This invention relates generally to textile sleeves for protecting elongate members, and more particularly to woven sleeves.
It is known to contain and protect elongate members, such as wires and wire harnesses, for example, in woven protective sleeves, such as in automobiles, aircraft or aerospace craft, to provide protection to the wires against abrasion, fluid and thermal affects. In order to achieve the multiple types of desired protection, and to ensure optimal protection to the elongate members against the effects of abrasion, the protective sleeve may have multiple layers, with some of the layers being specifically provided for different types of protection. For example, one layer may be provided for optical coverage to inhibit seeing through the sleeve, e.g. a sheet of plastic material, while another layer may be provided for abrasion resistance, and yet another layer may be provided for protection against thermal conditions. Although the aforementioned multilayer sleeves may provide suitable protection against various environmental conditions, unfortunately they are typically bulky, thereby requiring an increased volume of space, and further, they tend to be relatively heavy and exhibit low flexibility. Further yet, providing suitable protection against abrasion can still remain a challenge. Having to include multiple layers can prove problematic in some applications, particularly applications requiring routing cables or hoses through tight, winding areas, as well as applications having weight restrictions, such as aircraft and aerospace applications, for example.
One aspect of the invention provides a woven textile sleeve for routing and protecting elongate members including an elongate wall configured to bound a cavity extending a longitudinal central axis of the sleeve. The wall is woven with warp yarns extending parallel to the central longitudinal axis and fill yarns extending transversely to the warp yarns. The warp yarns are woven as discrete bundles of yarn filaments. Each of the discrete bundle of yarn filaments includes a plurality of yarn filaments arranged in side-by-side abutting relation with one another. The yarn filaments in each discrete bundle extend over and under the same fill yarns with one another.
In accordance with another aspect, the invention provides a method of constructing a textile sleeve, comprising: weaving an elongate wall configured to bound a central cavity extending parallel to a central longitudinal axis of the sleeve with the wall having warp yarns extending parallel to the central longitudinal axis and fill yarns extending transverse to the warp yarns. Further, weaving the warp yarns in discrete bundles of yarns, with each of the bundles having a plurality of yarn filaments arranged in side-by-side abutting relation with one another, with the yarn filaments in each discrete bundle extending over and under the same fill yarns with one another. Further yet, weaving the fill yarns including monofilaments and multifilaments.
Another aspect of the invention provides a woven sleeve for routing and protecting elongate members from exposure to abrasion and other environmental conditions, such as contamination. The sleeve has a flexible, abrasion resistant wall constructed from woven monofilament and multifilament yarns. The wall is configured to bound a cavity that extends along a central axis of the sleeve between opposite open ends. The wall is woven with warp yarns that extend generally parallel to the central axis of the sleeve and fill (also referred to as weft) yarns that extend circumferentially about the central axis of the sleeve, generally transversely to the central axis. The warp yarns are bundled into individual, discrete groups, with each group including a plurality of monofilaments in immediate, side-by-side, abutting relation with one another, wherein each of the monofilaments within the same discrete group is interlaced to extend over and under the same side of a same (common) fill yarn. The groups of bundled warp yarns provide enhanced abrasion resistance to abrasive forces along the length of the sleeve, while also providing the sleeve with a relatively reduced weight as compared to a similar plain weave sleeve (a plain weave does not include discrete groups of side-by-side yarns) of the same size, while the synergies provided by the warp and fill yarns further provide the sleeve with enhanced optical coverage, an ability to flex smoothly without kinking about meandering paths and corners, while also being economical in manufacture and in use.
In accordance with another aspect of the invention, the wall of the sleeve can be constructed as a circumferentially continuous, seamless tubular wall.
In accordance with another aspect of the invention, the wall of the sleeve can be formed as a wrappable wall having opposite edges extending generally parallel with the central axis, wherein the opposite edges are configured to overlap one another to bound the cavity configured for receipt of the elongate member to be protected.
In accordance with another aspect of the invention, the discrete bundles of warp monofilaments can extend over a single fill yarn and under a single fill yarn in repeating fashion.
In accordance with another aspect of the invention, the discrete bundles of warp monofilaments can extend over a plurality of the fill yarns and under a plurality of the fill yarns in repeating fashion.
In accordance with another aspect of the invention, each of the discrete bundles of warp monofilaments can be provided having three (3) or more monofilaments to provide enhanced abrasion resistance.
In accordance with another aspect of the invention, the fill yarns can be provided as multifilaments and monofilaments, with the multifilaments providing enhanced optical coverage and the monofilaments being heat-set to bias the opposite edges of the wall into overlapping relation with one another.
In accordance with another aspect of the invention, the fill yarns can be provided including multifilaments and monofilaments in alternating relation with one another along the length of the sleeve, such that the immediately adjacent fill yarns extend over and under, respectively, the same warp yarn, to provide an optimal self-wrapping configuration and optimal optical coverage to the sleeve.
In accordance with another aspect of the invention, the fill yarns can be provided including multifilaments and monofilaments in bundled, side-by-side relation with one another, such that each passage (pick) of the fill yarn includes a multifilament and a monofilament either pulled in parallel relation with one another, twisted with one another, or served with one another, such that the bundled multifilament and monofilament fill yarns extend over and under the same warp yarn in side-by-side relation with one another, to provide an optimal self-wrapping configuration and optimal optical coverage to the sleeve.
In accordance with another aspect of the invention, the warp monofilaments can be provided having a larger diameter relative to the fill yarns to enhance abrasion protection to the fill yarns.
In accordance with another aspect of the invention, at least one warp monofilament within one or more of the discrete bundles of warp monofilaments can have a different diameter from other ones of the warp monofilaments within the discrete bundle, with the warp monofilaments having the greater diameter providing protection to the warp monofilaments having the lesser diameter.
In accordance with another aspect of the invention, at least one warp monofilament within one or more of the discrete bundles of warp monofilaments can be a different type of material from other ones of the warp monofilaments within the discrete bundle.
In accordance with another aspect of the invention, at least one warp monofilament within one or more of the discrete bundles of warp monofilaments can have a different diameter and be formed of a different type of material from other ones of the warp monofilaments within the discrete bundle.
In accordance with another aspect of the invention, at least one warp monofilament within one or more of the discrete bundles of warp monofilaments can have a larger diameter, such as about 0.25 mm, for example, and be formed of a different type of material, such as Nylon, for example, from other ones of the warp monofilaments having a diameter of about 0.22 mm, for example, and being formed of PET, for example, within the discrete bundle. The larger diameter monofilaments are provided to enhance abrasion resistance from an optimally abrasion resistant material, thereby providing protection to the smaller, less expensive monofilaments, which also provide enhanced abrasion resistance in synergistic fashion with the larger diameter monofilaments.
In accordance with another aspect of the invention, a method of constructing a textile sleeve is provided. The method includes weaving an elongate wall configured to bound a cavity that extends along a central longitudinal axis of the sleeve with the wall being having warp yarns extending parallel to the central longitudinal axis and fill yarns extending transverse to the warp yarns. Further, the method includes weaving the warp yarns in discrete bundles of yarns, with each of the bundles having a plurality of monofilament yarns arranged in side-by-side abutting relation with one another, wherein the warp yarns in each discrete bundle extends over and under the same fill yarns with one another.
In accordance with another aspect of the invention, the method can further include weaving the wall having opposite edges extending generally parallel to the central longitudinal axis, and wrapping the opposite edges in overlapping relation with one another to circumferentially bound the cavity.
In accordance with another aspect of the invention, the method can further include weaving the wall as a circumferentially continuous, seamless tubular wall.
In accordance with another aspect of the invention, the method can further include weaving the bundles over and under a single fill yarn in repeating fashion.
In accordance with another aspect of the invention, the method can further include heat-setting at least some of the fill yarns to bias the opposite edges into overlapping relation with one another.
In accordance with another aspect of the invention, the method can further include providing the fill yarns as monofilaments and multifilament yarns.
In accordance with another aspect of the invention, the method can further include weaving the fill yarns as monofilaments and multifilament yarns in alternating relation with another along the length of the sleeve.
In accordance with another aspect of the invention, the method can further include weaving the warp yarns and the fill yarns in a warp rib weave pattern.
In accordance with another aspect of the invention, the method can further include weaving at least one warp monofilament within one or more of the discrete bundles of warp monofilaments having a different diameter from other ones of the warp monofilaments within the discrete bundle to further enhance the abrasion resistance of the wall and reduce the cost associated with manufacture of the wall.
In accordance with another aspect of the invention, the method can further include weaving at least one warp monofilament within one or more of the discrete bundles of warp monofilaments of a different type of material from other ones of the warp monofilaments within the discrete bundle to further enhance the abrasion resistance of the wall and reduce the cost associated with manufacture of the wall.
In accordance with another aspect of the invention, the method can further include weaving at least one warp monofilament within one or more of the discrete bundles of warp monofilaments having a different diameter and being formed of a different type of material from other ones of the warp monofilaments within the discrete bundle to further enhance the abrasion resistance of the wall and reduce the cost associated with manufacture of the wall.
In accordance with another aspect of the invention, the method can further include weaving at least one warp monofilament within one or more of the discrete bundles of warp monofilaments having a larger diameter, such as about 0.25 mm, for example, and being formed of a different type of material, such as Nylon, for example, from other ones of the warp monofilaments having a diameter of about 0.22 mm, for example, and being formed of PET, for example, within the discrete bundle, such that the larger diameter monofilaments provide enhanced abrasion resistance with an optimally abrasion resistant material, thereby providing abrasion resistance protection to the smaller, less expensive monofilaments, which also provide enhanced abrasion resistance in synergistic fashion with the larger diameter monofilaments.
These and other aspects, features and advantages will become readily apparent to those skilled in the art in view of the following detailed description of presently preferred embodiments and best mode, appended claims, and accompanying drawings, in which:
Referring in more detail to the drawings,
Depending on the application needs, the wall 12, 12′ can be constructed having any suitable size, including length and diameter. When the wall 12 is in its self-wrapped tubular configuration, generally free from any externally applied forces, the edges 16, 17 preferably overlap one another in self-biased fashion at least slightly to fully enclose the cavity 20, and thus, provide enhanced protection to the wires 14 contained in the cavity 20. The edges 16, 17 are readily extendable away from one another under an externally applied force sufficient to overcome the shape memory bias imparted by the fill yarns 24 to at least partially open and expose the cavity 20. Accordingly, the wires 14 can be readily disposed into the cavity 20 during assembly or removed from the cavity 20 during service. Upon releasing the externally applied force, the edges 16, 17 return automatically to their shape memory, overlapping self-wrapped position under the bias imparted by the heat-set fill monofilament yarns 24.
The discrete warp yarn bundles 22, in accordance with one aspect of the disclosure, can be formed of any suitable monofilament yarns 23. The monofilament warp yarns 23, in addition to providing enhanced abrasion resistance as a result of being bundled in side-by-side, abutting or substantially abutting relation with one another, provide enhanced, optimal surface area coverage to the wall 12, thereby inhibiting the ingress of contamination, debris, or the like into the cavity 20, thereby providing enhanced protection to the elongate members 14 contained within the cavity 20. In one exemplary sleeve embodiment (
The fill yarns 24 can be provided as any suitable monofilament and/or multifilament material, including heat-settable monofilament and/or multifilament polymeric material. In the exemplary sleeve embodiments shown in
The yarns 23, 24, 24′ can be provided of any desired thermoplastic material, such as one or more of polyester, PPS, Nomex, by way of example and without limitation, and further can include inorganic material, such as one or more of fiberglass and basalt, by way of example and without limitation.
In accordance with another aspect of the invention at least one warp monofilament 23′ within one or more of the discrete bundles 22 of warp monofilaments 23 can be a different type of material from other ones of the warp monofilaments 23 within the discrete bundle 22.
In accordance with another aspect of the invention, as shown in
In accordance with another aspect of the invention, as shown in
In accordance with another aspect of the invention, as shown in
In accordance with another aspect of the invention, as shown in
In accordance with another aspect of the invention, as shown in
In accordance with another aspect of the invention, as shown in
In accordance with another aspect of the invention, as shown in
In accordance with another aspect of the invention, as shown in
Obviously, many modifications and variations of the present invention are possible in light of the above teachings. It is contemplated that all features of all claims and of all embodiments can be combined with each other, so long as such combinations would not contradict one another. It is, therefore, to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/824,217, filed Mar. 26, 2019, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/024908 | 3/26/2020 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62824217 | Mar 2019 | US |