The present invention relates to a flexible and scalable method for handling telecommunication equipment through the control of ATM (Asynchronous Transfer Mode) access networks, in particular by implementing it within the ANx (Access Network, version x) platform, an Ericsson technology broadband access network. So far two different types of access have been provided based on the ANx platform: the ADSL (Asymmetric Digital Subscriber Line) service and a broadband radio access service LMDS (Local Multipoint Distribution Service). As the invention can be embodied indifferently in both types of access, we will refer in the following only to the ADSL architecture.
In the ANx system three different proprietary communication protocols are currently used, namely:
In the technical solutions currently adopted in telecommunication equipment, it is known that one CP controls all the boards in the system node via direct ICS connections (over Ethernet or ATM, ICS/Ethernet and ICS/ATM in the following) for each DP board.
This implies suffering from the following limitations in the behaviour of the system:
Specifically regarding ANx, the problem of the limitation on the control structure (i.e. the number of addressable DPs) could be solved by using an ATM adapter with better performance and modifying accordingly the management-connections set-up mechanism. On the other hand, this is a high cost solution in terms of re-design (big impact on software and hardware). Moreover, all the other limitations still exist and they would be of vital importance in the realization of a product from a prototype.
The present invention relates to a flexible and scalable method for handling telecommunication equipment through the control of ATM access networks, a method which overcomes the aforementioned limitations and drawbacks.
The basic idea of the present invention is to reduce the number of DP boards directly addressable by the CP (i.e. addressable from the CP via the ICS protocol), thereby reducing the load spent in the CP for their supervision.
More precisely, the invention relates to a flexible and scalable method for handling telecommunication equipment through the control of ATM access networks, characterized in that the Board Relay (BR) functionality is attributed to any DP (Device Processor) and in that the CP (Central Processor) is connected to all the other DPs by simply addressing the messages to the BR and relaying them through it.
In fact, by giving the functionality of the BR to any DP board (in the following we will refer to this DP board as BR board), it is possible to reach from the CP all the other DPs by just addressing the BR board, which then takes care of relaying the control messages to the specified (or relayed) DP.
According to the invention, the BR board also takes care of supervising all the DPs on behalf of the CP, thus reducing the CP load, which could be very high when a large number of DPs are present in the system.
Still according to the invention, the functionality of the BR is given by CP to DPs chosen according to the network configuration, through configuration messages, whereas the connections between CP and DPs take place using Ethernet and ATM network/switch.
Furthermore, according to the invention, the bandwidth allocated through an ATM backbone for a single management connection (PVC) is shared between the device processors (DP) supervised by the board relay (BR). The method according to the invention can be very advantageously implemented both on newly designed and existing networks.
Another advantageous improvement obtained with the method according to the invention, i.e. by using the board relay functionality, is to minimize the number of ATM paths or Ethernet lines required to control all the DP boards from the CP. This method minimizes the number of ATM paths (i.e. VPI/VCI cross-connections through the ATM access network) or Ethernet connections which have to be set up from the CP to each system node during the system start up and at restart; in principle, the CP is in fact able to reach all the DP boards of a single system node by having just one connection to each ET (Exchange Terminal) in the first concentrator shelf.
The invention will be described in more detail in the following, with reference to the appended drawings, in which:
As it is shown by
The board relay functionality according to the invention needs as many paths from the CP to the system node as many BR boards are used (
To reach the BR only one port or VPI/VCI value is needed from the CP. In the BR a port descriptor is needed to supervise the link to each relayed DP board. This means having a port descriptor table containing as many entries as the number of relayed DP boards.
When the board relay is enabled, the CP can reach all the boards in the system node by using ICS (on either ATM or Ethernet) to reach the BR; then ICS over ATM is used by the BR to reach all the other relayed boards.
In the development of the BR concept, the CP is able to handle up to four levels of shelves, whilst only two levels were possible with the prior art addressing strategy.
Indeed, the direct ICS addressing allows only up to two levels of shelves to be controlled by the CP (i.e., by supposing that a shelf has 16 DP, 16×16=256 DPs). This implies to handle a maximum of 16×16×2=512 ADSL users per system node.
When more than 512 users have to be connected, the CP must handle more than one system node.
It is necessary to set-up through the ATM backbone a single PVC for each DP board supervised by the remotely located CP.
Whenever the CP controls the DPs via Ethernet (ICS over Ethernet), these limitations do not exist, but as many Ethernet cables as DPs are required.
Using the board-relay concept, up to two levels of shelves ahead can instead be controlled by each BR instead of by the CP. This implies that, for example, using only one BR board placed in the first shelf and relaying messages to all the two-shelves-ahead boards, up to 16×16×16×2=8192 ADSL users per system node can be connected (theoretically they would be 31×31×31×2=59582, since in each shelf there would be 31 boards instead of 16).
When two or more users are to be connected, it can be decided to have the BR board placed in a shelf of the second level, thus allowing the connection of 16×16×16×16×2=131072 users, as shown in
Furthermore, whenever needed, the CP can be configured for direct access to specific DPs and for relaying messages to other DPs (e.g. remotely located) via the local BR.
As many VPI/VCI cross-connections as BR boards plus not-relayed DPs are required to be set through the ATM switch connecting the CP to the system node.
Whenever the CP controls the DPs via Ethernet (ICS over Ethernet), as many Ethernet cables as BR boards plus not-relayed DPs are required, thus considerably reducing the number of Ethernet lines the operator shall eventually lease.
Considering the above mentioned limitations of having a direct ICS addressing from the CP, according to the state of the art, and summarizing what subsequently is described about the present invention, the advantages of the system using the Board Relay functionality are the following:
It is intended that other possible embodiments, different from those above described and illustrated, also fall within the scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
02425012.8 | Jan 2002 | EP | regional |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP03/00144 | 1/9/2003 | WO |