The invention relates to a resilient bushing arrangement comprising an inner bushing, an outer bushing, which surrounds the inner bushing and delimits an annular space therewith, a resilient connecting body, which is arranged in the annular space and connects the two bushings to each other, and spacers, which are arranged in end regions of the annular space and allow only limited radial relative movements of the two bushings in relation to each other.
A bushing arrangement of this type is known from U.S. Pat. No. 4,738,650 A in which a respective intermediate bushing, as a spacer, is pressed onto both ends of the inner bushing or into both ends of the outer bushing and these intermediate bushings have dimensions such that defined radial play remains between inner and outer bushings. A rubber bushing is vulcanised onto the central region of the inner bushing as a resilient connecting body and this is dimensioned in its axial length such that a space also remains between the rubber bushing and each of the two spacers. The arrangement of inner bushing, spacers and rubber bushing arranged therebetween on the inner bushing is pre-assembled and then pressed into the outer bushing such that the rubber bushing is pre-tensioned. According to U.S. Pat. No. 4,738,650 A flexible bushing arrangements of this type are provided as fastening elements of a resilient flexible disc. During operation this has to transmit torques. In the process the inner bushings of the bushing arrangements are pushed in the direction of the outer bushings, wherein the rubber bushings are pressurised. If the torque to be transmitted by the flexible disc exceeds a specific amount the spacers bridge the gap between the inner bushings and the outer bushings and thereby limit the pressure that acts on the rubber bushings.
The object underlying the invention is to configure a flexible bushing arrangement in such a way that it is easy to produce and forms an effective barrier against the transmission of structure-borne noise with all excursions that occur during operation, even angular excursions, of the inner bushing in relation to the outer bushing.
Starting from a flexible bushing arrangement of the type described in the introduction the object is achieved according to the invention in that each of the spacers is constructed in one piece with one of the bushings and is arranged in such a way that it may act on the other bushing via the connecting body.
The one-piece construction of the spacers with either the inner bushing or the outer bushing simplifies the production of the bushing arrangement according to the invention. As a result of the fact that each of the spacers is arranged in such a way that it may only act on one of the two bushings via the connecting body, direct transmission of vibrations between the bushings via one or more spacers is ruled out. Despite its simplicity the bushing arrangement according to the invention therefore provides particularly good protection against the transmission of structure-borne noise even if the inner bushing and/or the outer bushing are made from steel.
The two bushings—inner bushing and outer bushing—are preferably made from plastics material. Polyphenylene ether (PPE) and polyamide 612 (PA 612) are particularly suitable. Outer bushings made of one of these plastics materials may for example be pressed from rubber in a blank of a flexible disc, while inner bushings made from one of these plastics materials are particularly suitable for receiving threaded bolts made of steel in such a way that they may be alternately fastened without play to one or the other of two shaft flanges, between which the flexible disc is arranged.
The resilient connecting body is preferably made from rubber or rubbery material and the annular space between inner and outer bushings is preferably completely filled by the resilient connecting body and the spacers.
It is particularly advantageous if each of the spacers is formed in the manner of a toothed ring. This provides the possibility of producing positive locking between the spacers and the resilient connecting body, so the flexible bushing arrangement according to the invention is capable inter alia of transmitting torques.
With a given size of the bushing arrangement according to the invention its capacity to transmit torques may be increased further if at least one pair of toothed ring-like spacers, of which one is constructed on the inner bushing and the other on the outer bushing, engage in each other in the manner of a gear coupling and in the process have play in the radial and circumferential directions which is bridged by the resilient connecting body.
Alternatively the two bushings, the spacers and the resilient connecting body may be produced in one piece, wherein an inner spacer is arranged at one end of the inner bushing, an outer spacer is arranged at the opposite end of the outer bushing and the resilient connecting body, connecting these two spacers together, divides the annular space between the two bushings into an inner annular space and an outer annular space.
With this alternative embodiment of the invention the resilient connecting body can be divided in a cage-like manner into axis-parallel bars. The resilient flexibility of the connecting body may be increased thereby.
Bushing arrangements according to the invention are primarily to be provided between two joint parts of a universal joint shaft to reciprocally centre these joint parts and thereby prevent the joint shaft from buckling.
The invention also relates to a method for producing a bushing arrangement according to the invention of the type described in the introduction. The method is conducted according to the invention in such a way that the bushings and the spacers are formed in one piece, wherein an inner spacer arranged close to one end of the inner bushing and an outer spacer arranged close to the opposite end of the outer bushing are directly adjacent to each other and are connected together by a predetermined breaking region, and the inner bushing projects from the outer bushing. The inner bushing is thereafter pushed into the outer bushing, wherein said spacers separate from each other in the predetermined breaking region. The annular space between the bushings is finally filled with a rubbery compound which forms the resilient connecting body.
Embodiments with further details of the invention will be described hereinafter with reference to schematic drawings, in which:
FIGS. 7 to 9 show further production steps of the bushing arrangement,
The joint shaft 10, schematically illustrated in
At the, in
The inner bushing 32 and the outer bushing 34 may be produced in a particularly simple manner by, for example, being commonly injected from one of said plastics materials. This takes place in an injection mould which is shaped in such a way that the two bushings 32 and 34 are produced in coaxial arrangement, although axially mutually offset. The axial offset is chosen such that the toothed wheel which forms the one-piece spacer 40 with the inner bushing 32 is located in a common axis-normal plane with the toothed wheel which forms the one-piece spacer 42 with the outer bushing 34, and these two toothed wheels engage with each other tooth on pawl. At least a few teeth of the inner spacer 40 are connected to adjacent teeth of the outer spacer 42 by a predetermined breaking region 44 in the process. The two bushings 32 and 34, after they have been commonly injected, therefore first of all form a unit.
As soon as the unit comprising inner bushing 32 and 34 has been inserted in the described manner, the top plate 50 is lowered, wherein it is centred in relation to the base plate 46 and the heating plate 54 fastened thereto by the penetration of the centring mandrel 48 into the associated receiving hole 52, as shown in
Number | Date | Country | Kind |
---|---|---|---|
102004051566.2 | Oct 2004 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP05/11260 | 10/19/2005 | WO | 4/12/2007 |