The present invention is related to steam generators, and more particularly to horizontal once through heat recovery steam generators.
Heat Recovery Steam Generators (HRSGs) include evaporator tube rows (multiple tube rows are commonly referred to as tube bundles) that transfer heat from an exhaust-gas stream, such as that from a combustion turbine or other industrial process that produces hot gas, to a fluid inside the evaporator tubes. Horizontal HRSGs employ vertical evaporator tube rows arranged in cross-flow to an exhaust-gas stream that flows in a horizontal direction across the vertical evaporator tubes. An evaporator section on HRSGs typically includes lower manifolds (headers) to distribute water to the bottom of the evaporator tubes, and upper manifolds (headers) to collect a mixture of steam and water from the top of the evaporator tubes.
One type of horizontal HRSG is a circulation type horizontal HRSG. In such HRSGs, circulating fluid is only partly evaporated when passing through evaporator tubes. The fluid inside the evaporator tubes never becomes superheated because an excess mass flow of fluid is maintained at all times. For this reason, the temperature of the fluid inside the evaporator tubes of circulation type horizontal HRSGs is essentially constant. The fluid that is not evaporated in the process is fed again to the same evaporator tubes for further evaporation after separation of generated steam in a steam drum.
Walls of a steam drum in a circulation type horizontal HRSG are subjected to large thermal stresses when the steam drum is rapidly heated. Repeated heating and cooling reduces the life of the steam drum, leading to eventual failure of the circulation type horizontal HRSG. To avoid steam drum failure, operating restrictions are typically imposed on circulation type horizontal HRSGs to reduce the rate of warm-up of the steam drum.
Another type of horizontal HRSG is a once-through horizontal HRSG. This type horizontal HRSG lacks a steam drum, thus operating restrictions to avoid rapid warm-up are not necessary. Further, a once-through type horizontal HRSG is not subject to any pressure limitation. Therefore, live-steam pressures well above the critical pressure of water (Pcri=221 bar), where there is only a slight difference in density between a medium similar to a liquid and a medium similar to steam, are possible. A high live-steam pressure promotes a high thermal efficiency and thus low CO2 emissions of a fossil-fired power station. Fluid fed through a once-through HRSG is completely evaporated in a single pass through either a single heating area, or a plurality of heating areas connected in series.
In addition, a once-through type horizontal HRSG has a simple construction compared with that of a circulation type horizontal HRSG, and can therefore be manufactured at an especially low cost compared to the manufacture of a circulation type horizontal HRSG. Further, a once-through type horizontal HRSG, in contrast to a once-through type vertical HRSG, can be manufactured especially simply and at an especially low production and assembly cost.
Common to all horizontal HRSGs, the temperature of the exhaust-gas stream declines from the exhaust-gas inlet to the exhaust-gas outlet of the evaporator section. The amount of heat transferred in each tube row over which the exhaust-gas flows is proportional to the temperature difference between the exhaust-gas and the fluid in the tubes. Therefore, for each successive row of evaporator tubes in the direction of exhaust-gas flow, a smaller amount of heat is transferred, and the heat flux from the exhaust-gas to the fluid inside the tube declines with each tube row from the inlet to the outlet of the evaporator section.
Geodetic pressure drop describes the pressure drop due to the weight of the water column and steam column relative to the area of a cross-section of a flow medium in a steam-generator tube. Friction pressure loss describes the pressure drop in a steam-generator tube as a result of the flow resistance for the flow medium. The total pressure drop in a steam-generator tube is essentially composed of the geodetic pressure drop and the friction pressure loss.
During especially intense heating of an individual steam-generator tube, the steam generation in the steam-generator tube becomes especially high. The weight of the flow medium that has not evaporated in the steam-generator tube therefore decreases, so that the geodetic pressure drop in the steam-generator tube likewise decreases. However, in a once-through type steam generator, all steam-generator tubes are connected in parallel inside a once-through heating area. Each of these parallel tubes have the same total pressure drop on account of their common connection to a flow medium inlet and their common connection to a flow medium discharge. If there is a geodetic pressure drop in one of the parallel steam-generator tubes that is especially low compared with the other steam-generator tubes connected in parallel with it, on account of different heat intensity, an especially large quantity of flow medium then flows for a pressure balance through the tube heated to a greater degree if the geodetic pressure drop is on average the dominant portion of the total pressure drop on account of the configuration of a once-through heating area.
In other words, a steam-generator tube heated more intensely, compared with steam-generator tubes connected in parallel with it, has an increased flow rate of a flow medium. On the other hand, a steam-generator tube heated to an especially low degree compared with other steam-generator tubes connected in parallel with it has an especially low flow rate of flow medium. By a suitable specification of the ratio of friction pressure loss to geodetic pressure drop due to the configuration of the steam-generator tubes, in particular with regard to the selected mass-flow density in the steam-generator tubes, this effect can be utilized for automatic adaptation of the flow rate of each steam-generator tube to its heating.
A once-through type horizontal HRSG that compensates for this difference in flow rate is known. However, in all once-through type horizontal HRSGs, including that accounting for pressure differences, the temperature of steam-generator tube metal is determined by both the amount of heat flux across the steam-generator tube wall and the average temperature of the flow medium inside the steam-generator tube. Since the heat flux declines from the inlet to the outlet of the evaporator section, the temperature of the steam-generator tube metal is different for each row of steam-generator tubes included in the evaporator section.
Each manifold (header) of a horizontal HRSG that runs perpendicular to the exhaust-gas flow acts as a collection point for multiple rows of tubes. These headers are of relatively large diameter and thickness to accommodate the multiple tube rows.
Thus, while a once-through type horizontal HRSG that both compensates for pressure differentials in steam-generator tubes and lacks a steam drum is known, it is nonetheless subject to failure due to thermal stresses in other components, especially in a multi-row header-and-tube assembly 100. Accordingly, a need exists for a once-through horizontal HRSG that is capable of both rapid heating and cooling as well as a large number of start-stop cycles.
It is an object of the present invention to provide a once-through type horizontal heat recovery steam generator that is capable of both rapid heating and cooling and a large number of start-stop cycles in which a flow rate proportional to the heat input through individual tubes is achieved in a system of parallel steam generator tubes.
The above-stated object, as well as other objects, features, and advantages, of the present invention will become readily apparent from the following detailed description which is to be read in conjunction with the appended drawings.
In accordance with the present invention, a steam generator is provided. The steam generator, which could be a heat recovery steam generator, or another type steam generator, includes an inlet manifold, a discharge manifold, a heating gas duct, and at least one once-through heating area disposed in the heating-gas duct through which a heating gas flow is conducted. The once-through heating area is formed from multiple single-row header-and-tube assemblies. Each individual single-row header-and-tube assembly includes a plurality of steam generator tubes connected in parallel for a through flow of a flow medium.
Also included in each individual single-row header-and-tube assemblies is an inlet header connected to the inlet manifold and a discharge header connected to the discharge manifold. Each inlet header is connected to the inlet manifold by one of multiple first link pipes, and each discharge header is connected to the discharge manifold by one of multiple second link pipes. Each said steam generator tube of each of the single-row header-and-tube assemblies has an inside diameter that is less than an inside diameter of any of the first or second link pipes.
According to one aspect of the present invention, the heating gas flow is conducted in an approximately horizontal heat-gas direction. In another aspect of the inventive steam generator, at least one of the steam generator tubes that is associated with a first one of the single-row header-and-tube assemblies is heated to a greater extent than at least one of the steam generator tubes associated with a second one of the single-row header-and-tube assemblies. Also in this aspect, the at least one steam generator tube associated with the first single-row header-and-tube assembly has a higher flow rate of the flow medium than the at least one steam generator tube associated with the second single-row header-and-tube assembly.
According to yet another aspect of the present invention, the inside diameter of the inlet manifold has a larger diameter than the inside diameter of any inlet header. Also in this aspect, the inside diameter of the inlet manifold has a larger diameter than the inside diameter of any discharge header.
In still another aspect, each steam generator tube of a first one of the single-row header- and-tube assemblies has a higher flow rate of the flow medium than each steam generator tube of a second one of the single-row header-and-tube assemblies that is disposed downstream of the first single-row header-and-tube assembly in the heating gas flow direction.
According to yet another aspect of the present invention, the inside diameter of each steam generator tube of a first single-row header-and-tube assembly is larger than the inside diameter of each steam generator tube of a second single-row header-and-tube assembly that is disposed downstream of the first single-row header-and-tube assembly in the heating gas flow direction.
In another aspect of the present invention at least one steam generator tube of at least one single-row header-and-tube assemblies has a choke device. In still another aspect, each inlet header is connected to the inlet manifold by one of the first link pipes, and at least one of the first link pipes includes a choke device.
According to yet another aspect, the steam-generator tubes of at least one once-through heating area are advantageously configured or dimensioned on average for a ratio of friction pressure loss to a geodetic pressure drop at a full load of less than 0.4, preferably less than 0.2.
In order to facilitate a fuller understanding of the present invention, reference is now made to the appended drawings. These drawings should not be construed as limiting the present invention, but are intended to be exemplary only.
a is a first view of a multi-row header-and-tube assembly utilized in prior art heat recovery steam generators.
b is a second view of the multi-row header-and-tube assembly shown in
a is a first view of a stepped component thickness with single row header-and-tube assembly in accordance with certain aspects of the present invention.
b is a second view of the stepped component thickness with single row header-and-tube assembly of
Referring to
Each tube of each tube row 201A–201C has a smaller diameter than each common header 205A–205C and each link pipe 220A–220C. Each common header 205A–205C has a smaller diameter and thinner wall thickness than each collection manifold 215.
As a result of this configuration, a high concentration of stresses during heating and cooling does not occur at bends and attachment points. More particularly, because the tubes of each tube row 201A–201C do not have bends, no thermal stress associated with bends exists. Also, bending stress at the weld attachment of each tube to each header 205A–205C does not occur because a bending moment imposed by tube bends during heating does not exist. Thus, the single-row assembly can withstand many more cycles of heating and cooling than the multi- row header-and-tube assembly 100 depicted in
Referring now to
The once-through heating areas 8 and 10, common to the respective embodiments illustrated in
Steam-generator tubes 13 of the common tube row 11 of the first once-through heating area 8 are each connected in parallel to a common inlet header 5, forming a single-row header-and-tube inlet assembly for each row 11, discussed above and shown in
Each single-row header-and-tube inlet assembly of the first once-through heating area 8 is connected to an inlet manifold 21 via a link pipe 95, thus forming a stepped component thickness with the single row header-and-tube inlet assembly. Also, each single-row header-and-tube discharge assembly of the first once-through heating area 8 is connected to a discharge manifold 15 via a link pipe 95, thus forming a stepped component thickness with the single row header-and-tube discharge assembly.
Likewise, each single-row header-and-tube inlet assembly of the second once-through heating area 10 is connected to an inlet manifold 22 via a link pipe 95, thus forming another stepped component thickness with the single row header-and-tube inlet assembly. Also, each single-row header-and-tube discharge assembly of the second once-through heating area 10 is connected to a discharge manifold 16 via a link pipe 95, thus forming another stepped component thickness with single row header-and-tube discharge assembly.
Flow medium W enters the first once-through heating area 8 through inlet manifold 21, flows in parallel though the tube rows 11, and exits the first once-through heating area 8 though discharge manifold 15. Flow medium W then travels through downpipe system 17 and enters the second once-through heating area 10 through inlet manifold 22, flows in parallel through the tube rows 12, and exits the second once-through heating area 10 through discharge manifold 16.
The flow medium W evaporates on passing through the first and second once-through heating areas 8 and 10, and is drawn off as steam D after discharge from the second once-through heating area 10 via discharge manifold 16. The evaporator system formed from the once-through heating areas 8 and 10 is connected in the water/steam circuit (not shown) of the steam turbine. In addition to the evaporator system containing the once-through heating areas 8 and 10, a number of further heating areas 20 indicated schematically in
The once-through heating areas 8 and 10 are configured such that the differences in the heating of the steam-generator tubes 13 and 14 due to their position in the exhaust-gas flow only lead to small temperature and/or steam content differences in the flow medium W discharging from the respective steam-generator tubes 13 and 14. That is, the flow medium W will have approximately the same temperature and/or the same steam content for each steam-generator tube 13 or 14 belonging to the same one of the once-through heating area 8 or 10.
To achieve approximately the same discharge temperature and/or steam content, each steam-generator tube 13 of heating area 8 has a higher flow rate of the flow medium W than each steam-generator tube 13 of heating area 8 disposed downstream of it in the exhaust-gas flow direction. That is, those steam-generator tubes 13 positioned in the hotter exhaust-gas have a higher flow rate than those positioned in the cooler exhaust-gas. Likewise, each steam-generator tube 14 of heating area 10 has a higher flow rate than each steam-generator tube 14 of heating area 10 disposed downstream of it in the exhaust-gas flow direction.
In the embodiment of a once-through heat recovery steam generator in accordance with the present invention as depicted in
Regarding the ratio of the friction pressure loss to the geodetic pressure drop, in the construction of the steam generator tubes 13 and 14 the relevant variables can be determined according to the relationships specified in the publication of Q. Zheng, W. Kohler, W. Kastner and K. Riedle entitled “Druckverlust in glatten und innenberippten Verdampferrohren”, Warme- und Stoffubertragung 26,pp. 323–330, Springer-Verlag 1991, and of the publication of Z. Rouhani entitled “Modified Correlation for Void-Fraction and Two-Phase Pressure Drop”, AE-RTV-841, 1969. In this regard, for a steam generator configured for full-load pressure at a superheater discharge pressure of 180 bar or less, the characteristic values to be used therefore are those for the full-load operating state. On the other hand, for a steam generator configured for a full-load pressure of more than 180 bar, the characteristic values to be used therefore are those for a part-load operating state at an operating pressure at a superheater discharge pressure of about 180 bar.
Because of the different pressures resulting from the different exhaust-gas temperatures, each steam-generator tube 13 or 14 of the once-through heating area 8 and 10 is expediently configured for a higher flow rate of the flow medium than each steam-generator tube 13 or 14 disposed downstream of it in the heating-gas direction and belonging to the same one of the once-through heating area 8 or 10.
To achieve the different flow rates, each steam-generator tube 13 and 14 of the once-through heating area 8 and 10, respectively, may have a larger inside diameter than each steam-generator tube 13 or 14 disposed downstream of it in the heating-gas direction and belonging to the same one of the once-through heating area 8 or 10, as is depicted in
In accordance with the embodiment depicted in
In accordance with the embodiment depicted in
Each steam generator tube 13 and 14, of any or all of
The present invention is not to be limited in scope by the specific embodiments described herein. Indeed, various modifications of the present invention in addition to those described herein will be apparent from the foregoing description and accompanying drawings to those of skill in the art. Thus, such modifications are intended to fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4685426 | Kidaloski et al. | Aug 1987 | A |
4915062 | Dolezal | Apr 1990 | A |
6189491 | Wittchow et al. | Feb 2001 | B1 |
6868807 | Franke et al. | Mar 2005 | B2 |