The present invention relates to electrical connectors and more particularly to electrical connectors for carrying high frequency signals.
Current state of the art electronic devices rely on the transmission of high frequency signals between physically separated circuits. This can be difficult because of the susceptibility of such signals to various adverse influences that compromise bandwidth, the amount of information transmitted per unit of time. Reduction or elimination of signal degradation is desirable or necessary since the information processing capability of modern electrical circuits exceeds the frequencies which can be reliably handled by the cables and connectors that interconnect physically separated circuits. Connectors must provide electronic characteristics comparable to the electronic characteristics of the circuits being connected to assure that signal quality is maintained through the connector.
The quality of high frequency signals transmitted between circuits through a connector can be compromised or degraded by the magnitude of reflected signals due to the interface between conduction paths of the connected circuits and the conductive traces of the connector. Another major source of signal degradation is crosstalk, the interference to a signal carried by one electrical path caused by a signal on an adjacent path. Crosstalk interference results from the inductive and or capacitive coupling that occurs between electrically conductive paths. Current solutions to crosstalk problems include the use of multiple ground pins surrounding and separating signal pins. Some connectors also use solid wires that vary in length depending on the size and number of rows of the conductor which can make the signal and return paths unequal.
The high frequency connector of the present invention replaces the conductor wires with flex strip signal/reference conductor pairs within channels through a dielectric connector body. The electrical characteristics of the flex strip signal/reference conductors can be modified to achieve the needs of the connector design. The ability to create a desired impedance of the flex strip conductor pair enables the impedance of the connector to be matched to the impedance of the connected high frequency circuits and signal transmission lines to minimize discontinuities and signal degradation. “High Frequency” in the context of this specification means that signal rise and fall times are shorter than a time needed to propagate the rise times or the fall times from a beginning of a conducting path to an end of the conducting path.
The flex strip application also reduces crosstalk between adjoining signals by the closely proximate disposition of signal and reference traces and the significantly larger dielectric separation of adjacent signal traces which significantly reduces inductive coupling within the connector.
The close proximity of the reference trace to the paired signal trace reduces the effective radiating loop area and the electromagnetic interference associated therewith. A further advantage of the flex strip signal/reference pair connector is the ability to individually match the flex strip conductors to the attached circuitry to adapt each connector conductor to the specific impedance requirements of the attached high frequency circuit.
The connector 8 has terminations at the flex strip conductor ends which are shown as terminal portions adapted to connect to a coaxial cable. The flex strip signal/reference pairs have, at each end, exposed portions 26 and 27 of the signal and reference traces respectively which are connected by conductors 28 and 29 to pins 30 and 31 in the attachment portion 34. The pins 30 and 31 of the connector attachment portions 34 are received in crimped socket portions 36 and 37 supported within the cable attachment portion 40. The coaxial cable 42 has a signal wire 44 surrounded by and separated from a braided shielding conductor 46 by a layer of insulation 45. The cable has at the exterior, an electrically insulating cover 47. The signal wire 44 is electrically connected to the crimped socket 36 and the braided shielding conductor 46 is electrically connected to the crimped socket 37. Although the connector 8 has been shown and described in an environment using coaxial cable attachment portions, various modes of attachment may be used to implement the connector electrical connections to high frequency circuits, such as surface mount or other common attachment techniques.
The flex strip signal/reference pair conductor members 16 are designed to cause the impedance to match the impedance of the connected circuits. The flex strip impedance is controlled by the size and separation of the signal trace and the ground trace. The flex circuit conductors may have traces of equal width, as shown in
The flex strip connector design reduces crosstalk between multiple signal traces within the connector. The signal trace and reference trace of each pair closely adjoin one another compared to the separation of adjacent signals imposed by the connector body 14 between the flex strip conductor carrying channels 12 extending therethrough. The close proximity of the signal trace to the ground trace and the separation of the adjoining signal traces within the connector body minimizes the mutual inductance and consequently, the crosstalk between adjacent signal traces. The closely spaced signal and reference traces also enable the returning signal current to be close to the outgoing signal path such that the magnetic fields from the outgoing and return paths cancel to minimize electromagnetic interference.
In an alternative embodiment of the invention, the conductive paths, in the form of flex strip signal reference pairs 16 within connector 8 utilize flex cable technology wherein, signal trace 20 and reference trace 22 are disposed on the same side of dielectric material 18 and have geometries and spacing suitable to establish a desired impedance.
Another advantage that can be realized using the present invention is the ability to match various signal lines of the connector to different impedances. Since the signal traces are on individual flex circuits, each can be matched to a specific signal line despite the fact that some or all lines must be matched to a different impedance.
The foregoing description of an embodiment of the invention has been presented for purposed of illustration and description. It is not intended to be exhaustive or limit the invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. For example, not only may many forms of termination and attachment be implemented between the connector and the attached circuits, but also the invention may be utilized in other environments such as those using differential signals wherein a true phase and a complementary phase form a differential signal and are disposed on opposite sides of the flex strip. It is intended that the scope of the invention be limited not by the description and illustrations, but rather by the claims appended hereto.