This invention relates in general to wellhead assemblies and in particular to a seal for sealing between inner and outer wellhead members.
Seals are used between inner and outer wellhead tubular members to contain internal well pressure. The inner wellhead member may be a tubing hanger that supports a string of tubing extending into the well for the flow of production fluid. The tubing hanger lands in an outer wellhead member, which may be wellhead housing, a Christmas tree, or tubing head. A packoff or seal seals between the tubing hanger and the outer wellhead member. Alternately, the inner wellhead member might be a casing hanger located in a wellhead housing and secured to a string of casing extending into the well. A seal or packoff seals between the casing hanger and the wellhead housing.
A variety of seals of this nature have been employed in the prior art. Prior art seals include elastomeric and partially metal and elastomeric rings. Prior art seal rings made entirely of metal for forming metal-to-metal seals are also employed. The seals may be set by a running tool, or they may be set in response to the weight of the string of casing or tubing. One type of prior art metal-to-metal seal has inner and outer walls separated by a conical slot. An energizing ring is pushed into the slot to deform the inner and outer walls apart into sealing engagement with the inner and outer wellhead members. The energizing ring is a solid wedge-shaped member. The deformation of the inner and outer walls exceeds the yield strength of the material of the seal ring, making the deformation permanent.
Thermal growth between the casing or tubing and the wellhead may occur, particularly with wellheads located at the surface, rather than subsea. The well fluid flowing upward through the tubing heats the string of tubing, and to a lesser degree the surrounding casing The temperature increase may cause the tubing hanger and/or casing hanger to move axially a slight amount relative to the outer wellhead member. During the heat up transient, the tubing hanger and/or casing hanger can also move radially due to temperature differences between components and the different rates of thermal expansion from which the component materials are constructed. If the seal has been set as a result of a wedging action where an axial displacement of energizing rings induces a radial movement of the seal against its mating surfaces, then sealing forces may be reduced if there is movement in the axial direction due to pressure or thermal effects. A reduction in axial force on the energizing ring results in a reduction in the radial inward and outward forces on the inner and outer walls of the seal ring, which may cause the seal to leak. A loss of radial loading between the seal and its mating surfaces due to thermal transients may also cause the seal to leak.
The seal ring of this invention forms a metal-to-metal seal and has features to accommodate thermal growth without leakage. The seal ring has inner and outer walls separated by conical slot. A metal energizing ring with inner and outer conical surfaces is pushed into the slot during installation to deform the inner and outer walls into sealing engagement with inner and outer wellhead members. The energizing ring has an internal cavity located between the inner and outer conical surfaces to allow the inner and outer conical surfaces to deflect toward each other during installation. The deflection is within the elastic range of the energizing ring, thus creating radial inward and outward preload forces. Thus when thermal displacements cause a radial movement between the seal and the mating housings, the stored energy due to the flex of the energizing rings enabled by the internal cavity, maintains near constant sealing forces. Additionally, even if the downward force on the energizing ring is reduced or lost due to thermal growth, the inward and outward directed radial forces remain as a result of the cavity in the energizing ring.
In the embodiment shown, the seal ring is bi-directional, having upper and lower sections that are the same, each containing one of the slots. Preferably a lower energizing ring engages the slot of the lower section and an upper energizing ring engages the slot of the upper section. In the embodiment shown, each energizing ring is made up of two annular members secured together, such as by threads. Each inner and outer annular member has a cavity wall surface radially spaced from the other to define the cavity. Preferably the cavity is cylindrical and extends at least the length of the wedge or engaging portion of the energizing member. Also, preferably an annular band is formed on an end of the cavity surface of at least one of the annular members to contact the other cavity surface during the installation.
In the embodiment shown, a radial gap exist between the outer wall of the seal and the inner wall of the mating housing. Such gap is required for installation in the field and is sufficiently large to require plastic deformation of the seal body, but not the energizer rings. In order to accommodate sealing over scratches and surface trauma of the wellhead member, a soft metallic outer layer may be provided for on the seal. The thickness of this outer layer is sufficient to provide for scratch filling and therefore sealing between the mating members. Additionally, multiple v-shaped grooves of the seal body are such that the soft outer layer will be trapped, which both prevents extrusion of the soft metallic material and induces high compressive stresses in the layer. Since the grooves are not exposed at the surface, they are not subject to damage from running operations. The combination of stored energy provided for by the energizer ring cavity and the compliant soft outer layer, provides gas tight sealing under extreme thermal conditions. Alternatively, the soft outer layer may be made from a non-metallic material or polymer such as PEEK (poly-ether-ether-keytone) or PPS (polyphenylene sulfide).
Referring to
In this example, the inner wellhead member comprises a tubing hanger 17, which is shown partially in
A metal-to-metal seal assembly 29 is located in seal pocket 19. Seal assembly 29 includes a seal ring 31 formed of a metal such as steel. Seal ring 31 has an inner wall 33 that may have annular seal bands 35 at the upper and lower ends for sealing against the cylindrical wall of seal pocket 19. Seal ring 31 has an outer wall surface or layer 37 that seals against tubing spool bore 13. Outer layer 37 optionally comprises a sleeve of softer material than the body of seal ring 31, the sleeve being secured by threads, thermal spray, brazing or the like. Discrete v-shaped grooves 39 may be located toward each end of the body of seal ring 31. Grooves 39 are filled by outer layer 37 and serve to anchor or fix outer layer 37 against movement relative to the body of seal ring 31. Outer layer 37 could optionally be an integral portion of seal ring 31 rather than a sleeve. Outer layer 37 may be formed of a soft metal or alternatively made from a non-metallic material or polymer such as PEEK (poly-ether-ether-keytone) or PPS (polyphenylene sulfide).
In this example, seal ring 31 is bi-directional, having an upper section and a lower section that are substantially mirror images of each other. The same numerals are applied to the upper section as to the lower section. Each section has a wedge-shaped or conical slot 41 that reduces in width from its entrance to a base located centrally between the upper and lower ends of seal ring 31. The inner and outer surfaces forming each slot 41 comprise generally conical surfaces that may be straight or curved.
An upper energizing ring 43 engages slot 41 on the upper side, and a lower energizing ring 45 engages slot 41 on the lower side. Upper energizing ring 43 is forced downward into upper slot 41 by tubing hanger downward facing shoulder 21 during setting. Lower energizing ring 45 is forced upward into lower slot 41 by shoulder ring 23 during setting. Upper and lower energizing rings 43, 45 are formed of metal, such as steel. The mating surfaces of energizing rings 43, 45 and slots 41 may be formed at a locking taper to resist reverse movement of energizing rings 43, 45 after seal ring 31 has been set.
Upper energizing ring 43 includes an inner annular member 47 and an outer annular member 49. Inner and outer annular members 47, 49 are secured to each other by threads 51. Other methods could be employed for securing annular members 47, 49 to each other, such as cross pins, welding or brazing. An upper supporting portion of inner annular member 47 extends over and upward from the upper end of outer annular member 49 in this example. The radial thickness of this supporting portion of inner annular member 47 above outer annular member 49 is approximately the same as the radial thickness of seal ring 31.
Lower energizing ring 45 comprises an inner annular member 53 and an outer annular member 55. Inner and outer members 53, 55 are secured to each other, such as by threads. In this example, the axial length of lower energizing ring 45 is less than the axial length of upper energizing ring 43. Also, in this example, inner annular member 53 and outer annular member 55 have the same axial lengths. The lower portions of inner and outer members 53, 55 serve as a supporting portion of lower energizing ring 45 and define a radial width approximately the same as seal ring 31.
Each of the energizing rings 43, 45 has a wedge member or engaging portion that engages one of the slots 41. Each energizing ring 43, 45 has an inner conical surface 57 and an outer conical surface 59 for engaging the opposite inner sidewalls of each slot 41. The inner conical surface 57 of upper energizing ring 43 is formed on upper inner annular member 47. The outer conical surface 59 is formed on upper outer annular member 49. The inner and outer conical surfaces 57, 59 of lower energizing ring 45 are similarly formed on lower inner and outer annular members 53, 55. Inner and outer conical surfaces 57, 59 may be curved conical surfaces, as shown or straight conical surfaces. Serrations may be located along surfaces 57 and 59 to resist axial seal separation of seal 31 from energizing rings 43, 45. Additionally, the upper and lower interface surfaces 57 and 59 may be selectively coated to provide a differential, and thereby preferential, activation motion.
Referring to
At least one of the surfaces 60, 62, which is shown by example to be surface 62, may have a cylindrical band 63 formed on the lower end at nose 65 of upper energizing ring 43. Band 63 protrudes inward from cylindrical surface 62. Although not essential, prior to setting seal ring 31 (
Referring to
In operation, tubing 67 (
Referring to
The deflection of inner and outer members 47, 49 toward each other preferably does not exceed the yield strength of the metal of which they are formed. Being within the elastic range, members 47, 49 continue to exert radial inward and outward forces on seal ring inner and outer walls 33, 37 after setting. This radial preload force is not dependent on weight continuing to be applied to energizing rings 43, 45 from the string of tubing 67 (
The invention has significant advantages. The internal cavity stores energy to maintain the metal-to-metal sealing engagement. If thermal growth later causes the tubing hanger to move axially relative to the tubing head, the downward force due to the weight of the string may be reduced or even eliminated. However, the sealing engagement is maintained because of the radial preloaded bias created by the internal cavity within each energizing ring. Additionally, radial movement due to thermal transients is accommodated without loss of the seal energy force. This flexing energizer system, in contrast to solid energizer rings of prior inventions, provides stored energy by which seal integrity is maintained. While the invention has been shown in only one of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without the scope. For example, in some instances, the shoulder ring could be removed, with the lower energizing ring landing directly on a shoulder in the bore of the tubing head. The seal could be configured for withstanding pressure in only a single direction, if desired, having only a single energizing ring. Each energizing ring could be formed of a single member, with the cavity formed by machining. The seal assembly could also be employed between a casing hanger and a wellhead housing.
Number | Name | Date | Kind |
---|---|---|---|
4131287 | Gunderson et al. | Dec 1978 | A |
4900041 | Hopkins et al. | Feb 1990 | A |
5246236 | Szarka et al. | Sep 1993 | A |
5285853 | Eckert et al. | Feb 1994 | A |
5456314 | Boehm, Jr. et al. | Oct 1995 | A |
5685369 | Ellis et al. | Nov 1997 | A |
6367558 | Borak, Jr. | Apr 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20080135229 A1 | Jun 2008 | US |