The disclosed technique relates to building segments, in general, and to flexible building segments, in particular.
Building blocks are known in the art. Specifically, building blocks which include magnets which enable various building blocks to be magnetically coupled with each other are also known in the art.
U.S. Pat. No. 7,413,493 to Toht et al entitled “Magnetic building block” a children's toy which includes a block, an internal support, a casing, a magnet and a cap. The block includes a plurality of walls defining a substantially hollow interior where at least one of the walls including an opening. The internal support extends from at least one of the walls, into the hollow interior of the block. The casing is mounted within the hollow interior of the block. The internal support engages the casing to support the casing within the hollow interior. The first magnet is housed within the casing and freely moves within the casing. The cap is adapted enclose the casing.
It is an object of the disclosed technique to provide a novel a flexible building segment. In accordance with the disclosed technique, there is thus provided a flexible building segment which includes a first outer section, a second outer section, a central section, a first ribs section and a second ribs section. The first outer section includes a first magnet embedded therein. The second outer section includes a second magnet embedded therein. The central section includes a central magnet embedded therein and at least two central attachment slots at opposite sides thereof. The first ribs section includes a first flexible portion and respective ribs. The first flexible portion couples the central section with the first outer section. The ribs, respective of the first ribs section, are attached to the first flexible portion and parallel to each other. The second ribs section includes a second flexible portion and respective ribs. The first flexible portion couples the central section with the second outer section. The ribs, respective of the second ribs section, are attached to the second flexible portion and parallel to each other.
The disclosed technique will be understood and appreciated more fully from the following detailed description taken in conjunction with the drawings in which:
The disclosed technique overcomes the disadvantages of the prior art by providing a flexible building segment. Different sections of a flexible building segment according to the disclosed technique may be coupled with each other and to other flexible building segments.
Reference is now made to
Flexible building segment 100 exhibits an elongated oval shape but exhibit other elongated shapes such as a rectangular. Flexible building segment 100 includes five sections, two outer sections, outer section 1021 and outer section 1022, a central section 106 and two ribs section 1041 and 1042. Each of first rib section 1041 and second rib section 1042 includes a respective first flexible portion 1141 and second flexible portion 1142. First flexible portion 1141 couples central section 106 with first outer section 1021 and second flexible portion 1142 couples central section 106 with first outer section 1022.
Each of first ribs section 1041 and second ribs section 1042 includes parallel ribs such as ribs 110. The ribs are perpendicular to the major axis 112 of flexible building segment 100. The ribs in first ribs section 1041 are attached to a respective first flexible portion 1141 and the ribs in second ribs section 1042 are attached to a respective second flexible portion 1142. Furthermore, The width of the ribs is wider than the width of the first flexible portions 1141 and second flexible portion 1142, thus forming ribs attachment slots such as rib attachment slot 116. Central section 106 includes at least two central attachment slots 1081 and 1082 at opposite sides thereof. Each one of first outer section 1021, second outer section 1022 and central section 106 includes a magnet embedded therein. The magnets in first outer section 1021 and second outer section 1022 exhibit the same magnetic alignment while the magnet in central section 106 exhibit an opposite magnetic alignment. These magnets, along with first flexible portions 1141 and second flexible portion 1142 enable each of first outer section 1021 and second outer section 1022 to be folder onto central section 106 and magnetically couple therewith. Furthermore, the magnets embedded in first outer section 1021, second outer section 1022 and central section 106, along with central attachment slots 1081 and 1082 and the rib attachment slots enable flexible building segment 100 to mechanically or magnetically couple with other flexible building segments.
Reference is now made to
Reference is now made to
Each of first ribs section 2041 and second ribs section 2042 includes parallel ribs such as ribs 210. The ribs are perpendicular to the major axis 212 of flexible building segment 200. The ribs in first ribs section 2041 are attached to a respective first flexible portion 2141 and the ribs in second ribs section 2042 are attached to a respective second flexible portion 2142. Furthermore, The width of the ribs is wider than the width of the first flexible portions 2141 and second flexible portion 2142, thus forming ribs attachment slots such as rib attachment slot 216. Central section 206 includes at least two central attachment slots 2081 and 2082. Each one of first outer section 2021, second outer section 2022 and central section 206 include a respective rotatable magnet 2181, 2182 and 226 embedded therein. Rotatable magnets 2181 2182 and 220 are, for example, in the shape of a sphere and are located, in respective cavities such that each may freely rotate and align the magnetic polarity thereof with other magnets (e.g., of other similar flexible building segments). Alternatively, rotatable magnets 2181 2182 and 220 may be in the form of cylindrical magnets. Each cylindrical magnet rotates about the longitudinal axis thereof (e.g., about a hinge).
Reference is now made to
Reference is now made to
It will be appreciated by persons skilled in the art that the disclosed technique is not limited to what has been particularly shown and described hereinabove. Rather the scope of the disclosed technique is defined only by the claims, which follow.
This application claims benefit of U.S. Provisional Patent Application No. 62/341,642, filed May 26, 2016, which application is incorporated herein by reference. To the extent appropriate, a claim of priority is made to the above disclosed application.
Number | Name | Date | Kind |
---|---|---|---|
7364487 | Evans | Apr 2008 | B2 |
7371146 | Scarborough | May 2008 | B2 |
7413493 | Toht et al. | Aug 2008 | B2 |
8197297 | Shimizu | Jun 2012 | B2 |
20100120322 | Vicentelli | May 2010 | A1 |
Number | Date | Country | |
---|---|---|---|
20170340979 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62341642 | May 2016 | US |