This disclosure generally relates to a three-dimensional object configured by a plurality of synchronized adjustable parts and more particularly relates to an adjustable mannequin head configured to adapt to multiple sizes for the designing and creation of wigs. The mannequin head can also be used to fit a variety of head wear including but not limited to hats, caps, and helmets etc.
The present invention is in the field of mannequin heads.
In the wig industry, there are mannequin heads of different sizes, shapes, materials, and colors, all for the purpose of making the perfect wig for the end client. The major issue with the traditional mannequin head is that it's difficult to make a wig for more than one client using the same mannequin head. If the clients' head is a larger or smaller circumference, the wig maker would have to buy several mannequin heads to accommodate for the different size heads of their clients. Currently, wig makers are forced to buy upwards of six mannequin heads to accommodate their clientele. This leads to clutter; storage issues and makes traveling to meet clients inconvenient, for the wig maker. Therefore, what's clearly needed is an expandable mannequin head that accommodates every potential head size of the client, solving the problems mentioned above.
The adjustable mannequin head that is configured by a plurality of parts that moves in a synchronized manner when expanding and contracting is a needed solution for the wig making industry. In one embodiment of the invention, an adjustable five-way mannequin head assembly is provided; comprised of five adjustable synchronized assemblies mounted on a mannequin head base. Each section of the assembly consists of a structural frame that is covered with a flexible material that attaches to moving sections. Four brackets glide on their independent set of liner rods which functions as a guide rail system. The fifth section moves on a machined screw. This system is designed to adjust each section in a synchronized motion. Four sections move inward and outward and the fifth section that moves up and down. This synchronized motion is controlled with a single screw that is connected to a plurality of gears. Four of the sections have a mechanical bracket assembly with a miter gear that connects to a spinal gear assembly. The spinal gear assembly has its' own set of miter gears. Therefore, when the motion is initiated, all five adjustable sections will move in a synchronized manner which provides a mannequin head that is adjustable.
Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings.
(Configuration of the Expandable Mannequin Head)
The top view illustrates a perspective in which the top portion of the 4 quadrants of the mannequin can be viewed. The front view illustrates the front portion of the mannequin head and how the adjustable quadrants flows with the facial features of the mannequin head. The side view illustrates a profile of the mannequin head and how the side of the adjustable portion create a smooth transition from the front to the back of the mannequin head. The rear view illustrates how the adjustable portion of the mannequin head flows with the rear neck contour of the mannequin head. The ISO view illustrates a compound perspective of how the entire mannequin will appear in the closed position.
The present embodiment is the object of a head region of a human. It illustrates a non-limiting example of an expandable mannequin head that is suitable for use of creating wigs of various sizes but not limited to only the construction of wigs but any kind of product of various kinds that is used for the human head that requires a range of sizes. Apart from the use of designing and construction wigs, this expandable mannequin head can be used to display a variety of headgear or products for both males and females.
Guide rods 14A and 14B allows bracket long 20 to glide back and forth along the length of the rods as well a means to prevent bracket long 20 from rotating during this linear movement. Right-hand M6 socket head screw 16, is the driver that moves the right-hand M6 machined nut 18A along the screw threads. Right-hand M6 machined nut 18A is pressed fitted into bracket long 20 that moves with right-hand M6 machined nut 18A. Right-hand M6 machined nut 18B is threaded onto the right-hand M6 socket head screw 16, and then M6 Bearing 22 is placed on the right-hand M6 socket head screw 16. M6 11 teeth miter gear 24 is then threaded onto the end of the right-hand M6 socket head screw 16. M6 machined nut 18B is threaded to clamp M6 Bearing 22 against M6 11 teeth miter gear 24. Clamping components right-hand M6 machined nut 18B, M6 Bearing 22, and M6 11 teeth miter gear 24 together and held in a fix location will prevent the right-hand M6 socket head screw 16 from moving and only allows the bracket long 20 which is attached to M6 machined nut 18A to move linearly back and forth when the right-hand M6 socket head screw 16 turned counter clockwise and clockwise. Lastly, M6 11 teeth miter gear 24 will rotate with the right-hand M6 socket head screw 16 (when turned) which provides movement for other assemblies that interlocked with this assembly.
This assembly shares the same functionalities and chain reaction of motion described for driver lower gear assembly 12.
This assembly shares the same functionalities and chain reaction of motion described for driver lower gear assembly 12.
The lower spinal female miter gear 42 is threaded onto the bottom of M6 right-hand screw rod 40 and then component M6 Bearing 22A is placed onto M6 right-hand screw rod 40 followed by threading M6 machined nut 18A which will lock and clamp M6 Bearing 22A between M6 machined nut 18A and lower spinal female miter gear 42. Component upper spinal male miter gear 44 is placed onto the top side of M6 right-hand screw rod 40 along with M6 Bearing 22A. M6 machined nut 18B is threaded on the top side of M6 right-hand screw rod 40. This nut will later function as a mechanical component to move the upper cap assembly 46 in
Glide Upper Cap 48 functions as a mechanical structure that aligns and interfaces with guide upper cap assembly 56 of
The adjustable plate 54 functions as the main base that holds, aligns, and mounts several assemblies. Spinal gear assembly 38 is aligned and seated in the center of the adjustable plate 54. Spinal gear assembly 38 function as the secondary feeder which drives the movement of the multiple assemblies. Driver lower gear assembly 12 and lower gear assembly 26 are aligned within mechanical features on the adjustable plate 54. Guide rods 14A and 14B functions as up-down and side to side alignments. M6 Bearing 22 functions as an in and out alignment for both driver lower gear assembly 12 and lower gear assembly 26. The (2) upper gear assembly 30 are aligned within mechanical features on the adjustable plate 54. Guide rods 14A and 14B functions as up-down and side to side alignment. M6 Bearing 22 functions as an in-out alignment for the (2) upper gear assembly 30. The (2) upper gear assembly 30 are position higher within adjustable plate 54 to provide clearance from driver lower gear assembly 12 and lower gear assembly 26. The M6 11 teeth miter gear 24 from driver lower gear assembly 12 and lower gear assembly 26 are seated and aligns on the top side of lower spinal female miter gear 42 from
Guide upper cap assembly 56 functions as an up-down support for M6 Bearing 22 from driver lower gear assembly 12, lower gear assembly 26, the (2) upper gear assembly 30. This support ensures that all gears will maintain engagement. Guide upper cap assembly 56 functions as a mechanical clamp for spinal gear assembly 38, M6 Bearing 22B from
The mannequin head base 10 has human facial features with (4) mounting bosses and (3) location tabs to position and mount the adjustable plate assembly 52.
The hardcovers services as the structural support for the top portion of the adjustable mannequin head. Each hard cover is attached to one of the brackets from plate assembly 52 and secured with (2) M4 socket head screws per hard cover. Each hardcover has 2 open areas designed to provide large clearances for needles to pass through each of the (4) soft covers (from
The function of the soft covers provides a flexible surface that will allows needles to pierce the soft material to hold the wig in position on the mannequin head during the construction process. The flexible material provides a way for the adjustable mannequin head to expand and contract mechanically while maintaining a structural shape that emulates a human head of multiple sizes. There are several small rectangular openings on each soft cover designed to secure the soft covers to the each hardcover and mannequin head mechanically with mechanical clamps (shown is
Although not mentioned in the detailed description, the mannequin head may be adjusted or automated by incorporating or attaching a motorized mechanism as a means to adjusting the size of the adjustable mannequin head. One of ordinary skill in the art, would be able to automate the system of the adjustable mannequin head.
Number | Name | Date | Kind |
---|---|---|---|
11302 | Brown | Jul 1854 | A |
37993 | Lyon | Mar 1863 | A |
157845 | Levering | Dec 1874 | A |
334236 | Keator | Jan 1886 | A |
365575 | Campbell | Jun 1887 | A |
1578186 | Brodin | Mar 1926 | A |
1581940 | Margolin | Apr 1926 | A |
2831286 | Eisner | Apr 1958 | A |
3009265 | Bezark | Nov 1961 | A |
3038260 | Massad | Jun 1962 | A |
3197093 | Doran | Jul 1965 | A |
3462050 | Hensley | Aug 1969 | A |
3709407 | Sanford | Jan 1973 | A |
4263743 | Hanson | Apr 1981 | A |
4708836 | Gain | Nov 1987 | A |
5090910 | Narlo | Feb 1992 | A |
8056427 | Wang | Nov 2011 | B2 |
9826954 | Petel | Nov 2017 | B2 |
11151901 | Zhao | Oct 2021 | B2 |
20100163066 | Robinshtain | Jul 2010 | A1 |
20180247567 | Wang | Aug 2018 | A1 |
20190082811 | Gray | Mar 2019 | A1 |
Number | Date | Country | |
---|---|---|---|
20210195983 A1 | Jul 2021 | US |