Printing devices can be used to print text, images, and the like on print media. Users may submit print jobs electronically to the printing device. In some instances, the printing devices can handle large amounts of print jobs. The print jobs are queued in the printing device and printed on the print media one job at a time. The completed print jobs may be stacked in a finisher module until the print jobs are retrieved.
Examples described herein provide printers with flexible bails. As noted above, printers can stack completed print jobs in a stacker or bin of the printer. The printer may offset each print job such that the print jobs can be easily separated.
Current finishing modules for printers may have mechanisms that move from side to side. For example, a mechanism inside the finishing module may shift the completed print job inside of the finishing module before dispensing the completed print job. In another example, the stacker or bin itself can move to offset the completed print jobs.
However, the moving parts of the finishing module may cause the printer to have a large footprint to house the components associated with the moving parts. The present disclosure provides a flexible bail that can offset completed print jobs without lateral movement of components inside of the finishing module or the stacker or bin.
In one example, the flexible bail may have a rigid portion that can be rotated vertically and a flexible portion that may “catch” incoming print jobs that are completed. The flexible portion may be flexible in a single direction to remain rigid when not in contact with the print media in the stacker, but begin to flex as portions of the flexible portion contact the print media.
The movement of the rigid bail portion may be controlled by a processor of the printer. The movement may be controlled based on a stack height of completed print jobs, a size of a current print job, and a length of each segment of the flexible portion of the flexible bail.
In one example, the apparatus 100 may include a digital front end (DFE) 102, a printing component 104, and a finishing component 106. The DFE 102 may process print job requests received from remotely located endpoint devices (not shown). For example, the DFE 102 may convert a print job into a page description language that provides a description, parameters, and the like associated with the print job request that is understood by the apparatus 100.
In one example, the printing component 104 may include a print path. For example, the printing component 104 may include a transport path, ink or toner, and other mechanical components that execute the print job. For example, the images, text, and the like described by the PDL and processed by the DFE 102 may be printed by the printing component 104.
In one example, the finishing component 106 may compile the completed print jobs. For example, the finishing component 106 may collate pages, staple pages together, and the like. The finishing component 106 may hold the print media 124 in a bin 126 for collection.
In one example, the finishing component 106 may also provide an offset between print jobs. As a result, multiple print jobs may be separated by an offset such that each print job can be easily retrieved and separated from other print jobs.
As noted above, current finishing modules may have mechanical parts to create the offset. For example, a tray in the bin 126 may move side to side. In another example, a roller or other mechanical portion inside the finishing module may move side to side before outputting the printed print media. Such mechanical moving parts may be relatively expensive and require more space in the MFD causing a larger footprint for the overall size of the device.
In one example, the finishing component 106 of the present disclosure may be simplified to include the bin 126 and a flexible bail 108. The print media 124 may continue to travel forward until the print media 124 is stopped by the flexible bail 108, as described below. In other words, the finishing component 106 (e.g., internal or external) may be simplified to remove features that can collate pages, stack pages, staple pages, and the like, and may instead deploy the bin 126 and the flexible bail 108.
The flexible bail 108 may include a rigid portion 114 and a flexible portion 110. The rigid portion 114 may be coupled to a motor 116. The motor 116 may be a rotational motor that has a rotational movement (as shown by an arrow 118). The rotational movement may cause the rigid portion 114 to move in a vertical direction up and down (e.g., closer to the print media 124 or further away from the print media 124) as shown by an arrow 120.
The rigid portion 114 may be fabricated from a metal or rigid plastic. The rigid portion 114 may maintain its shape against a nominal force applied against the rigid portion 114. For example, as the rigid portion 114 is raised, the rigid portion 114 may maintain its shape against gravitational force that is applied downward (e.g., towards the print media 124) on the rigid portion 114.
An end of the flexible portion 110 may be coupled to an end of the rigid portion 114 that is opposite an end that is coupled to the motor 118. The flexible portion 110 may include segments 1121 to 112n (hereinafter also referred to individually as a segment 112 or collectively as segments 112). The segments 112 may be coupled to one another, or arranged end-to-end, such that the segments 112 are unidirectionally flexible. In other words, the flexible portion 110 may bend in one direction, but not in the opposite direction. Said another way, the flexible portion 110 may maintain a flat shape that is parallel to the rigid portion 114 against gravitational forces (e.g., a force applied towards the print media 124). However, when the print media 124 contacts the flexible portion 110 and applies a force upward (e.g., away from the print media 124), the flexible portion 110 may begin to bend, curve, or flex.
In one example, the segments 112 may be fabricated from a material that can “catch” the print media 124. For example, the segments 112 may be fabricated from a rubber or a plastic with a coating (e.g., a semi-adhesive coating, a latex coating, a rubber based coating, and the like). The segments 112 may be fabricated from the same material or some segments 112 may be fabricated from different materials.
In one example, the flexible portion 110 may be flexible or bend in a concave direction relative to the print media 124. In other words, the curve, or an apex of the curve, may contact the print media 124.
In one example, the apparatus may also include a controller 122. The controller 122 may be communicatively coupled to the DFE 102, the printing component 104, and the finishing component 106. The controller 122 may be a processor or central processing unit (CPU).
The controller 122 may control operation of the DFE 102, the printing component 104, and the finishing component 106. The controller 122 may coordinate movement of the print media 124 through the apparatus 100.
The controller 122 may also control movement of the motor 116 to move the rigid portion 114 up and down (as shown by the arrow 120). For example, as a height of the stack of print media 124 in the bin 126 rises, the controller 122 may activate the motor 116 to raise the rigid portion 114. Thus, the offset position may be adjusted. The amount that the motor 116 and the rigid portion 114 are moved may be a function of a height of the print media 124 stacked in the bin 126, a size (e.g., a thickness) associated with a current print job request, and a length of each segment 112. In one example, if the print media 124 is removed, the controller 122 may activate the motor 116 to cause the rigid portion 114 to be lowered to a starting position.
In one example, the flexible bail 200 may include the flexible portion 110. The flexible portion may include a plurality of segments 2041-204n (hereinafter also referred to individually as a segment 204 or collectively as segments 204). The segments 204 may be coupled to a membrane 202 in an end-to-end fashion. The segments may be coupled to the membrane 202 via an adhesive, via a mechanical connection, and the like.
The membrane 202 may be flexible layer of material. For example, the membrane 202 may be a flexible plastic or a thin piece of metal that has some flexibility. The segments 204 may be arranged on the membrane such that the flexible portion 110 may be unidirectionally flexible. For example, the segments 204 may be arranged such that a force applied on a side of the membrane 202 may not cause the flexible portion 110 to curve or bend. However, a force applied on a side of the segments may cause the flexible portion 110 to curve upwards (e.g., in a direction away from the print media 124).
The segments 204 may be spaced adjacent to one another with no space or very little space between the segments. As such, the segments 204 may support one another when a force is applied to the side of the membrane 202 to prevent the flexible portion from bending downward (e.g., in a direction toward the print media 124). However, the segments 204 may move away from one another when a force is applied to a side of the segments 204 causing the flexible portion 110 to curve or bend upwards.
In one example, each segment 204 may have an equal length “l” as shown in
In one example, the segments 204 may have different lengths. For example, the length of the segments 204 may be largest on an end towards the rigid bail 114 and be the smallest on an opposite end away from the rigid bail 114. For example, the large lengths of the segments (e.g., segments 2041 and 2042) near the rigid bail 114 may provide more support for the flexible portion 110, while being unlikely to be used to perform the offset of the print media 124. The smaller lengths of the segments away from the rigid bail 114 (e.g., segment 204n) may provide control of the offset amounts of the print media 124.
In one example, the flexible bail 300 may include the flexible portion 110. The flexible portion may include a plurality of segments 3021-302n (hereinafter also referred to individually as a segment 302 or collectively as segments 302).
In one example, the segments 302 may be connected via a mechanical connection. The mechanical connection may include a cutout 306 and a rotating connector 304. Each segment 302 may have a cutout 306 on one end and a rotating connector 304 on an opposite end. Each side of each end may include a cutout 306 or a rotating connector 304. In other words, a first end of the segment 302 may include two cutouts 306 on opposite sides and a second end of the segment 302 may include two rotating connectors 304 on opposite sides.
In one example, the rotating connector 304 may have a curved end. The rotating connector 304 of a segment 302 may be coupled to a cutout 306 of an adjacent segment 302 via a pin 308 that connects adjacent segments 302. For example, the rotating connector 304 of the segment 3021 may be connected to the cutout 306 of the segment 3022, and so forth down to the segment 302n.
In one example, the segments 302 may be arranged to be contacting one another or have a small amount of space between one another. The arrangement of the segments 302 along with the design of the rotating connector 304 and the cutout 306 may allow the flexible portion 110 to bend in a single direction.
For example, the arrangement of the segments 302 adjacent to one another may cause the side walls to support each other when a force is applied to a top side of the flexible portion 110. In other words, arranging the segments 302 to touch or contact one another may prevent the flexible portion 110 from bending or curving towards the print media 124. However, the arrangement of the segments 302 with the rotating connector 304 and the cutout 306 may allow the segments 302 to rotating away from one another when a force is applied to a bottom side of the flexible portion 110.
In other words, the end of the flexible portion 110 may move upwards to create a concave curve. An apex of the curve may contact print media 124 in the bin 126. The contact between the apex of the concave curve and the print media 124 may create a stopping point to offset print media 124 ejected for a subsequent print job.
In one example, the segments 302 may have the same length “l”. In another example, the segments 302 may have different lengths. The lengths of the segments 302 may be varied for the same reason the segments 202 in
It should be noted that
A print job may include a first stack of print media 404. The first stack of print media 404 may have a thickness or a height of “h”. In one example, the thickness of a stack or a height of a stack may refer to the same dimension.
In one example, the finishing component 106 may include a bin capacity sensor 410, as noted above. However, a longer flexible portion 110 can allow the finishing component 106 to function without the use of the bin capacity sensor 410. The bin capacity sensor 410 may detect a top of the first stack of print media 404.
At time t2, the rigid bail 114 may be moved downward, resulting in the flexible portion 110 contacting the first stack of print media 404 at a point closer to the finishing component 106 than a lead edge of the first stack of print media 404. The segments 112 that are not in contact with the first stack of print media 404 may remain “rigid” or parallel with the rigid bail 114. In other words, the segments 112 that are not in contact with the first stack of print media 404 may be straight or lie on a same plane as the rigid bail 114. The segments 112 that are not in contact with the first stack of print media 404 may be in a position to receive print media from a second print job and offset the print media from the first stack of print media 404.
A second print job may be completed and a second stack of print media 406 may stop against the segments 112 of the flexible portion 110 of the flexible bail 108 that are not in contact with the first stack of print media 404. As a result, the second stack of print media 406 may be offset from the first stack of print media 404.
The bin capacity sensor 410 may calculate an overall height “H” of the stacks 404 and 406 in the bin 402. Based on a current height of the stacks 404 and 406 in the bin 402, a size (e.g., a calculated thickness or height “h”) of a current print job request, and a length of each segment 112 of the flexible portion 110, the controller 122 may determine that the motor 116 should be rotated and an amount the motor 116 should be rotated.
For example, the controller 122 may determine that the second stack of print media 406 may be contacting the last few segments 112 of the flexible portion 110. As a result, another stack of print media may contact the rigid bail 114 rather than the segments 112 of the flexible portion 110. In response, the controller 122 may activate the motor 116 to raise the rigid bail 114. The rigid bail 114 may then be moved upwards by the rotation of the motor 116 and the second stack of print media 406 may contact lower segments 112 (e.g., segments further away from the rigid bail 114) of the flexible portion 110. In other words, the controller 122 may calculate the amount of rotation of the motor 116 based on the factors noted above such that an end of the flexible portion 110 contacts a top most stack of print media (e.g., the second stack of print media 406) currently in the bin 402.
At time t3, the rigid bail 114 may be moved upward, and a third print job may be completed and a third stack of print media 408 may be ejected into the bin 402. The third stack of print media 408 may contact the flexible portion 110 and be offset from the second stack of the print media 406. In one example, when the rigid bail 114 is moved, the movement may “reset” the offset position. For example, the position of the third stack of print media 408 may be the same as the first stack of print media 404. The third stack of print media 408 may cause the flexible portion 110 of the flexible bail 108 to curve upwards to create a concave curve. As a result, a subsequent stack of print media from a fourth print job may be offset from the third stack of print media 408, and so forth. Thus, the present disclosure provides a flexible bail that can simplify components of an MFD to reduce overall costs and size of the MFD.
At block 502, the method 500 begins. At block 504, the method 500 determines a height of print media that is stacked in a bin of a finishing module of a printing device. For example, a finishing module of the MFD may include a bin to hold the print media that is outputted by the MFD. The bin may include a sensor that can detect whether any print media is stacked inside of the bin and determine a height of the stack.
At block 506, the method 500 determines a thickness of a current print job request being printed on the printing device. For example, the processor may obtain information associated with a print job. The controller may obtain information by communicating with the digital front end that processes the print job request and translates the print job into a printing language or protocol to be executed by the MFD. The thickness may be calculated based on a known thickness of a selected print media and a number of pages in the print job.
At block 508, the method 500 moves a rigid portion of a flexible bail based on the height of the print media that is stacked, the thickness of the current print job, and a length of each segment of a flexible portion of the flexible bail such that print media associated with the current print job contacts part of the flexible portion of the flexible bail to be offset from the print media that is stacked in the bin. In one example, the flexible bail may be moved downward during a current print job such that the flexible portion may contact the print media 404 at a point closer to the finishing component than a lead edge of the stack of the print media.
After the print job is completed, the flexible bail may be moved upward to prepare for a subsequent print job. For example, based on the height of the print media that is stacked in the bin and a thickness of the current print job, a motor connected to the rigid portion may rotate to move the rigid portion higher (e.g., away from the print media stacked in the bin). Thus, the flexible bail may also rise. As the flexible bail rises, segments that were contacting the print media stacked in the bin may no longer contact the print media. Thus, the stopping point for the print media may be moved out further away from the output path of the finishing component of the MFD.
The blocks 504, 506, and 508 may be repeated for each print job that is processed by the MFD. In some examples, the rigid portion may stay in position until print media contacts a pre-defined portion of the flexible bail. When the pre-defined portion of the flexible bail contacts the print media, the print media may be too close to the output path of the finishing component. In other words, the print media can no longer be offset. In response, the rigid portion may be raised to allow the print media to be outputted further away from the output path and the print media can be offset again.
In one example, when the paper is removed the bin sensor may detect that the bin is empty. When the bin is detected to be empty, the controller of the MFD may move the motor connected to the rigid portion of the bail back to a starting position. At block 510, the method 500 ends.
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/058902 | 11/2/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/091802 | 5/7/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4208122 | Iwamoto et al. | Jun 1980 | A |
5228679 | Borostyan | Jul 1993 | A |
5609333 | Mandel | Mar 1997 | A |
5823529 | Mandel et al. | Oct 1998 | A |
7686296 | Kaneko et al. | Mar 2010 | B2 |
8625129 | Noy et al. | Jan 2014 | B2 |
20140131940 | Fukuda | May 2014 | A1 |
20140291921 | Kobayashi et al. | Oct 2014 | A1 |
20180370259 | Cantrell | Dec 2018 | A1 |
20200339370 | Kotani | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2784013 | Oct 2014 | EP |
H11139665 | May 1999 | JP |
2016011206 | Jan 2016 | JP |
WO-2017180152 | Oct 2017 | WO |
WO-2018067144 | Apr 2018 | WO |
Number | Date | Country | |
---|---|---|---|
20210245987 A1 | Aug 2021 | US |