Flexible cable splice

Information

  • Patent Grant
  • 10862289
  • Patent Number
    10,862,289
  • Date Filed
    Thursday, November 2, 2017
    7 years ago
  • Date Issued
    Tuesday, December 8, 2020
    4 years ago
Abstract
A cable splice for overhead power transmission lines includes a flexible housing. A first casing is positioned in the flexible housing. The first casing is configured to receive and retain a first conductor. A second casing is positioned in the flexible housing. The second casing is configured to receive and retain a second conductor. A connecting member is connected to the first casing and the second casing. The first casing is moveable relative to the second casing.
Description
FIELD

Various exemplary embodiments relate to splices for connecting first and second cables, for example utility power transmission lines.


BACKGROUND

Splicing connectors may be used to join a variety of electrical conductors, including high-voltage power lines. Some splicing connectors allow a user to simply input two different conductors into the connector. Such splicing connectors, commonly referred to as automatic splices, may be used by utility linemen to quickly connect lengths of suspended cables during installation or repair of downed power lines.


An automatic splice typically includes a rigid housing having an opening on each axial end for receiving cables. After the cables are inserted, the housing includes clamps for maintaining the cables in a relative position. The automatic splice is then capable of conducting electricity from one cable to the other. Splices can be used to connect ends of cables in overhead distribution and transmission systems.


Typical overhead distribution systems utilize one or more cables or conductors supported by utility poles spanning large distances. Typically more than one cable reel is required during the stringing process, and the ends of the cables are connected by a splice. When running the cables along the poles, the cables are loosely positioned on the poles and then drawn to a certain amount of tension. Stringing blocks are often used to position and align the cables, and then draw the cables to the desired tension.


SUMMARY

According to an exemplary embodiment, a cable splice for overhead power transmission lines includes a flexible housing. A first casing is positioned in the flexible housing. The first casing is configured to receive and retain a first conductor. A second casing is positioned in the flexible housing. The second casing is configured to receive and retain a second conductor. A connecting member is connected to the first casing and the second casing. The first casing is moveable relative to the second casing.


According to another exemplary embodiment, a cable splice for overhead power transmission lines includes a plurality of cables forming a housing. A first casing is positioned in the flexible housing. The first casing is configured to receive and retain a first conductor. A second casing is positioned in the flexible housing. The second casing is configured to receive and retain a second conductor. A connecting member is connected to the first casing and the second casing. The first casing is moveable relative to the second casing.


According to another exemplary embodiment, a cable splice for overhead power transmission lines includes a plurality of cables forming a flexible housing. A first casing is positioned in the flexible housing and has a first interior cavity and a first opening for receiving a first conductor. A first jaw assembly is moveably positioned in the first interior cavity for retaining the first conductor in the first casing. A second casing is positioned in the flexible housing and has a second interior cavity and a second opening for receiving a second conductor. A second jaw assembly is moveably positioned in the second interior cavity for retaining the second conductor in second first casing. A connecting member is connected to the first casing and the second casing. The first casing is moveable relative to the second casing. The connecting member provides an electrical connection between the first conductor and the second conductor.





BRIEF DESCRIPTION OF THE DRAWINGS

The aspects and features of various exemplary embodiments will be more apparent from the description of those exemplary embodiments taken with reference to the accompanying drawings, in which:



FIG. 1 is a perspective view of the exemplary flexible cable splice;



FIG. 2 is a perspective view of the flexible housing of FIG. 1;



FIG. 3 is a side view of the flexible housing of FIG. 2;



FIG. 4 is a perspective view of the coupling of FIG. 1;



FIG. 5 is a perspective view of a ferrule of FIG. 1;



FIG. 6 is an enlarged view of the coupling and cables of FIG. 1;



FIG. 7 is a perspective view of the flexible splice of FIG. 1 with the housing removed; and



FIG. 8 is a sectional view of the first casing and the coupling member of FIG. 7.





DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

In accordance with an exemplary embodiment, a splice 10 includes a flexible housing 12 that contains a first casing 14, a second casing 16, and a connecting member 18 positioned between the first casing 14 and the second casing 16. The first casing 14 is configured to receive and retain a first cable or conductor C1 and the second casing 16 is configured to receive and retain a second cable or conductor C2. The assembled components are flexible, so the first casing 14 is moveable relative to the second casing 16, and the housing 12 is capable of moving with the first and second casings 14, 16. The housing 12 can be resilient, capable of allowing the first and second casings 14, 16 to move, but return to an initial position, for example the aligned position shown in FIG. 1, where the first and second casings 14, 16 are substantially coaxial.


According to the exemplary embodiment shown in FIGS. 1-3, the housing 12 includes a first section 22 containing the first casing 14, a second section 24 containing the second casing 16, and a central section 26 positioned between the first and second sections 22, 24. The central section 26 can narrow or taper from the first and second sections 22, 24 towards the middle of the housing 12. The housing 12 can be formed from or include one or a plurality of cables 20, wound together to provide support for the first and second casing 14, 16. In an exemplary embodiment, the cables are steel cables that help provide strength to the housing 12. Other forms of housing, including different shapes and materials may also be used.


The cables 20 can be formed from multiple strands that are wound along the length of the hosing 12 and through couplings 28 positioned at both ends of the housing 12. As best shown in FIGS. 4 and 6, the exemplary couplings 28 have a substantially cylindrical configuration with a set of outer openings 30 and a central opening 32. The outer openings 30 receive the strands of each cable 20. A ferrule 34 (FIG. 5) can be crimped or otherwise connected to the strands of each cable 20 to keep the ends together and prevent the cables 20 from being pulled through the coupling 28. The central opening 32 allows for passage of a cable C1, C2 or conductor through the coupling 28 and into the first casing 14.



FIGS. 7 and 8 show the first and second casings 14, 16 and the connecting member 18. Each casing includes a substantially tubular member 36 defining an internal cavity and an opening for receiving a cable C1. The tubular member 36 can include a swaged or tapered portion 38 extending toward the opening. End caps 40 extend at least partially into the first and second casings 14, 16, respectively, and retain the connecting member 18. In various exemplary embodiments, the end caps 40 are connected to the first and second casings 14, 16 through crimping, welding, mechanical fasteners, or other suitable method. The connecting member 18 forms a flexible connection between the first and second casings 14, 16. The connecting member 18 can also act as an electrical conductor between the first and second casings 14, 16 providing an electrical connection between the first and second cables C1, C2. In an exemplary embodiment the connecting member is a braided cable.



FIG. 8 shows the interior of the first casing 14. In the exemplary embodiment shown, the interior components of the first and second casings 14, 16 are identical, and only the first casing 14 is described. The first casing 14 includes a jaw assembly 42, a biasing member 44, and a pilot cup 46. In an exemplary embodiment, the jaw assembly 42 includes first and second jaw members (one shown). The jaw members have a front jaw surface, a rear jaw surface, and a jaw body extending therebetween. The jaw body has an arcuate outer surface and an inner surface. At least a portion of the jaw body has a semi-funnel-shape, tapering towards the front jaw surface. This taper is similar to or corresponds to the taper of the inner casing surface, allowing the jaw members to slide within the interior cavity of the casing 14. At least a portion of the jaw body inner surface contains a series of teeth. The teeth may have any shape, pitch, length, width, or spacing. In the exemplary embodiment, the teeth extend from the inner surface at an angle towards the rear jaw surface.


The jaw members include one or more radially extending projections and one or more corresponding openings. The projections and openings may have a variety of sizes or shapes. The projections and openings are staggered, so that a single part may be used for the upper jaw member and the lower jaw member. When placed together, the projections from the upper jaw member will mate with the openings of the lower jaw member and vice versa. This mating relationship couples the upper jaw member to the lower jaw member to prevent one jaw member from moving axially relative to the other jaw, ensuring substantially uniform axial movement between the jaw members. The projections extend radially inwardly and have a length preventing disengagement as the jaw members are moved radially away from one another by being pushed towards the central region, but also prevents the projections from interfering with movement of the jaw members as they are biased towards the opening in the casing.


The biasing member 44 has a first end for contacting the rear jaw surface and a second end for contacting the end cap 40. In the exemplary embodiment shown, the biasing member 44 is a coil spring having coils at each end that are touching or otherwise spaced closer together than the other coils. The biasing member 44 may be other devices or materials, and the outer diameter, wire diameter, pitch, length and material type of the spring may be varied depending on the application.


The pilot cup 46 has a cylindrical outer surface with an open first end and a semi-spherical, closed second end, although a variety of shapes, sizes, and configurations may be used. The pilot cup 46 receives the cable to assist in passing the cable through the jaw assembly.


Other components and configurations of splices or automatic splices can be incorporated into the flexible splice 10 as would be understood by one of ordinary skill in the art.


In operation, the loading positing of the first casing 14 can be with the pilot cup 46 initially positioned in the jaw assembly 42 or the pilot cup 46 connected to the end of the cable C1. When the pilot cup 46 is positioned in the jaw assembly 42, the pilot cup 42 can hold the first and second jaw members apart and the biasing member 44 can be compressed. As a cable C1 is inserted into the casing 14, the cable C1 engages the pilot cup 46, moving it past the jaw assembly 42. When the pilot cup 46 clears the jaw assembly 42, the jaw members are released and are biased toward the front of the casing 14 by the biasing member 44. The jaw assembly 42 then engages the conductor C1 in the terminated position. When the pilot cup 46 is initially connected to the conductor, it can be inserted into the casing 14, pushing the jaw assembly 42 back and open until the pilot cup 46 clears through the center of the jaw assembly 42 and the jaw members are biased forward toward the terminated position.


The flexible splice 10 provides a physical and electrical connection between the two conductors C1, C2. When using stringing blocks to install conductors along a power distribution and transmission lines, the conductor at the outlet is often offset at angle to the conductor at the inlet. A rigid splice often cannot make the required angle transition, causing limitations and complications in installing conductors. The flexible splice 10 is more easily run through a stringing block and capable of making angled transitions between the inlet and the outlet of the stringing block.


The foregoing detailed description of the certain exemplary embodiments has been provided for the purpose of explaining the principles of the invention and its practical application, thereby enabling others skilled in the art to understand the invention for various embodiments and with various modifications as are suited to the particular use contemplated. This description is not necessarily intended to be exhaustive or to limit the invention to the exemplary embodiments disclosed. Any of the embodiments and/or elements disclosed herein may be combined with one another to form various additional embodiments not specifically disclosed. Accordingly, additional embodiments are possible and are intended to be encompassed within this specification and the scope of the appended claims. The specification describes specific examples to accomplish a more general goal that may be accomplished in another way.


As used in this application, the terms “front,” “rear,” “upper,” “lower,” “upwardly,” “downwardly,” and other orientational descriptors are intended to facilitate the description of the exemplary embodiments of the present invention, and are not intended to limit the structure of the exemplary embodiments of the present invention to any particular position or orientation. Terms of degree, such as “substantially” or “approximately” are understood by those of ordinary skill to refer to reasonable ranges outside of the given value, for example, general tolerances associated with manufacturing, assembly, and use of the described embodiments.

Claims
  • 1. A cable splice for overhead power transmission lines comprising: a flexible housing comprising a plurality of cables forming a first section, a second section, and a central section positioned between the first and second sections, wherein the central section is narrower than the first section and the second section;a coupling positioned at a first end of the flexible housing, the coupling having a plurality of openings respectively receiving the plurality of cables;a first casing positioned in the first section of the flexible housing, the first casing configured to receive and retain a first conductor;a first end cap positioned in the flexible housing;a second casing positioned in the second section of the flexible housing, the second casing configured to receive and retain a second conductor;a second end cap positioned in the flexible housing; anda connecting member connected to the first casing and the second casing,wherein the first casing is moveable relative to the second casing, andwherein the first end cap is formed separately from and securely engages both the first casing and the connecting member and the second end cap is formed separately from and securely engages both the second casing and the connecting member.
  • 2. The cable splice of claim 1, wherein the connecting member is flexible.
  • 3. The cable splice of claim 1, wherein the connecting member electrically connects the first casing and the second casing.
  • 4. The cable splice of claim 1, wherein a first jaw assembly and a first biasing member are positioned in the first casing and a second jaw assembly and a second biasing member positioned in the second casing.
  • 5. A cable splice for overhead power transmission lines comprising: a plurality of cables forming a flexible housing including a first section, a second section, and a central section positioned between the first and second sections, wherein the central section is narrower than the first section and the second section;a first casing positioned in the first section of the flexible housing, the first casing configured to receive and retain a first conductor;a first end cap positioned in the flexible housing;a second casing positioned in the second section of the flexible housing, the second casing configured to receive and retain a second conductor;a second end cap positioned in the flexible housing; anda connecting member connected to the first casing and the second casing,wherein the first casing is moveable relative to the second casing, andwherein the first end cap is formed separately from and securely engages both the first casing and the connecting member and the second end cap is formed separately from and securely engages both the second casing and the connecting member.
  • 6. The cable splice of claim 5, wherein the plurality of wound cables form a resilient housing.
  • 7. The cable splice of claim 5, wherein the connecting member is a flexible cable.
  • 8. The cable splice of claim 5, wherein a first jaw assembly and a first biasing member are positioned in the first casing and a second jaw assembly and a second biasing member positioned in the second casing.
  • 9. The cable splice of claim 5, further comprising a coupling positioned at a first end of the flexible housing, the coupling having a plurality of outer openings respectively receiving the plurality of cables.
  • 10. The cable splice of claim 9, wherein the coupling includes a central opening for receiving the first conductor.
  • 11. The cable splice of claim 9, further comprising a ferrule connected to each cable.
  • 12. A cable splice for overhead power transmission lines comprising: a plurality of cables forming a flexible housing including a first section, a second section, and a central section positioned between the first and second sections, wherein the central section is narrower than the first section and the second section;a coupling positioned at a first end of the flexible housing, the coupling having a plurality of outer openings respectively receiving the plurality of cables;a first casing positioned in the first section of the flexible housing and having a first interior cavity and a first opening for receiving a first conductor;a first end cap positioned in the flexible housing;a first jaw assembly moveably positioned in the first interior cavity for retaining the first conductor in the first casing;a second casing positioned in the second section of the flexible housing and having a second interior cavity and a second opening for receiving a second conductor;a second end cap positioned in the flexible housing;a second jaw assembly moveably positioned in the second interior cavity for retaining the second conductor in the second casing;a connecting member connected to the first casing and the second casing,wherein the first casing is moveable relative to the second casing and the connecting member provides an electrical connection between the first conductor and the second conductor, andwherein the first end cap is formed separately from and securely engages both the first casing and the connecting member and the second end cap is formed separately from and securely engages both the second casing and the connecting member.
  • 13. The cable splice of claim 12, wherein the plurality of cables are wound in a spiral configuration.
  • 14. The cable splice of claim 12, wherein a first biasing member is positioned in the first casing to bias the first jaw assembly toward the first opening.
  • 15. The cable splice of claim 12, wherein the connecting member is flexible.
RELATED APPLICATION(S)

This application is based on provisional application Ser. No. 62/417,020, filed Nov. 3, 2016, the disclosure of which is incorporated herein by reference in its entirety and to which priority is claimed.

US Referenced Citations (95)
Number Name Date Kind
649542 Nieman May 1900 A
1997649 Ohlund Apr 1933 A
2063718 Berndt Dec 1936 A
2138913 Fotsch Dec 1936 A
2128832 Lusher Aug 1938 A
2144050 Fotsch Jan 1939 A
2166458 Berndt Jul 1939 A
2463145 Buchanan Mar 1940 A
2199283 Rogoff Apr 1940 A
2215072 Becker Sep 1940 A
2217978 Buchanan Oct 1940 A
2521722 Hubbell et al. Sep 1950 A
2554387 Saul May 1951 A
2572940 Lockhart Oct 1951 A
2738480 Hubbard Mar 1956 A
2740178 Kellems Apr 1956 A
2859424 Berndt Nov 1958 A
2966653 Jugle Dec 1960 A
3072989 Jugle et al. Jan 1963 A
3136844 Petersen Jun 1964 A
3183658 Peterson May 1965 A
3205300 Becker Sep 1965 A
3241204 Baricevic et al. Mar 1966 A
3315457 Stirn Apr 1967 A
3345454 Mixon, Jr. Oct 1967 A
3487160 Johnsen Dec 1969 A
3681512 Werner et al. Aug 1972 A
3689866 Kelley Sep 1972 A
3852850 Filhaber Dec 1974 A
3859455 Gommans et al. Jan 1975 A
4084067 Gillemot Apr 1978 A
4192964 Sacks Mar 1980 A
4252992 Cherry et al. Feb 1981 A
4292732 Tucci Oct 1981 A
4362352 Hawkins Dec 1982 A
4486620 Ball et al. Dec 1984 A
4496795 Konnik Jan 1985 A
4673233 Hertelendy Jun 1987 A
4698031 Dawson Oct 1987 A
4810829 Rutenbeck et al. Mar 1989 A
4985598 Bubica et al. Jan 1991 A
5015023 Hall May 1991 A
5039193 Snow Aug 1991 A
5247135 Rebers et al. Sep 1993 A
5278353 Buchholz Jan 1994 A
5322973 Dagan Jun 1994 A
5334056 Hlinsky Aug 1994 A
5369849 DeFrance Dec 1994 A
5401175 Guimond Mar 1995 A
5445533 Roscizewski et al. Aug 1995 A
5486388 Portas Jan 1996 A
5547404 Nellis, Jr. et al. Aug 1996 A
5600096 Cherry Feb 1997 A
5683273 Garver et al. Nov 1997 A
5980284 Ho et al. Nov 1999 A
6206736 DeFrance et al. Mar 2001 B1
6247943 Moga et al. Jun 2001 B1
6359228 Strause et al. Mar 2002 B1
6773311 Mello et al. Aug 2004 B2
6796854 Mello et al. Sep 2004 B2
7160142 Hughes et al. Jan 2007 B2
7219399 Tamm et al. May 2007 B2
7256348 Endacott Aug 2007 B1
7361045 Vinciguerra et al. Apr 2008 B1
7799996 Tamm et al. Sep 2010 B2
7972168 Su Jul 2011 B2
7988484 Jacoby Aug 2011 B1
8069521 Beck et al. Dec 2011 B2
8221155 Luzzi Jul 2012 B2
8672699 Gaertner Mar 2014 B2
8674230 Hoxha Mar 2014 B2
8727819 Giefers et al. May 2014 B2
9054445 O'Sullivan et al. Jun 2015 B2
9054446 Sullivan Jun 2015 B2
9450316 Diop et al. Sep 2016 B2
9490577 Diop Nov 2016 B2
20060108140 Wiley May 2006 A1
20070074378 Tamm Apr 2007 A1
20070238336 Frederiksen et al. Oct 2007 A1
20090215307 Hughes Aug 2009 A1
20090298358 Tamm Dec 2009 A1
20100193235 Taylor et al. Aug 2010 A1
20110002795 Brookbank Jan 2011 A1
20110034051 Kumar Feb 2011 A1
20110183539 Gaertner Jul 2011 A1
20120028498 Na Feb 2012 A1
20120217062 Cawood et al. Aug 2012 A1
20130011102 Rinzler Jan 2013 A1
20130081852 Cawood Apr 2013 A1
20130217250 Melni Aug 2013 A1
20130310745 Latham Nov 2013 A1
20140273575 O'Sullivan Sep 2014 A1
20140273609 Diop et al. Sep 2014 A1
20150107875 Diop et al. Apr 2015 A1
20160006139 Diop et al. Jan 2016 A1
Foreign Referenced Citations (5)
Number Date Country
H0582182 Apr 1993 JP
H07326399 Dec 1995 JP
2003346933 Dec 2003 JP
2006332012 Dec 2006 JP
2010114067 Oct 2010 WO
Non-Patent Literature Citations (1)
Entry
PCT/US2017/059690 International Search Report and Written Opinion dated Apr. 13, 2018 (11 pages).
Related Publications (1)
Number Date Country
20180123335 A1 May 2018 US
Provisional Applications (1)
Number Date Country
62417020 Nov 2016 US