1. Field of the Invention
The invention relates generally to a method, system, and apparatus for a flexible band with an integrated battery that is configured to interface with a user device, such as a smartwatch and the like. The disclosed invention is particularly advantageous, because it allows for, among other things, additional battery life, space conservation and comfort.
2. Description of the Related Art
User communication devices, such as smartphones and smartwatches, allow users to interact and communicate with users of other communication devices. Smartphones are generally much larger than smartwatches and are expected by users to be carried in their pocket, purse, or the like. Wearable user devices, on the other hand, are expected by users to be smaller and comfortably worn. Moreover, because wearable user devices are expected to be worn as an accessory, users desire more stylish, sleek, and compact seeming wearable devices.
A substantial component of any smartwatch is the battery that powers the device. Generally, very large batteries are used to power smartphones because smartphones have a substantial number of features, such as large memory, powerful processors, and a high quality liquid-crystal display (LCD) display. As previously discussed, because smartphones are not expected to be worn by their users, the phones can be designed to include much larger batteries to power those features for days at a time. In stark contrast, several of the features that are typically found in a smartphone are generally sacrificed in a smartwatch because of the expectations of the user discussed above. Due to some of these design sacrifices, a much smaller and less powerful battery is capable of powering the more limited features of a smartwatch. However, current smartwatches are generally assembled with the battery embedded into the housing of the smartwatch unit itself. For example, U.S. Publication No. 2009/0069045 discloses such a smartwatch. As shown in
In one prior art watch (which is not a smartwatch), known as the CST-01, the watch battery is embedded into the band of the watch. The battery is a micro energy cell created by Thinergy. However, the watch and band all comprise a single piece of flexible stainless steel which only allows for relatively small bend radius. There are at least three draw backs to the CST-01. First, the watch may be uncomfortable to the user, as it is a single piece of steel (i.e., a hard outer material) that is wrapped around the user's wrist and allows for a minimal bend radius. Second, the watch does not allow the user to change out the bands because the watch face circuitry is not configured to be removed from the band. Third, the watch does not utilize much of the free space in the length of the steel band for additional battery circuitry, which could significantly increase the battery life of the watch on each individual charge. The battery is a small square or rectangle that is embedded near the watch itself, and as such, is not integral or contiguous with the band. The battery is thus non flexible and cannot conform to the wearers wrists. Furthermore this battery capacity is insufficient to provide enough lasting power for watches such as the Pebble smartwatch.
Thus, the need exists in the field of wearable user devices for a flexible band containing a battery that improves the comfort level of the user. The need further exists for a strap or band containing a battery that utilizes band space to increase battery capacity, and as such increase the battery life of the corresponding user device. This need is especially great in the field of wearable smartwatches, where space efficiency and conservation, battery life, style, and comfort are all desirable features to wearers.
Implementations of the presently disclosed technology relate to a strap or band that may freely bend, wherein the strap or band contains a battery. This implementation can be used with any wearable technology.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an implementation of apparatuses and methods consistent with the present invention and, together with the detailed description, serve to explain advantages and principles consistent with the invention.
a)-(d) illustrate different views of an assembly of a flexible band or strap containing a battery, wherein the battery is secured to spring steel structure or frame.
a)-(d) illustrate different views of an assembly of a flexible band or strap containing a battery, wherein the battery is secured to an injection molded sub structure.
The present invention is directed to an improved method, apparatus and system, for manufacturing a flexible band or strap containing a battery. The following description stresses the use of the invention with smartwatches, but is useful for any wearable user device. An important feature of the disclosed apparatus is that the band or strap remains flexible.
With this in mind, the following description begins with an exemplary strap or band with reference to
Turning now to
The strap or band 200 is comprised of an outer surface or fashion layer 225, which may be leather or another material, to meet a user's fashion desires. Alternatively, the fashion layer 225 could be made of a harder material, such as steel. The steel could be, for example, segmented or chain-linked, which may be more visually appealing to the wearer. Interposed between the outer layer 225 is a layer 220 comprising a battery layer secured to spring steel layer using an adhesive (e.g., double-sided tape) or by a mechanical fastener like a spring bar or cotter pin. As will be appreciated by those having ordinary skill in the art, spring steel is particularly advantageous in that it has a memory to its form and is easy to flex. Consequently, it remains flexible while always returning back to its original form. This allows for more flexibility as compared to other current watch bands containing a battery. The strap or band 200 also contains a fastener 230, which allows for the wearer of the strap or band 200 to close it around his or her wrist. The fastener 230 illustrated is clasp-less, because it is able to fasten the watch to the wearer's wrist without the need for any interlocking or intertwined components. This may be accomplished because the form-retaining characteristics of the spring steel helps form the band 200 around the user's wrist. Alternatively, the fastener may be a generic watch band clap wherein holes are created near the end of the band 200 and a pin through the hole is utilized to secure the band strap around the wearer's wrist. However, as would be understood by those of skill in the art, holes in the battery of the band or strap will reduce the battery life and likely make manufacturing more difficult. Consequently, the preferred method of clasp would be a buckle, ratchet, magnetic or similar clasp or a clasp-less band 230, none of which require holes in the band or strap.
Turning now to
Turning now to
The process for creating the strap or band 200 from
As shown, the manufacturing process 300 starts at 305 typically with the forming of the spring steel frame 235 into the desired shape. As previously discussed, spring steel is very flexible but will typically return to its original form. Therefore, the spring steel frame 235 must be initially formed into the desired shape prior to implementing it into the strap or band 200. As would be understood by those having ordinary skill in the art, because spring steel always attempts to revert to its original form, it may be necessary to form the spring steel frame 235 for an intended wearer's wrist size (e.g. “large wrist size,” “medium wrist size”). Next, at 310 the adhesive layer (not shown) is applied to the spring steel frame 235. At 315, the battery layer 240 is secured to the spring steel frame 235 using the adhesive layer. Finally, at 320 the assembly of the battery layer 240, adhesive layer, and spring steel frame 235 are covered with a fashion layer 225. As previously discussed, the fashion layer 225 may also be comprised of a harder material, such as stainless steel. Such materials may be desirable by some wearers because of the more expensive appearance of the material. Regardless of which material is used, the material is preferably water-resistant in order to protect the battery layer 240 from liquid damage.
While not expressly illustrated in the manufacturing process 300, a hole may be left in the top center portion of the fashion layer 225 of the strap or band 200 when applying the fashion layer 225 at step 320. Thermoplastic polyurethane (TPU), or a similar material, may then be injection molded, or a hard material may be low pressure molded, over the exposed center portion to form a water-resistant seal where the dock 205 is secured to the band 200. The dock 205 may then be secured to the center portion of the band 200 using any number of methods known in the art, some of which previously discussed. Alternatively, the dock 205 may be fully integrated into the band 200 by overmolding the dock 205 to the band 200. Preferably the dock 205 is formed in a manner that creates a water resistant seal between the dock 205 and the band 200 so that liquids may not seep through the points where the housing of the dock 205 and band 200 connect.
Turning now to
Turning now to
Turning now to
The process for creating the strap or band 400 from
As shown, the manufacturing process 500 starts at 505 typically with the forming of the sub structure 435 by injection molding, which would generally be performed using a polymer, but may alternatively include a metal (e.g., steel). Because the sub structure 435 is injection molded, it may be less flexible than a band or strap that utilizes spring steel as the base structure. Next, at 510 the adhesive layer (not shown) is applied to the sub structure 435. At 515, the battery layer 440 is secured to the sub structure 435 using an adhesive, such as double-sided tape. Finally, at 520 the assembly of the battery layer 440, adhesive layer, and sub structure 435 are covered with an overmolded layer 425. Alternatively, the assembly may be covered with steel, leather, or another material (i.e., a fashion layer) instead of the overmolded layer 425. If it is desired to use a chain-link type material (or any material that has openings) as the overmolded layer 425, it may be necessary to first overmold the adhesively coupled battery layer 440 and sub structure 435 layer before applying the chain-link material (i.e., a fashion layer). This may ensure that the battery layer 440 is protected from water or other liquids. Regardless of which material is used, preferably the material is water-resistant in order to protect the battery layer 440 from liquid damage.
While not expressly illustrated in the manufacturing process 500, a hole may be left in the top center of a portion of the overmolded layer 425 of the strap or band 400. Thermoplastic polyurethane (TPU) may then be injection molded or a hard material may be low pressure molded over the exposed center portion to form a water-resistant seal where the watch dock 405 is secured to the band 400. The dock 405 would then be secured to the center portion of the band 400 using any number of ways known in the art, which were previously discussed. Alternatively, also as previously discussed, the dock 405 may be fully integrated into the band 400 by overmolding the dock 405 to the band 400.
Additionally, a fastener 430 may be attached to one end of the strap or band 400. The fastener 430 may be designed to allow one end of the strap or band 400 to clamp to the opposing end of the strap or band 400 without the need for holes in the band.
As would be understood by those having ordinary skill in the art, the presently disclosed invention may be utilized with any polymer or other material (e.g., a metal) suitable to achieve the objectives of a flexible band or strap integrated with a battery. Moreover, while adhesives are described as securing the battery to spring steel or injection molded frame or structure, those of skill in the art would recognize that any method of securing the battery to another structure may be used to implement the disclosed invention. Further, while certain embodiments may be described as being water-resistant, it would be understood that the present embodiments could be implemented without such a feature. For instance, the battery itself could be manufactured to be integral with the spring steel as well making one layer that could be covered as described herein by a fashion layer.
It will also be understood that the above description is intended to be illustrative, and not restrictive. For example, the above-described embodiments may be used in combination with each other and features of one embodiment may be utilized with other embodiments. Many other embodiments will be apparent to those of ordinary skill in the art upon reviewing the above description. For example, the strap or band may be implemented in other wearable technologies other than watches, such as wearable necklaces, ear rings, etc. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the frill scope of equivalents to which such claims are entitled. In the appended claims, the terms “including” and “in which” are used as the plain-English equivalents of the respective terms “comprising” and “wherein.” Moreover, while specific types of batteries, plastics, etc. have been mentioned throughout this specification, it would be understood that any known battery, plastic, etc. may be suitable for use with the presently disclosed invention.
Number | Date | Country | |
---|---|---|---|
61993795 | May 2014 | US |