jul 2014 B2
8781169 Jackson et al. Jul 2014 B2
8781958 Michael Jul 2014 B2
8799461 Herz et al. Aug 2014 B2
8839026 Kopylovitz Sep 2014 B2
8933802 Baade Jan 2015 B2
8970701 Lao Mar 2015 B2
9049564 Muetzel et al. Jun 2015 B2
20010006398 Nakamura et al. Jul 2001 A1
20010018628 Jenkins et al. Aug 2001 A1
20010018639 Bunn Aug 2001 A1
20010034577 Grounds et al. Oct 2001 A1
20010037298 Ehrman et al. Nov 2001 A1
20020000916 Richards Jan 2002 A1
20020014978 Flick Feb 2002 A1
20020059126 Ricciardi May 2002 A1
20020070891 Huston et al. Jun 2002 A1
20020082025 Baese et al. Jun 2002 A1
20020184062 Diaz Dec 2002 A1
20020186144 Meunier Dec 2002 A1
20020198632 Breed et al. Dec 2002 A1
20030009361 Hancock et al. Jan 2003 A1
20030013146 Werb Jan 2003 A1
20030018428 Knockeart et al. Jan 2003 A1
20030023614 Newstrom et al. Jan 2003 A1
20030055542 Knockeart et al. Mar 2003 A1
20030055553 Knockeart et al. Mar 2003 A1
20030083060 Menendez May 2003 A1
20030125855 Breed et al. Jul 2003 A1
20030151501 Teckchandani et al. Aug 2003 A1
20030151507 Andre et al. Aug 2003 A1
20030158638 Yakes et al. Aug 2003 A1
20030158639 Nada Aug 2003 A1
20030163228 Pillar et al. Aug 2003 A1
20030163229 Pillar et al. Aug 2003 A1
20030163230 Pillar et al. Aug 2003 A1
20030171854 Pillar et al. Sep 2003 A1
20030174067 Soliman Sep 2003 A1
20030176959 Breed Sep 2003 A1
20030191567 Gentilcore Oct 2003 A1
20030191568 Breed Oct 2003 A1
20030204407 Nabors et al. Oct 2003 A1
20040006398 Bickford Jan 2004 A1
20040006413 Kane et al. Jan 2004 A1
20040041706 Stratmoen Mar 2004 A1
20040049337 Knockeart et al. Mar 2004 A1
20040050076 Palfy Mar 2004 A1
20040056797 Knockeart et al. Mar 2004 A1
20040093291 Bodin May 2004 A1
20040102895 Thayer et al. May 2004 A1
20040102896 Thayer et al. May 2004 A1
20040130440 Boulay et al. Jul 2004 A1
20040143378 Vogelsang Jul 2004 A1
20040162063 Quinones et al. Aug 2004 A1
20040199285 Berichon et al. Oct 2004 A1
20040199302 Pillar et al. Oct 2004 A1
20040204969 Wu Oct 2004 A1
20040225557 Phelan et al. Nov 2004 A1
20040246177 Lloyd et al. Dec 2004 A1
20050004748 Pinto et al. Jan 2005 A1
20050007450 Hill et al. Jan 2005 A1
20050021199 Zimmerman et al. Jan 2005 A1
20050021722 Metzger Jan 2005 A1
20050043879 Desens et al. Feb 2005 A1
20050060069 Breed et al. Mar 2005 A1
20050080565 Olney et al. Apr 2005 A1
20050114023 Williamson et al. May 2005 A1
20050131597 Raz et al. Jun 2005 A1
20050134504 Harwood et al. Jun 2005 A1
20050149251 Donath et al. Jul 2005 A1
20050171798 Croft et al. Aug 2005 A1
20050216294 Labow Sep 2005 A1
20050237166 Chen Oct 2005 A1
20060041341 Kane et al. Feb 2006 A1
20060041342 Kane et al. Feb 2006 A1
20060052913 Kane et al. Mar 2006 A1
20060053075 Roth et al. Mar 2006 A1
20060055561 Kamali et al. Mar 2006 A1
20060074558 Williamson et al. Apr 2006 A1
20060087411 Chang Apr 2006 A1
20060089786 Soehren Apr 2006 A1
20060109106 Braun May 2006 A1
20060129290 Zimmerman et al. Jun 2006 A1
20060155427 Yang Jul 2006 A1
20060155434 Kane et al. Jul 2006 A1
20060187026 Kochis Aug 2006 A1
20060253234 Kane et al. Nov 2006 A1
20060273922 Bhogal et al. Dec 2006 A1
20070005202 Breed Jan 2007 A1
20070027726 Warren et al. Feb 2007 A1
20070057781 Breed Mar 2007 A1
20070061054 Rowe et al. Mar 2007 A1
20070061076 Shulman Mar 2007 A1
20070086624 Breed et al. Apr 2007 A1
20070087756 Hoffberg Apr 2007 A1
20070096565 Breed et al. May 2007 A1
20070096899 Johnson May 2007 A1
20070115101 Creekbaum et al. May 2007 A1
20070135984 Breed et al. Jun 2007 A1
20070139216 Breed Jun 2007 A1
20070156317 Breed Jul 2007 A1
20070159354 Rosenberg Jul 2007 A1
20070162550 Rosenberg Jul 2007 A1
20070167147 Krasner et al. Jul 2007 A1
20070185625 Pillar et al. Aug 2007 A1
20070192117 Alvarez Aug 2007 A1
20070200690 Bhogal et al. Aug 2007 A1
20070239322 McQuade et al. Oct 2007 A1
20070244614 Nathanson Oct 2007 A1
20070285240 Sensenig et al. Dec 2007 A1
20070290836 Ainsworth et al. Dec 2007 A1
20070290923 Norta et al. Dec 2007 A1
20080015748 Nagy Jan 2008 A1
20080036187 Breed Feb 2008 A1
20080040004 Breed Feb 2008 A1
20080040005 Breed Feb 2008 A1
20080040023 Breed et al. Feb 2008 A1
20080040268 Corn Feb 2008 A1
20080042875 Harrington et al. Feb 2008 A1
20080046150 Breed Feb 2008 A1
20080051957 Breed et al. Feb 2008 A1
20080051995 Lokshin et al. Feb 2008 A1
20080061953 Bhogal et al. Mar 2008 A1
20080065291 Breed Mar 2008 A1
20080077285 Kumar et al. Mar 2008 A1
20080077326 Funk et al. Mar 2008 A1
20080091350 Smith et al. Apr 2008 A1
20080111546 Takahashi et al. May 2008 A1
20080119993 Breed May 2008 A1
20080147265 Breed Jun 2008 A1
20080147280 Breed Jun 2008 A1
20080157510 Breed et al. Jul 2008 A1
20080162045 Lee Jul 2008 A1
20080167821 Breed Jul 2008 A1
20080176537 Smoyer et al. Jul 2008 A1
20080183344 Doyen et al. Jul 2008 A1
20080183376 Knockeart et al. Jul 2008 A1
20080195261 Breed Aug 2008 A1
20080195432 Fell et al. Aug 2008 A1
20080215190 Pillar et al. Sep 2008 A1
20080234933 Chowdhary et al. Sep 2008 A1
20080235105 Payne et al. Sep 2008 A1
20080252431 Nigam Oct 2008 A1
20080262669 Smid et al. Oct 2008 A1
20080278314 Miller et al. Nov 2008 A1
20080294302 Basir Nov 2008 A1
20080303636 Chatte Dec 2008 A1
20080318547 Ballou, Jr. et al. Dec 2008 A1
20090033494 Malik Feb 2009 A1
20090079591 Motoyama Mar 2009 A1
20090082918 Hendrix, Jr. Mar 2009 A1
20090112394 Lepejian et al. Apr 2009 A1
20090138497 Zavoli et al. May 2009 A1
20090140887 Breed et al. Jun 2009 A1
20090177378 Kamalski et al. Jul 2009 A1
20090261975 Ferguson et al. Oct 2009 A1
20090273489 Lu Nov 2009 A1
20090326808 Blanton et al. Dec 2009 A1
20100036793 Willis et al. Feb 2010 A1
20100049669 Mazzarolo Feb 2010 A1
20100057279 Kyllingstad Mar 2010 A1
20100057305 Breed Mar 2010 A1
20100071572 Carroll et al. Mar 2010 A1
20100076878 Burr et al. Mar 2010 A1
20100082195 Lee et al. Apr 2010 A1
20100094482 Schofield et al. Apr 2010 A1
20100094500 Jin Apr 2010 A1
20100117868 Van Wiemeersch et al. May 2010 A1
20100127867 Chien et al. May 2010 A1
20100152972 Attard et al. Jun 2010 A1
20100169009 Breed et al. Jul 2010 A1
20100174487 Soehren Jul 2010 A1
20100191412 Kim Jul 2010 A1
20100207754 Shostak et al. Aug 2010 A1
20100250411 Ogrodski Sep 2010 A1
20100265104 Zlojutro Oct 2010 A1
20100274415 Lam Oct 2010 A1
20100332080 Bae Dec 2010 A1
20100332118 Geelen et al. Dec 2010 A1
20100332363 Duddle et al. Dec 2010 A1
20110016340 Sun et al. Jan 2011 A1
20110060496 Nielsen et al. Mar 2011 A1
20110071750 Giovino et al. Mar 2011 A1
20110078089 Hamm et al. Mar 2011 A1
20110090075 Armitage et al. Apr 2011 A1
20110090399 Whitaker et al. Apr 2011 A1
20110106337 Patel et al. May 2011 A1
20110137489 Gilleland et al. Jun 2011 A1
20110140877 Gilchrist et al. Jun 2011 A1
20110143669 Farrell et al. Jun 2011 A1
20110166773 Raz et al. Jul 2011 A1
20110181391 Chu Jul 2011 A1
20110196580 Xu et al. Aug 2011 A1
20110221573 Huat Sep 2011 A1
20110257880 Watanabe et al. Oct 2011 A1
20110270772 Hall et al. Nov 2011 A1
20110275388 Haney Nov 2011 A1
20120019021 Alguera Gallego Jan 2012 A1
20120029818 Smith et al. Feb 2012 A1
20120041618 Sun et al. Feb 2012 A1
20120075088 Marentes Aguilar Mar 2012 A1
20120077475 Holcomb et al. Mar 2012 A1
20120078497 Burke, Jr. Mar 2012 A1
20120089328 Ellanti et al. Apr 2012 A1
20120089686 Meister Apr 2012 A1
20120106446 Yousefi et al. May 2012 A1
20120106801 Jackson May 2012 A1
20120119935 Mohamadi May 2012 A1
20120123806 Schumann, Jr. et al. May 2012 A1
20120166018 Larschan et al. Jun 2012 A1
20120191329 Roessle et al. Jul 2012 A1
20120197484 Nath et al. Aug 2012 A1
20120218129 Burns Aug 2012 A1
20120232945 Tong Sep 2012 A1
20120249326 Mostov Oct 2012 A1
20120252488 Hartmann et al. Oct 2012 A1
20120253861 Davidson et al. Oct 2012 A1
20120268260 Miller et al. Oct 2012 A1
20120303237 Kumar et al. Nov 2012 A1
20120306646 Walker Dec 2012 A1
20120323767 Michael Dec 2012 A1
20120323771 Michael Dec 2012 A1
20120323772 Michael Dec 2012 A1
20130031318 Chen et al. Jan 2013 A1
20130031345 Kung Jan 2013 A1
20130035827 Breed Feb 2013 A1
20130057397 Cutler et al. Mar 2013 A1
20130059607 Herz et al. Mar 2013 A1
20130061044 Pinkus et al. Mar 2013 A1
20130066757 Lovelace et al. Mar 2013 A1
20130069390 Foster Mar 2013 A1
20130069803 McCormick Mar 2013 A1
20130097458 Sekino et al. Apr 2013 A1
20130100286 Lao Apr 2013 A1
20130113637 Sin et al. May 2013 A1
20130131928 Bolton et al. May 2013 A1
20130138251 Thogersen et al. May 2013 A1
20130144667 Ehrman et al. Jun 2013 A1
20130144770 Boling et al. Jun 2013 A1
20130144771 Boling et al. Jun 2013 A1
20130144805 Boling et al. Jun 2013 A1
20130159214 Boling et al. Jun 2013 A1
20130166198 Funk et al. Jun 2013 A1
20130179034 Pryor Jul 2013 A1
20130185193 Boling et al. Jul 2013 A1
20130185221 Adams et al. Jul 2013 A1
20130218369 Yoshihama et al. Aug 2013 A1
20130218461 Naimark Aug 2013 A1
20130222133 Schultz et al. Aug 2013 A1
20130249713 Adelson Sep 2013 A1
20130250933 Yousefi et al. Sep 2013 A1
20130253732 Patel et al. Sep 2013 A1
20130253734 Kaap et al. Sep 2013 A1
20130253754 Ferguson et al. Sep 2013 A1
20130297199 Kapp et al. Nov 2013 A1
20130302757 Pearlman et al. Nov 2013 A1
20130311077 Ichida Nov 2013 A1
20130332070 Fleizach et al. Dec 2013 A1
20140012438 Shoppa et al. Jan 2014 A1
20140012510 Mensinger et al. Jan 2014 A1
20140012511 Mensinger et al. Jan 2014 A1
20140012634 Pearlman et al. Jan 2014 A1
20140025229 Levien et al. Jan 2014 A1
20140025230 Levien et al. Jan 2014 A1
20140025233 Levien et al. Jan 2014 A1
20140025234 Levien et al. Jan 2014 A1
20140025235 Levien et al. Jan 2014 A1
20140025236 Levien et al. Jan 2014 A1
20140025284 Roberts Jan 2014 A1
20140036072 Lyall et al. Feb 2014 A1
20140052366 Rothschild Feb 2014 A1
20140052605 Beerle et al. Feb 2014 A1
20140058622 Trombley et al. Feb 2014 A1
20140058655 Trombley et al. Feb 2014 A1
20140058668 Trombley et al. Feb 2014 A1
20140058805 Paesler et al. Feb 2014 A1
20140067160 Levien et al. Mar 2014 A1
20140067167 Levien et al. Mar 2014 A1
20140074692 Beerle et al. Mar 2014 A1
20140077285 Noda et al. Mar 2014 A1
20140077326 Koshino et al. Mar 2014 A1
20140091350 Katsuno et al. Apr 2014 A1
20140095061 Hyde Apr 2014 A1
20140111546 Utagawa Apr 2014 A1
20140119993 Rhodes May 2014 A1
20140125500 Baade May 2014 A1
20140125501 Baade May 2014 A1
20140129426 Lamb et al. May 2014 A1
20140143169 Lozito May 2014 A1
20140147280 Kowatsch May 2014 A1
20140157510 Mjelde Jun 2014 A1
20140167821 Yang et al. Jun 2014 A1
20140180567 Fetsch Jun 2014 A1
20140183376 Perkins Jul 2014 A1
20140195261 Rasquinha et al. Jul 2014 A1
20140201064 Jackson et al. Jul 2014 A1
20140210503 Tam Jul 2014 A1
20140215190 Mylius et al. Jul 2014 A1
20140220966 Muetzel et al. Aug 2014 A1
20140267688 Aich et al. Sep 2014 A1
20140372498 Mian Dec 2014 A1
20150006207 Jarvis et al. Jan 2015 A1
20150019270 Jarvis et al. Jan 2015 A1
20150024727 Hale-Pletka et al. Jan 2015 A1
20150032291 Lowrey et al. Jan 2015 A1
20150066362 Meyer et al. Mar 2015 A1
20150067312 Lewandowski et al. Mar 2015 A1
20150168173 Lewis-Evans et al. Jun 2015 A1
20150260529 Petersen Sep 2015 A1
20150332525 Harris et al. Nov 2015 A1
Foreign Referenced Citations (89)
Number Date Country
2609106 Oct 2008 CA
2688263 Dec 2008 CA
2709740 Jul 2009 CA
2712576 Feb 2011 CA
2828835 Apr 2014 CA
2832185 May 2014 CA
2921908 Jul 2007 CN
101192322 Jun 2008 CN
101240734 Aug 2008 CN
101734228 Jun 2010 CN
102779407 Nov 2012 CN
103813477 May 2014 CN
104931066 Sep 2015 CN
4423328 Jan 1996 DE
0096252 Dec 1983 EP
0393935 Oct 1990 EP
0451482 Oct 1991 EP
0519630 Dec 1992 EP
0744727 Nov 1996 EP
0581558 Apr 1997 EP
0795760 Apr 1999 EP
0806632 Apr 1999 EP
0660083 Sep 2000 EP
0795700 Nov 2001 EP
1191500 Mar 2002 EP
0767448 Dec 2002 EP
0785132 May 2003 EP
1324241 Jul 2003 EP
1384635 Jan 2004 EP
0763713 May 2004 EP
1752949 Feb 2007 EP
1777541 Apr 2007 EP
1785744 May 2007 EP
1791101 Feb 2008 EP
1912191 Apr 2008 EP
1944190 Jul 2008 EP
1760655 Sep 2008 EP
2000889 Dec 2008 EP
1870788 Oct 2009 EP
1894779 Nov 2009 EP
1975563 Nov 2009 EP
1975565 Nov 2009 EP
1804223 Dec 2009 EP
1927961 Jan 2010 EP
2154026 Feb 2010 EP
2339562 Jun 2011 EP
2418461 Feb 2012 EP
2528043 Nov 2012 EP
1975566 Dec 2012 EP
1742083 Jan 2013 EP
1895273 Jan 2013 EP
2747004 Jun 2014 EP
2006123891 May 2006 JP
2014170000 Sep 2014 JP
8401823 May 1984 WO
9834314 Aug 1998 WO
9963357 Dec 1999 WO
0070530 Nov 2000 WO
0124393 Apr 2001 WO
0159601 Aug 2001 WO
0175472 Oct 2001 WO
0219683 Mar 2002 WO
02089077 Nov 2002 WO
03012473 Feb 2003 WO
03034089 Apr 2003 WO
03036462 May 2003 WO
03079717 Sep 2003 WO
2004009473 Jan 2004 WO
2004051594 Jun 2004 WO
2004075090 Sep 2004 WO
2004086076 Oct 2004 WO
2004102536 Nov 2004 WO
2005008603 Jan 2005 WO
2006053566 May 2006 WO
2008034097 Mar 2008 WO
2008118578 Oct 2008 WO
2008141456 Nov 2008 WO
2009058972 May 2009 WO
2009080070 Jul 2009 WO
2009097595 Aug 2009 WO
2009112305 Sep 2009 WO
2009158469 Dec 2009 WO
2011011544 Jan 2011 WO
2011037766 Mar 2011 WO
2011037800 Mar 2011 WO
2011070534 Jun 2011 WO
2013016581 Jan 2013 WO
2014008752 Jan 2014 WO
2014062668 Apr 2014 WO
Non-Patent Literature Citations (22)
Entry
“Affix” defintion, Google.com,retrieved Apr. 26, 2016.
“Save Money On Fleet Fueling Purchases”, Sokolis Group Fuel Managment, Jan. 26, 2011 by Sokolis (p. 1) http://www.sokolisgroup.com/blog/save-money-on-fleet-fueling-purchases/.
“Sensor-based Logistics: Monitoring Shipment Vital Signs in Real Time”, Inbound Logistics, Jun. 2013 by Chris Swearingen (pp. 2) http://www.inboundlogistics.com/cms/article/sensor-based-logistics-monitoring-shipment-vital-signs-in-real-time/.
“Electronic Cargo Tracking System and Solution, Intermodal Real-time Container Tracking and Rail Car Transport Security Tracking System for End-to-End Supply Chain Security System and Tracking Solution”, Cargo Tracking Solution & intermodal Transport Monitoring, Avante International Technology, Inc. in 2001-2015 (pp. 11) http://www.avantetech.com/products/shipping/.
“Sea Container Tracking Methods”, Moving-Australia, 2012 (pp. 3) http://www.moving-australia.co.uk/container/tracking-methods.php.
“GlobalTag For Global Visibility and Tracking”, Global Tracking Technology, in 2015 (pp. 5) http://globaltrackingtechnology.com/globaltag-for-global-visibility.html.
“The Course of the ‘Connected’ Car”, It Is Innovation, Emphasis on safety, Jan. 6, 2013 by Murray Slovick (pp. 4) http://www.ce.org/i3/Features/2013/January-February/The-Course-of-the-Connected-car.aspx.
“Cooperating Embedded Systems and Wireless Sensor Networks”, John Wiley & Sons, Inc., ISBN: 978-1-84821-000-4, Mar. 10, 2008 by Michel Banatre et al. (pp. 2) http://as.wiley.com/WileyCDA/WileyTitle/productCd-1848210000.html.
“Mitsubishi Motors Develops New Driver Support System”, Mitsubishi Motors, Dec. 15, 1998 (pp. 5) http://www.mitsubishi-motors.com/en/corporate/pressrelease/corporate/detail429.html.
“Vehicle Tracking for an Evasive Manoeuvres Assistant Using Low-Cost Ultrasonic Sensors”, EBSCO Host Connections, 2014, vol. 14 Issue 12, p. 22689, Dec. 2014 by Jiménez, Felipe et al. (p. 1) http://connection.ebscohost.com/c/articles/100145890/vehicle-tracking-evasive-manoeuvres-assistant-using-low-cost-ultrasonic-sensors.
“The End of Demographics: How Marketers Are Going Deeper With Personal Data”, Mashable Journal, in Jul. 1, 2011 by Jamie Beckland (pp. 7) http://mashable.com/2011/06/30/psychographics-marketing/.
“Power cycling 101: Optimizing energy use in advanced sensor products”, Analog Dialogue, vol. 44, Aug. 2010 by Mark Looney (pp. 7) http://www.analog.com/library/analogdialogue/archives/44-08/power—cycling.html.
“Dynamic Vehicle Detection Via The Use Of Magnetic Field Sensors”, MDPI, Jan. 19, 2016 by Vytautas Markevicius et al. (pp. 9) http://www.mdpi.com/1424-8220/16/1/78/pdf.
“Accuracy And Resource Consumption In Tracking And Location Prediction”, 8th International Symposium, Jul. 2003 by Ouri Wolfson et al. (pp. 4) http://link.springer.com/chapter/10.1007/978-3-540-45072-6—19.
“A Heuristic Moving Vehicle Location Prediction Technique Via Optimal Paths Selection With Aid Of Genetic Algorithm And Feed Forward Back Propagation Neural Network”, Journal of Computer Science, Dec. 12, 2012 by Baby Anitha, E. et al. (pp. 9) http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.687.3596&rep=rep1&type=pdf.
“Location Estimation And Trajectory Prediction Of Moving Lateral Vehicle Using Two Wheel Shapes Information In 2-D Lateral Vehicle Images By 3-D Computer Vision Techniques”, IEEE Xplore, Sep. 14-19, 2003 by Chih-Chiun Lai et al. (p. 1) http://ieeexolore.ieee.org/xpl/articleDetails.jsp?arnumber=1241704.
“Adaptive Location Prediction Strategies Based On A Hierarchical Network Model In A Cellular Mobile Environment”, The Computer Journal, May 1999 by Sajal K. Das et al. (p. 1) https://goo.gl/C27yaT.
“Automatic Transit Tracking, Mapping, And Arrival Time Prediction Using Smartphones”, ACM Digital Library, Nov. 1-4, 2011 by James Biagioni et al. (pp. 14) https://www.cs.uic.edu/˜jakob/papers/easytracker-sensys11.pdf.
“Location Prediction And Queries For Tracking Moving Objects”, IEEE Xplore, 2000 by O. Wolfson et al. (p. 1) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=839495.
“A Novel Vehicular Location Prediction Based On Mobility Patterns for Routing In Urban VANET”, EURASIP Journal on Wireless Communications and Networking, Dec. 2012 by Guangtao Xue et al. (pp. 28) http://link.springer.com/article/10.1186/1687-1499-2012-222.
“Vision-Based Vehicle Detection System With Consideration Of The Detecting Location”, IEEE Xplore, Apr. 3, 2012 by Minkyu Cheon et al. (p. 1) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6175131.
“A Vehicle Detection Approach Based On Multi-Features Fusion In The Fisheye Images”, IEEE Xplore, Mar. 11-13, 2011 by Guangtao Cheng et al. (p. 1) http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5763840.
Related Publications (1)
Number Date Country
20160282466 A1 Sep 2016 US