The present invention relates to a flexible and transparent polyimide laminate and manufacturing method thereof and, more particularly, to a polyimide laminate having a conductive layer attached to a substrate by using organically insoluble polyimide as a binder and manufacturing method thereof.
In recent years, flexible electronic products, such as rollable and flexible liquid crystal displays, OLED, thin-film solar cells, etc. have gained much attention due to these products' characteristics of light weight and ultra-thin components. Currently, the indium tin oxide (ITO) film prepared by chemical vapor deposition (CVD) has become the most widely used material because of its excellent optical transparency and conductivity. However, ITO film is brittle and easily damaged when being subject to bending, which severely limits its application in the flexible substrate. In addition, the limitations of lack of indium sources, high deposition temperatures, and expensive vacuum evaporation equipment have encouraged manufacturers to look for alternative low-cost and flexible materials.
Conductive polymers, carbon nanotubes (CNTs), graphene and metal nanowires are all alternative materials that are highly expected. Conductive polymers have flexibility and conductivity, but it has higher surface electric resistance and stronger optical absorption, so only the conductive polymer cannot meet the requirements of practical applications. In addition, carbon nanotubes and graphene need to be prepared by chemical vapor deposition, which requires equipment of higher cost. Thus, the metal nanowires are considered one of the potential materials that will most likely replace indium tin oxide in the future.
In the conventional process that uses metal nanowires to form the conductive film, the metal nanowires are dispersed in the solvent, which is then coated to form a conductive film. Such preparation method is simple, but the adhesion between the metal nanowires and the matrix is poor, which is prone to peeling. Moreover, the nanowire dispersion has extremely low viscosity and is likely to flow during coating, resulting in non-uniform coating and agglomeration issues.
In view of the above issues, the present invention provides a flexible and transparent polyimide laminate, which uses the organically insoluble and transparent polyimide as the binder or protector to improve the disadvantage of easy peeling for metal nanowires. Also, the organically insoluble characteristic prevents the conductive layer from erosion by the solvent, which increases the flexibility of the subsequent processes.
According to an embodiment of the present invention, a flexible and transparent polyimide laminate is provided. The flexible and transparent polyimide laminate includes a conductive layer, an adhesive layer, and a transparent polyimide substrate. The conductive layer comprises a plurality of metal nanowires. The adhesive layer is made of an organically insoluble and transparent polyimide. The conductive layer is attached to the transparent polyimide substrate by the adhesive layer. The adhesive layer is formed by dehydration-cyclization of an aromatic dianhydride with one of the following materials: an alicyclic diamine, a fluorine-containing diamine, and a combination thereof.
According to another embodiment of the present invention, a method for manufacturing a flexible and transparent polyimide laminate is provided. The method includes coating a matrix with a solution containing a plurality of metal nanowires to form a preliminary conductive layer; coating the preliminary conductive layer with a polyamic acid solution; heating the polyamic acid solution coated on the preliminary conductive layer to form an adhesive layer by cyclization; coating the adhesive layer with a polyimide, which is then dried to form a substrate; removing the matrix from the preliminary conductive layer. The polyamic acid solution is formed by polymerization of an aromatic dianhydride with one of the following materials: an alicyclic diamine, a fluorine-containing diamine, and a combination thereof.
To make the above and other aspects of the present invention more clear and understandable, the following embodiments are illustrated in detail with reference to the accompanying drawings.
With reference to
According to the present invention, the metal of the metal nanowires contained in the conductive layer 130 is preferably selected from the group consisting of gold, silver, copper, nickel, and titanium. The metal nanowires are preferably silver nanowires, which could be prepared by modified polyol process. The silver nanowires may have a length between 10 μm and 100 μm, a diameter between 20 nm and 100 nm, and an average aspect ratio (length/diameter, L/D) greater than 400, and more preferably between 500 and 600.
According to the present invention, the aspect ratio of the metal nanowires in the conductive layer 130 will affect the light transmittance of the conductive layer 130. As shown in
The organically insoluble and transparent polyimide adhesive layer 120 described above is used as the binder or protector of the conductive layer for protecting the metal nanowires in the conductive layer. As compared with the conductive layer formed by coating in the prior art, the adhesive layer employed in the present invention can improve the disadvantage of being prone to peeling metal nanowires, prevent the conductive layer containing the metal nanowires from erosion by solvents, and increase flexibility of the subsequent processes.
As used herein, “organically insoluble” refers that the transparent polyimide adhesive layer of the present invention won't dissolve in the organic solvent after being immersed in the organic solvent at room temperature and/or being heated to boiling point for 5 hrs. The organic solvent is the commonly used solvent, such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc), N,N-diethylacetamide, N-methylpyrrolidone (NMP), dimethyl sulfoxide (DMSO), m-cresol, dichloromethane, tetrahydrofuran (THF), chloroform, or acetone, etc.
The organically insoluble and transparent polyimide adhesive layer described above can be formed by dehydration-cyclization of an aromatic dianhydride with one of the following materials: an alicyclic diamine, a fluorine-containing diamine, and a combination thereof. The fluorine atom in the fluorine-containing diamine can reduce the charge transfer by its ability of strong electrons withdrawing. The aliphatic structure in the aliphatic diamine can prevent the charge transfer between the molecular chains or within the chains of the molecular. Such monomer can form colorless polyimide with high transparency, and thus has advantages in optical applications.
According to the present invention, the thickness of the adhesive layer 120 is between 0.1 and 5 μm, preferably between 0.1 and 1 μm, and more preferably between 0.1 and 0.5 μm.
The aromatic dianhydride described above comprises: pyromellitic dianhydride, 3,3′,4,4′-biphenyl tetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropionic acid dianhydride, 4-(2,5-dioxo-tetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride. Alicyclic diamines comprises: 1,4-cyclohexane diamine, 4,4′-diamino dicyclohexyl methane, 1,4-cyclohexane dimethyl amine. The fluorine-containing diamines comprises: 2,2′-bis(trifluoromethyl)-benzidine, and 2-trifluoromethyl-benzidine. It is of particular note that, the organically insoluble and transparent polyimide adhesive layer is not limited to being prepared by using only one of the aromatic dianhydrides, the alicyclic diamines, or the fluorine-containing diamines, i.e., the adhesive layer can be prepared by using two or more of the aromatic dianhydrides, two or more of the alicyclic diamines, or two or more of the fluorine-containing diamines.
According to the present invention, the transparent polyimide substrate 110 described above uses highly transparent polyimide as the raw material, and the visible light transmittance thereof at a thickness of 30 μm is greater than 90%, thereby the overall visible light transmittance of the finished flexible and transparent polyimide laminates can be increased. As shown in
The transparent polyimide substrate of the present invention is formed by dehydration-cyclization of a dianhydride and a diamine, wherein the dianhydride comprises: pyromellitic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 2,2-bis(3,4-dicarboxyphenyl)hexafluoropropionic acid dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′,4,4′-diphenyl ether tetracarboxylic dianhydride, 1,2,3,4-butane tetracarboxylic dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2,4,5-cyclohexane tetracarboxylic dianhydride, bicyclo(2,2,2)oct-7-ene-2,3,5,6-tetracarboxylic dianhydride, bicyclo(2,2,2)octane-2,3,5,6-tetracarboxylic dianhydride, 1,4-cyclohexane bistrimellitic dianhydride, 4-(2,5-dioxo-tetrahydrofuran-3-yl)-1,2,3,4-tetrahydronaphthalene-1,2-dicarboxylic anhydride, which may be used alone or in a combination thereof. The diamine comprises: 2,2′-bis(trifluoromethyl)-benzidine, 2-trifluoromethyl-benzidine, 2,2-bis(4-aminophenyl)hexafluoropropane, 4,4′-diamino diphenyl ether, 2,2′-dimethyl-4,4′-diaminobiphenyl, 3,3′-diamino diphenyl sulfone, 4,4′-diamino diphenyl sulfone, 4,4′-diamino-diphenyl methane, 2-bis(4-(4-aminophenoxy)phenyl)propane, 2,2-bis(4-(4-aminophenoxy)phenyl)hexafluoropropane, 1,3-bis(3-aminopropyI)-1,1,3,3-tetramethyldisiloxane, 1,4-cyclohexane diamine, 4,4′-diamino dicyclohexyl methane, 1,4-cyclohexane dimethyl amine, which may be used alone or in a combination thereof.
The thickness of the transparent polyimide substrate 110 described above is between 10 μm and 100 μm, preferably between 10 μm and 50 μm, and more preferably between 10 μm and 30 μm.
The present invention further provides a method for manufacturing the flexible and transparent polyimide laminate described above. The method for manufacturing the flexible and transparent polyimide laminate of the present invention comprises the following steps: (1) coating a matrix 350 with a solution containing the metal nanowires described above to form a preliminary conductive layer 330, as shown in
In step (1) described above, the metal nanowires are dispersed in a suitable solvent to form a solution containing metal nanowires (hereinafter referred to as “the metal nanowire solution”). The solvent is, for example, water, alcohols (ethanol, propanol, etc.), ketones (acetone), toluene, hexane, dimethylformamide, tetrahydrofuran, esters (ethyl acetate), ethers, hydrocarbons, aromatic solvents (xylene), propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), etc., or a combination thereof. The metal nanowire solution can be coated on the matrix by any coating method, such as spin coating, dip coating, spray coating, bar coating, slit coating, wire-bar wet film coating, etc., and then dried by heating to form the preliminary conductive layer. The method of drying by heating can be, for example, placing the matrix coated with the metal nanowire solution in the vacuum oven at approximately 80-100° C. for drying.
In the present invention, “matrix” refers to the support substance on which the metal nanowire solution is coated and dried, and includes: the plastic substrates, such as polyimides, polyamides; metal substrates, such as copper, aluminum, stainless steel; or glass substrates, etc.
In step (2) described above, the polyamic acid solution is the precursor of the organically insoluble polyimide adhesive layer of the present invention. The polyamic acid solution is formed by polymerization of the aromatic dianhydride with alicyclic diamine and/or fluorine-containing diamine. The polyamic acid solution is dehydrated to undergo cyclization and the organically insoluble polyimide adhesive layer (whose material is the same as what is described from paragraph [0024] through paragraph [0026]) is thus obtained. Detailed method for producing the organically insoluble polyimide adhesive layer is to coat the preliminary conductive layer of step (1) with the precursor (polyamic acid solution) by coating method, such as spin coating, dip coating, spray coating, screen printing method, flexographic printing method, bar coating, slit coating, wire-bar wet film coating, etc., and then the polyamic acid solution undergoes cyclization to form the polyimide adhesive layer.
In step (3) described above, the polyamic acid solution is heated to undergo ring-closing. The heating can be controlled to reach the annealing temperature of the metal nanowires. Annealing can reduce the resistance of the metal nanowires, and the annealing temperature can vary depending on the material quality and the aspect ratio of the metal nanowires. During the manufacturing of the metal nanowires, there might be polymer covering agent remaining on the metal nanowires. Some of the covering agent may be decomposed when being heated to the annealing temperature. In addition, if the silver nanowires having lower melting point (a melting point of 200° C.) is employed, annealing can melt a portion of the sliver wires, reduce the contact resistance between wires, lower the resistivity of the conductive layer, and increase the conductivity.
In step (4) described above, the substrate is the transparent polyimide substrate described above. The polyimide used in the substrate is highly transparent polyimide, which is made from the materials described in paragraph
The polymerization method of highly transparent polyimide may use solvent to dissolve the dianhydride monomers and the diamine monomers, respectively. Then the dissolved dianhydride monomers and the dissolved diamine monomers are mixed to react with each other and form the polyamic acid solution, which further undergoes dehydration-cyclization at 250-350° C. Also, the catalyst may be added to facilitate dehydration. The polyimide obtained after the dehydration-cyclization is coated on the adhesive layer and then dried to form the highly transparent polyimide substrate described in the present invention.
Finally, as described in step (5), the matrix is peeled/removed from the preliminary conductive layer, and the flexible and transparent polyimide laminate of the present invention is finished. This preparation method first forms the preliminary conductive layer on the matrix and then forms the adhesive layer on the preliminary conductive layer. The two-layer structure of the preliminary conductive layer/the adhesive layer is then transfer-printed by the adhesive layer to the transparent polyimide substrate. Finally, the matrix is removed to obtain the flexible and transparent polyimide laminate.
The flexible and transparent polyimide laminate of the present invention has the following advantages: smooth product surface, when applied to a variety of devices, results in more uniform coloring and coating; using organically insoluble polyimide as the binder not only is high temperature durable, but also prevents the metal nanowires from peeling due to the organic solvent; the annealing of the metal nanowires and the cyclization of the adhesive layer are carried out in the same step, which simplifies the preparation process; the polyimide is coated onto the conductive layer having the metal nanowires, in which the gravity makes the network formed by the metal nanowires denser and further facilitates the reduction of the resistance value; using highly transparent polyimide as the substrate increases the visible light transmittance of the flexible and transparent polyimide laminate.
In addition, both the adhesive layer (organically insoluble polyimide) and the substrate (highly transparent polyimide) of the flexible and transparent polyimide laminate of the present invention have a glass transition temperature of greater than 320° C., and have a temperature of greater than 450° C. after 5 wt % of which has been pyrolyzed in the air. Therefore, the flexible and transparent polyimide laminate product of the present invention can survive high temperature processes, such as plasma, laser, annealing, and coating, etc., and has a wide range of applications.
The above and other contents of the present invention will be described in detail in the embodiments, which are set forth for the purpose of illustration, but are not intended to limit the scope of the invention.
1,4-cyclohexane diamine and 4,4′-biphenyl tetracarboxylic dianhydride were dissolved in N,N-dimethylacetamide and, through thermal imidization, produced a first polyimide polymer (hereinafter referred to as “CHDABP PI”), whose FTIR spectrum was shown in
2,2′-bis(trifluoromethAbenzidine and 4,4′-biphenyl tetracarboxylic dianhydride were dissolved in N,N-dimethylacetamide and, through thermal imidization, produced a second polyimide polymer (hereinafter referred to as “TFMBBP PI”), whose FTIR spectrum was shown in
1,4-cyclohexane diamine, 2,2′-bis(trifluoromethyl)benzidine, and 4,4′-biphenyl tetracarboxylic dianhydride were dissolved in N,N-dimethylacetamide, in which the molar ratio of 1,4-cyclohexane diamine to 2,2′-bis(trifluoromethAbenzidine was 1:1, and a third polyimide polymer (hereinafter referred to as “CH/TFMBBP PI”) was produced through thermal imidization. The FTIR spectrum of “CH/TFMBBP PI” was shown in
2,2′-bis(trifluoromethyl)benzidine and 1,2,4,5-cyclohexane tetracarboxylic dianhydride were dissolved in N,N-dimethylacetamide, and, through thermal imidization, produced a fourth polyimide polymer (hereinafter referred to as “TFMBCH PI”), whose FTIR spectrum was shown in
Diamine hexafluoro isopropylidene dianiline and 1,2,4,5-cyclohexane tetracarboxylic dianhydride were dissolved in N,N-dimethylacetamide, and, through thermal imidization, produced a fifth polyimide polymer (hereinafter referred to as “6FCH PI”), whose FTIR spectrum was shown in
Characteristic Analysis of Polyimides from Synthesis Examples
The solubility analysis: the polyimide materials formed in the above Synthesis Examples 1-5 were subjected to solubility tests and the results were listed in Table 1 below:
athe solubility tests: 10 mg of test sample was added into 1 mL of solvent.
It can be seen from table 1 that all the materials of the adhesive layers (Synthesis Examples 1-3) were not soluble in a variety of organic solvents.
Analysis of the thermal properties: the polyimide materials formed in the above Synthesis Examples 1-5 were subjected to analysis of the thermal properties and the results were listed in Table 2 below:
aAll the polyimide films were subjected to thermal treatment first at 300° C. for 1 hr before the analysis of the thermal properties.
bThe glass transition temperature (Tg) was determined by a thermomechanical analyzer (TMA) in the film/fiber mode with a heating rate of 10° C./min and a constantly applied load of 10 mN.
cThe linear Coefficient of thermal expansion (CTE) between 50 and 200° C. was determined by the TMA
d The temperature at which 5% of weight was lost (Td5) was determined by Thermogravimetric analyzer (TGA), of which the parameters were set to have 20° C./min of heating rate and 20 cm3/min of gas flow rate.
eThe remaining weight % at 800° C. (Rw800) in the nitrogen atmosphere was determined by TGA, ans was also known as the char yield.
It could be seen from Table 2 that all the polyimides formed in Synthesis Examples 1-5 of the present invention had a glass transition temperatures (Tg) of higher than 320° C. and a 5 wt % pyrolysis temperatures (Td5) in the air of higher than 450° C. The flexible and transparent polyimide laminate of the present invention employing those materials described above could survive the processes and treatments at the temperature of 300° C. or higher.
Analysis of the optical properties: the polyimide materials formed it the above Synthesis Examples 1-5 were subjected to analysis of the optical properties and the results were listed in Table 3 below:
aThe thickness of the polyimide film was about 30 μm.
bCIE1976 color space (or CIEAB)
cThe transmittances of the films with a thickness of approximately 30 μm were measured at wavelengths of 400 and 550 nm by UV-Vis
dcutoff wavelength
It could be seen from Table 3 that the polyimide material of the present invention had high transmittance in the range of visible light. Among the tristimulus values in the CIE color space, all the polyimide films of the present invention were high in color brightness (L*>93) and low in red/green and yellow/blue chromaticity (both a* value and b* value were close to 0). From the results it was known that all the polyimide materials formed in synthesis Examples 1-5 were nearly colorless and transparent.
The following embodiments were prepared by transfer printing, e.g. the process flow as shown in
The silver nanowires were prepared by an improved polyol preparation method, which used pure ethylene glycol (EG) as the reducing agent and the solvent, polyvinylpyrrolidone (PVP) as the covering agent, silver nitrate as the source of silver ions, and copper chloride as the deoxidizer. The resulting silver nanowires had a length of about 30-100 microns, a diameter of about 60-100 nm, and an average aspect ratio of more than 600, as shown in
Further,
The relationship between the transparency (transmittance) and the conductivity of the flexible and transparent polyimide laminates of the embodiment could be assessed by using figure of merit (FoM). A figure of merit was an index used to determine the relationship between the transmittance and the conductivity of the transparent and conductive film, and was calculated as follows:
wherein σdc was the DC conductivity of the film; σop(λ) referred to the optical conductivity at a wavelength of λ; Z0 was the impedance of free space (377Ω); Rs was the sheet resistance; T was the transmittance at the wavelength of λ. In the industry application, the FoM value was preferably greater than 35 for 550 nm wavelength light.
In addition,
Comparative Example 1 provided a conventional polyimide laminate, which used organically soluble polyimide (materials of Synthesis Example 5) as the binder to bond the silver nanowires on another polyimide substrate, forming the polyimide laminate. Examples of such laminate can refer to the disclosure of Taiwan Patent Application No. 103137583.
In the flexible and transparent polyimide laminate of Embodiment 1, the organically insoluble polyimide CHDABP PI was used as the binder and the protector for enhancing the subsequent processing capacity of the laminate. Chemical resistance tests immersed the flexible and transparent polyimide laminates of Embodiment 1 in different organic solvents, such as chloroform, acetone, tetrahydrofuran (THF), N,N-dimethylacetamide (DMAc), N-methylpyrolidone (NMP), N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO), etc. to measure the variations of the sheet resistance, the results of which were shown in
Although the present invention has been illustrated above by way of the embodiments, these embodiments are not intended to limit the invention. Equivalent implementations or changes could be made to these embodiments by those skilled in the art without departing from the scope of the spirit of the invention. Therefore, the scope of the invention should be defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
105110494 | Apr 2016 | TW | national |