The present invention relates generally to archery bows and more particularly pertains to a flexible cable guard for use with and mounted to an archery bow.
Certain archery bows, such as compound bows, store energy by a cable arrangement involving a bowstring, rotational elements and additional cable portions extending between the respective ends of the bow. In certain arrangements, cable guards are used to engage certain cable arrangements and displace them horizontally to provide clearance for the bowstring and arrow to be drawn and released without interference from these other cable portions. Further arrangements may include a slider assembly for retaining the additional cable portions while sliding laterally on the cable guard.
Archery bow arrangements according to certain preferred embodiments described herein include an archery bow body defining opposing limb tips and a bowstring extending between the limb tips. At least one cable portion in addition to the bowstring extends between the limb tips and a flexible cable guard extends from the archery bow body. The flexible cable guard has a cable contact surface for applying a lateral force to the at least one cable portion to maintain it in a different plane than the bowstring.
In certain embodiments, a flexible cable guard for a bow includes: a support core, a mounting portion at or near the proximal section of the support core, and a contact surface at or near the middle section and/or distal section of the support core. The mounting portion may be a bracket of the type commonly known to enable accessories to be secured to an archery bow body, such as the riser of an archery bow. The cable guard is designed to displace the at least one cable horizontally to provide clearance for the bowstring and arrow to be drawn and released without interference from the at least one cable. In certain forms, the flexible cable guard includes a slider assembly which retains selected cables of the archery bow and translates along the length of the support core.
In certain embodiments of the flexible cable guard for an archery bow, the support core is made from a semi-rigid material and has two or more sections along its length, each having differing diameters (or cross sectional widths), with the distal section having a smaller diameter than that of the proximal section. The flexible cable guard may also include a flexible material mounted to, within or surrounding at least a portion of the support core. This flexible material may cover at least the portion of the cable guard which contacts and applies a retaining force to the cable portions. In some forms, the flexible material also provides for a low friction surface. In one form a slider assembly retains the additional cable portions and slides laterally on the flexible cable guard.
Other objects and attendant advantages will be readily appreciated as the same become better understood by references to the following detailed description when considered in connection with the accompanying drawings.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to the embodiments illustrated and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the disclosure is thereby intended, such alterations, modifications, and further applications of the principles being contemplated as would normally occur to one skilled in the art to which the invention relates.
The portion of the cable which defines the bowstring cable 34 includes an upper portion 28 and a lower end portion 30 which are fed-out from idler wheel 16 and cam 18 when the bow is drawn. The upper end portion 28 is part of a longer cable which has a medial portion mounted around idler wheel 16 with the ends mounted to cam 18. The non-bowstring portion of the cable extending from wheel 16 to cam 18 can be referred to as the return cable portion 35. Additionally, a y-yoke anchor cable 32 has a lower end mounted to cam 18 which extends to two upper ends mounted adjacent opposing ends of axle 20. Each cable has a thickness and a round cross-section defining a circumference. From the perspective of the archer, the bowstring is considered rearward relative to the riser which defines forward.
An arrow can be arranged between bowstring 34 and riser 11, for example with the arrow supported on an arrow rest formed by or mounted on riser 11. The arrow is typically perpendicular to bowstring 34 in the brace position. The arrow and bowstring define a plane in which the bowstring travels during the draw and release cycle, referred to herein as the plane of the bowstring. Broadly, the plane is vertical and passes front to back to include the riser, the arrow and the bowstring.
When the bowstring 34 is drawn, it causes idler wheel 16 and cam 18 at each end of the bow to rotate, feeding out cable and bending limb portions 12 and 14 inward, causing energy to be stored therein. When the bowstring 34 is released with an arrow engaged to the bowstring, the limb portions 12 and 14 return to their rest position, causing idler wheel 16 and cam 18 to rotate in the opposite direction, to take up the bowstring 34 and launch the arrow with an amount of energy proportional to the energy initially stored in the bow limbs. Bow 10 is described for illustration and context and is not intended to be limiting.
A typical cable guard, as is known in the art, is a rigid shaft (with a slider assembly, pulleys or other add-ons), which engages one or more cable portions, such as cables 32 and/or 35, and displaces them a fixed distance laterally from the plane which includes the bowstring and arrow, thus providing clearance, assisting the bowstring and arrow (including its fletchings) to be drawn and released without interference from the cable portions. In contrast, the present invention provides for variable lateral displacement of the cables during a shot. When viewed from the perspective of an archer holding the bow, as shown in
While not illustrated, the present disclosure can also be used in other types of bows, for example dual cam or two cam bows, hybrid cam bows or crossbows, which are considered conventional for purposes of the present invention. For convenience, the combination of riser 11 and either single or quad limbs forming upper limb 12 and lower limb 14 may generally be referred to as archery bow body 15. Accordingly, it should be appreciated that the archery bow body can take on various designs in accordance with the many different types of bows with which the present invention can be used.
In one embodiment, the flexible cable guard 110 includes a slider assembly 112 which serves to engage and/or retain one or more of the cable portions 32 and 35 of the bow. The slider assembly may be made from one or more pieces, as is known in the art, and may include slots, hooks, or another known mechanism to secure and apply a lateral force to the cable portions 32 and/or 35. This lateral force may be applied as a pushing or pulling force, depending upon which side of the flexible cable guard 110 the selected cables are placed. In operation, the slider assembly 112 slides along the flexible cable guard 110 as the bow is drawn and subsequently fired or released. In an alternate embodiment, the flexible cable guard 110 may be utilized without a slider assembly. In such an arrangement, the cable portions simply contact the outer side of the flexible cable guard 110, which is the side opposite of the bowstring.
In the illustrated embodiments, a flexible cable guard 110, as seen in
Generally, support core 130 is roughly between 5 and 8 inches in length, but may be shorter or longer depending upon the size of the mounting bracket 120 and/or the specific measurements of the bow upon which it is to be used. In the example illustrated, proximal section 132 of support core 130 has a cylindrical shape and a constant first diameter d1. It shall be appreciated that for non-circular shaped embodiments, the cross sectional width (i.e. the maximum distance across the cross section) may be considered. The proximal section 132 is preferably made from a semi-rigid material which provides some level of resiliency in that it can repeatedly flex under load and return to its original position. Proximal section 132 is connected, either directly or indirectly, to distal section 136. In the example illustrated, distal section 136 also has a cylindrical shape, but has a constant diameter d2, which is less than diameter d1 of proximal section 132. The distal section 136 is preferably also made from a semi-rigid material which provides some level of resiliency. The reduced diameter of distal section 136 causes it to exhibit a greater level of flexibility than proximal section 132 when made from the same or similar material. The lengths and proportions of proximal section 132 and distal section 136 may vary to achieve different flex profiles as desired. However, for purposes of a non-limiting example, the proximal section may be equal to or slightly longer in length that the distal section 136. In one form, proximal section 132 and distal section 136 comprise the entire length of the cable guard 110 (excluding the mounting bracket 120). In other forms, the proximal section 132 and distal section 136 may comprise at least 50% of the length of the cable guard 110, at least 65% of the length of cable guard 110, or at least 80% of the length of cable guard 110.
In certain embodiments, the proximal section 132, transition section 134 and distal section 136 of support core 130 may be formed from one or more of: aluminum, steel, fiberglass or any other semi-rigid resilient material. The sections may be integral or connected together via welds, fasteners or some other suitably strong connection known for use with the material(s) selected. In one form, the proximal section 132 and the distal section 136 are made from the same material, and may be made from a single unitary piece. In one example, at least the distal section 136 of the support core 130 is made from carbon fiber. In a further form, each portion of the support core 130 is made from carbon fiber. Furthermore, while described herein as connected, it shall be understood that two or more of mounting bracket 120, proximal section 132, transition section 134 and distal section 136 (or any intermediate sections) may be formed from a single unitary piece of material depending upon design preferences and the desired deflection profile. Moreover, while a circular shaped cross-section is illustrated, any portion of support core 130 may be formed of a different cross-sectional shape, however, smooth shapes such as an oval, “D” shape, or the like lower the stress and wear placed upon the cable portions or the slider assembly 112 as they rest upon or slide along the length of the flexible cable guard 110.
In certain embodiments, a transition section 134 is included between adjacent sections, such as proximal section 132 and distal section 136, to smoothly transition the support core 130 between differing diameters, which in the illustrated embodiment are d1 and d2. The transition section 134 forms a smooth outer surface upon flexible cable guard 110 which provides for a smoother transition for the slider assembly 112 or the cable portions themselves (depending upon the embodiment selected) when moving laterally along its length. In addition, this transition section 134 provides greater strength and durability for the support core 130 than a sharply stepped arrangement. In a further form, support core 130 may include additional sections between proximal section 132 and distal section 136. In one form, the diameter of each successive section of the support core 130 is smaller when moving from the proximal section 132 to the distal section 136. In another form, the flexibility of the material (e.g. modulus of elasticity) chosen for each successive section of the support core 130 is different. In a still further form, the flexibility (e.g. measured as a lack of stiffness) of the material chosen for each successive section of the support core 130 is greater when moving from the proximal section 132 to the distal section 136. In one embodiment, the flexible cable guard 110 includes at least three sections having differing diameters. In yet a further embodiment, the flexible cable guard 110 includes at least four sections having differing diameters. In a still further embodiment, the flexible cable guard 110 includes at least five sections having differing diameters. In yet another form, the entire length of support core 130, or a significant portion thereof, may be of a tapered shape to provide for an increasing flexibility from the proximal section 132 to the distal section 136.
In contrast to a traditional rigid cable guard, the lateral displacement of the cable portions away from the bowstring provided by flexible cable guard 110 (as indicated by direction A or B in
As the bowstring 34 is released, tension is released and the flexible cable guard 110 begins to displace the cable portions further from the plane of bowstring 34 (as indicated by arrow B in
In a further embodiment, shown in
In certain forms, low friction surface 140 is of a constant diameter; however, in other forms low friction surface 140 may follow a similar profile to that of internal core support 130. Low friction surface 140 may be formed from a number of materials, including nylon, unreinforced nylon, plastic, various polymers, or any other suitable material having a low coefficient of friction. One suitable material for forming low friction surface 140 may be polytetrafluoroethylene (PTFE), which is sold under the trademark Teflon®.
While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and that all changes and modifications that come within the spirit of the invention are desired to be protected.
This application claims the benefit of U.S. Provisional Application Ser. No. 62/514,313, filed Jun. 2, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4452222 | Quartino | Jun 1984 | A |
4834061 | Chattin | May 1989 | A |
5146908 | Larson | Sep 1992 | A |
5161514 | Cary | Nov 1992 | A |
5392757 | Head | Feb 1995 | A |
5415149 | Derus | May 1995 | A |
5553600 | Miller | Sep 1996 | A |
5651355 | Gallops, Jr. | Jul 1997 | A |
5791324 | Johnson | Aug 1998 | A |
6152124 | Gallops, Jr. | Nov 2000 | A |
6330881 | Pippard | Dec 2001 | B1 |
6532945 | Chattin | Mar 2003 | B1 |
6655371 | Gallops, Jr. | Dec 2003 | B2 |
6708684 | Chattin | Mar 2004 | B2 |
6889679 | Chattin | May 2005 | B2 |
6904900 | Gallops, Jr. | Jun 2005 | B2 |
8307816 | Darlington | Nov 2012 | B2 |
8371283 | Grace | Feb 2013 | B2 |
8424511 | Grace, Jr. | Apr 2013 | B2 |
8616189 | McPherson et al. | Dec 2013 | B2 |
8651097 | Grace, Jr. et al. | Feb 2014 | B2 |
8784628 | Grace, Jr. | Jul 2014 | B2 |
9046317 | McPherson | Jun 2015 | B2 |
9291422 | Gold | Mar 2016 | B1 |
9303946 | McPherson | Apr 2016 | B2 |
9989329 | Kelly | Jun 2018 | B2 |
RE47036 | Batdorf | Sep 2018 | E |
20120204851 | McPherson | Aug 2012 | A1 |
20130061838 | Gordon | Mar 2013 | A1 |
20140283807 | Prater | Sep 2014 | A1 |
20140299116 | Yehle | Oct 2014 | A1 |
20150027425 | Yehle | Jan 2015 | A1 |
20160097612 | Gold et al. | Apr 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20180347934 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62514313 | Jun 2017 | US |