Flexible canopy valve repair systems and methods of use

Information

  • Patent Grant
  • 11701228
  • Patent Number
    11,701,228
  • Date Filed
    Friday, June 4, 2021
    2 years ago
  • Date Issued
    Tuesday, July 18, 2023
    10 months ago
Abstract
A system for treating valvular regurgitation in a heart valve includes a flexible canopy and an elongated tether including an elastic portion and an inelastic portion. When the system is in a deployed configuration, a proximal end of the flexible canopy is coupled to an annulus of the heart valve and a distal end of the elongated tether is coupled to a ventricle. The flexible canopy is configured to overlay a first native leaflet of the heart valve, and tension on the elongated tether is applied and/or adjusted to prevent the first leaflet from prolapsing, to maximize coaptation of the flexible canopy with a second native leaflet of the heart valve, and to minimize regurgitation of the heart valve.
Description
FIELD OF THE INVENTION

The present technology relates generally to a system for repairing a valve suffering from regurgitation, and associated systems and methods.


BACKGROUND OF THE INVENTION

The human heart is a four chambered, muscular organ that provides blood circulation through the body during a cardiac cycle. The four main chambers include the right atrium and right ventricle which supplies the pulmonary circulation, and the left atrium and left ventricle which supplies oxygenated blood received from the lungs to the remaining body. To ensure that blood flows in one direction through the heart, atrioventricular valves (tricuspid and mitral valves) are present between the junctions of the atrium and the ventricles, and semi-lunar valves (pulmonary valve and aortic valve) govern the exits of the ventricles leading to the lungs and the rest of the body. These valves contain leaflets or cusps that open and shut in response to blood pressure changes caused by the contraction and relaxation of the heart chambers. The leaflets move apart from each other to open and allow blood to flow downstream of the valve, and coapt to close and prevent backflow or regurgitation in an upstream manner.


The mitral valve, also known as the bicuspid or left atrioventricular valve, is a dual flap valve located between the left atrium and the left ventricle. The mitral valve serves to direct oxygenated blood from the lungs through the left side of the heart and into the aorta for distribution to the body. As with other valves of the heart, the mitral valve is a passive structure in that does not itself expend any energy and does not perform any active contractile function. The mitral valve includes two moveable leaflets, an anterior leaflet and a posterior leaflet, that each open and close in response to differential pressures on either side of the valve. Ideally, the leaflets move apart from each other when the valve is in an open configuration, and meet or “coapt” when the valve is in a closed configuration.


Diseases associated with heart valves, such as those caused by damage or a defect, can include stenosis and valvular insufficiency or regurgitation. These diseases can occur individually or concomitantly in the same valve. Valvular insufficiency or regurgitation occurs when the valve does not close completely, allowing blood to flow backwards, thereby causing the heart to be less efficient. A diseased or damaged valve, which can be congenital, age-related, drug-induced, or in some instances, caused by infection, can result in an enlarged, thickened heart that loses elasticity and efficiency. Some symptoms of heart valve diseases can include weakness, shortness of breath, dizziness, fainting, palpitations, anemia and edema, and blood clots which can increase the likelihood of stroke or pulmonary embolism. Symptoms can often be severe enough to be debilitating and/or life threatening.


In particular, a large portion or percentage of degenerative regurgitation in a mitral valve is caused by a prolapsed posterior mitral leaflet. This can be caused by weakening or separation of the chordae attached to the posterior leaflet. In such cases, when the mitral valve is in the closed configuration, the posterior mitral leaflet billows or bulges like a sail or a parachute into the left atrium, causing the posterior leaflet to not fully coapt with the anterior mitral leaflet.


Currently, treatment options for the repair of a prolapsing leaflet includes re-sectioning of the prolapsed tissue, chordae repair, foldoplasty, annuloplasty, placement of a new valve, or attachment of a clip to couple a free end of the prolapsing leaflet to a free end of a non-prolapsing leaflet. However, these solutions have significant drawbacks in terms of efficacy, safety or likelihood of complications, invasiveness, reduction in the cross-sectional area for blood flow through the valve, and the availability of the valve for future treatments.


Accordingly, there is a need for systems that can repair a valve suffering from regurgitation due to a prolapsing leaflet more easily, with greater efficacy and fewer complications. Further, there is a need for systems that can repair a valve suffering from regurgitation due to a prolapsing leaflet while leaving the valve available for future treatments.


BRIEF SUMMARY OF THE INVENTION

Embodiments hereof are directed to a system for treating a valvular regurgitation in a heart valve. The system includes a flexible canopy and an elongated tether. A proximal end of the elongated tether is attached to a distal end of the flexible canopy. The flexible canopy includes a first surface and a second surface opposite the first surface. The elongated tether is configured to be placed under tension in situ and includes an inelastic portion and an elastic portion that is at least as long as the inelastic portion. When the system is in a deployed configuration, a proximal end of the flexible canopy is anchored to an annulus of a heart valve and a distal end of the elongated tether is anchored to tissue of a ventricle such that the first surface of the flexible canopy overlays an underlying first surface of a first leaflet of the heart valve. The elongated tether is placed under tension such that the system is configured to prevent the first leaflet of the heart valve from prolapsing, and to permit a portion of the second surface of the flexible canopy to coapt with at least an opposing mating portion of a second leaflet of the heart valve.


In another embodiment hereof, the system includes a flexible canopy and an elongated tether. A proximal end of the elongated tether is attached to a distal end of the flexible canopy. The flexible canopy includes a first surface and a second surface opposite the first surface. The flexible canopy is unsupported and does not include a frame attached thereto. The elongated tether is configured to be placed under tension in situ and includes an inelastic portion and an elastic portion. When the system is in a deployed configuration, a proximal end of the flexible canopy is anchored to an annulus of a heart valve and a distal end of the elongated tether is anchored to tissue of a ventricle such that the first surface of the flexible canopy overlays an underlying first surface of a first leaflet of the heart valve. The elongated tether is placed under tension such that the system is configured to prevent the first leaflet of the heart valve from prolapsing, and to permit a portion of the second surface of the flexible canopy to coapt with at least an opposing mating portion of a second leaflet of the heart valve.


Embodiments hereof are further directed to a method of treating a valvular regurgitation. The method includes percutaneously delivering a system in a delivery configuration to a heart valve. The system includes a flexible canopy and an elongated tether attached to a distal end of the flexible canopy. The flexible canopy is unsupported and does not include a frame coupled thereto and the elongated tether includes an inelastic portion and an elastic portion that is at least as long as the inelastic portion. At least one proximal anchor is embedded into an annulus of the heart valve. A proximal end of the flexible canopy is coupled to the at least one proximal anchor. A distal anchor is embedded into a ventricle adjacent to the heart valve. A distal end of the elongated tether is coupled to the distal anchor. A tension force is applied on the flexible canopy such that a first surface of the flexible canopy overlays an underlying first surface of a first leaflet of the heart valve. The heart valve is checked for regurgitation. The tension force on the flexible canopy is adjusted to minimize valvular regurgitation.





BRIEF DESCRIPTION OF DRAWINGS

The foregoing and other features and aspects of the present technology can be better understood from the following description of embodiments and as illustrated in the accompanying drawings. The accompanying drawings, which are incorporated herein and form a part of the specification, further serve to illustrate the principles of the present technology. The components in the drawings are not necessarily to scale.



FIG. 1 is a schematic sectional illustration of a mammalian heart having native valve structures.



FIG. 2A is a schematic sectional illustration of a left ventricle of a mammalian heart showing anatomical structures and a native mitral valve.



FIG. 2B is a schematic sectional illustration of the left ventricle of a heart having a prolapsed mitral valve in which the leaflets do not sufficiently coapt and which is suitable for repair with a system in accordance with embodiments hereof.



FIG. 2C is a schematic sectional illustration of the left ventricle of FIG. 2B as viewed from a different angle.



FIG. 2D is a top view illustration of the prolapsed mitral valve of FIG. 2B, wherein the mitral valve is in an open configuration.



FIG. 3A is a perspective illustration of a system for treating heart valvular regurgitation in accordance with an embodiment hereof.



FIG. 3B is a perspective illustration of the system of FIG. 3A and an anterior leaflet of a native mitral valve.



FIG. 4 is a schematic sectional illustration of a heart, wherein the system of FIG. 3A is implanted within the heart in a deployed configuration and a native mitral valve of the heart is in the open configuration.



FIG. 5 is a schematic sectional illustration of the heart, wherein the system of FIG. 3A is implanted within the heart in a deployed configuration and the native mitral valve of the heart in a closed configuration.



FIG. 6 is a top view illustration of the mitral valve of FIG. 5, wherein the mitral valve is in the closed configuration.



FIG. 7A is a perspective illustration of a system for treating heart valvular regurgitation in accordance with another embodiment hereof.



FIG. 7B is a perspective illustration of a system for treating heart valvular regurgitation in accordance with yet another embodiment hereof.



FIG. 8 is a sectional cut-away illustration of a heart illustrating a method step of using the system of FIG. 3A to repair a prolapsed posterior leaflet of a native mitral valve using a transseptal approach in accordance with an embodiment hereof, wherein the system of FIG. 3A is shown in the delivery configuration within a delivery catheter positioned within the left atrium of the heart.



FIG. 9 is a sectional cut-away illustration of the heart illustrating a method step of using the system of FIG. 3A to repair the prolapsed posterior leaflet of the native mitral valve, wherein a plurality of proximal anchors is deployed to engage tissue at the annulus of the native mitral valve.



FIG. 10 is a sectional cut-away illustration of the heart illustrating a method step of using the system of FIG. 3A to repair the prolapsed posterior leaflet of the native mitral valve, wherein a proximal end of a flexible canopy of the system is coupled to the plurality of proximal anchors at the annulus of the native mitral valve.



FIG. 11 is a sectional cut-away illustration of the heart illustrating a method step of using the system of FIG. 3A to repair the prolapsed posterior leaflet of the native mitral valve, wherein a distal anchor is deployed to engage tissue in a left ventricle of the heart.



FIG. 12 is a sectional cut-away illustration of the heart illustrating a method step of using the system of FIG. 3A to repair the prolapsed posterior leaflet of the native mitral valve, wherein a distal end of an elongated tether of the system is coupled to the distal anchor in the left ventricle.



FIG. 13 is a sectional cut-away illustration of the heart illustrating a method step of using the system of FIG. 3A to repair the prolapsed posterior leaflet of the native mitral valve, wherein a tension of the elongated member is applied such that the flexible canopy overlays the posterior leaflet of the native mitral valve.



FIG. 14 is a sectional cut-away illustration of the heart illustrating a method step of using the system of FIG. 3A to repair the prolapsed posterior leaflet of the mitral valve, wherein the tension of the elongated tether is adjusted to minimize regurgitation at the mitral valve.





DETAILED DESCRIPTION OF THE INVENTION

Specific embodiments of the present invention are now described with reference to the figures, wherein like reference numbers indicate identical or functionally similar elements. The terms “distal” and “proximal”, when used in the following description to refer to a delivery device, delivery system, or delivery catheter are with respect to a position or direction relative to the treating clinician. Thus, “distal” and “distally” refer to positions distant from, or in a direction away from the treating clinician, and the terms “proximal” and “proximally” refer to positions near, or in a direction toward the clinician. The terms “distal” and “proximal”, when used in the following description to refer to a system or a device to be implanted into a vessel, such as a system for treating heart valvular regurgitation, are used with reference to the direction of blood flow. Thus, “distal” and “distally” refer to positions in a downstream direction with respect to the direction of blood flow, and the terms “proximal” and “proximally” refer to positions in an upstream direction with respect to the direction of blood flow.


The following detailed description is merely exemplary in nature and is not intended to limit the present technology or the application and uses of the present technology. Although the description of embodiments hereof is in the context of treatment of heart valvular regurgitation and particularly in the context of treatment of regurgitation of the mitral valve, the present technology may also be used in any other body passageways where it is deemed useful. Furthermore, there is no intention to be bound by any expressed or implied theory presented in the preceding technical field, background, brief summary or the following detailed description.



FIGS. 1-2D will now be described to provide contextual information on valve regurgitation. FIG. 1 is a schematic sectional illustration of a mammalian heart HE that depicts the four heart chambers (right atrium RA, right ventricle RV, left atrium LA, left ventricle LV) and native valve structures (tricuspid valve TV, mitral valve MV, pulmonary valve PV, aortic valve AV). FIG. 2A is a schematic sectional illustration of a left ventricle LV of a mammalian heart HE showing anatomical structures and a native mitral valve MV. Referring to FIGS. 1 and 2A together, the heart HE comprises the left atrium LA that receives oxygenated blood from the lungs via the pulmonary veins. The left atrium LA pumps the oxygenated blood through the mitral valve MV and into the left ventricle LV during ventricular diastole. The left ventricle LV contracts during systole and blood flows outwardly through the aortic valve AV, into the aorta and to the remainder of the body.


In a healthy heart, the mitral valve MV includes an open configuration and a closed configuration. When the mitral valve MV is in the open configuration, an anterior leaflet AL and a posterior leaflet PL do not coapt, permitting blood to flow from the right atrium RA to the left ventricle LV. When the mitral valve is in the closed configuration, as shown in FIG. 2A, the anterior and posterior leaflets AL, PL of the native mitral valve MV meet evenly at the free edges or “coapt” to close and prevent back flow of blood into the left atrium LA during contraction of the left ventricle LV. The tissue of the anterior and posterior leaflets AL, PL attach to the surrounding heart structure via a dense fibrous ring of connective tissue called an annulus AN which is distinct from both the tissue of the anterior and posterior leaflets AL, PL as well as the adjoining muscular tissue of the heart wall. In general, the connective tissue at the annulus AN is more fibrous, tougher and stronger than leaflet tissue. The flexible tissue of the anterior and posterior leaflets AL, PL of the native mitral valve MV are connected to papillary muscles PM, which extend upwardly from the lower wall of the left ventricle LV and the interventricular septum IVS, via branching tendons called chordae tendinae CT.


In a heart HE having a mitral valve MV experiencing valvular regurgitation due to a prolapsing first or posterior leaflet PL and a second or anterior leaflet AL, the respective edges of the posterior leaflet PL and the anterior leaflet AL do not sufficiently coapt or meet, as shown in FIGS. 2B-2D and leakage from the left ventricle LV into the left atrium LA will occur through a gap GP. Several structural defects can cause the mitral leaflets LF to prolapse, and subsequent regurgitation to occur, including ruptured chordae tendinae CT, impairment of papillary muscles PM (e.g., due to ischemic heart disease), and enlargement of the heart and/or mitral valve annulus AN (e.g., cardiomyopathy).


Embodiments of systems and associated methods in accordance with the present technology are described with reference to FIGS. 3A-14. It will be appreciated that specific elements, substructures, uses, advantages, and/or other aspects of the embodiments described herein and with reference to FIGS. 3A-14 can be suitably interchanged, substituted or otherwise configured with one another in accordance with additional embodiments of the present technology.


Provided herein are systems and methods suitable for repairing a prolapsing leaflet of a heart valve to reduce or eliminate valvular regurgitation. More specifically, in embodiments hereof, a flexible canopy of the system is placed over an existing native leaflet of the heart valve and tensioned with an elongated tether to prevent leaflet prolapse and subsequent regurgitation resulting from the prolapsing leaflet. The system is adjustable via the elongated tether to set the system to minimize or eliminate valvular regurgitation. Further, the system may be readjusted during the initial procedure or in a subsequent procedure or procedures to account for changes in the native anatomy over time. The systems described herein do not reduce or alter the cross-sectional area of the native mitral valve and thus reduced blood flow through the heart valve is avoided and easy access to the heart valve is still permitted for future therapies and treatments.


Turning now to FIG. 3A, FIG. 3A is a perspective view of a system 100 for treating valvular regurgitation in a heart valve due to a prolapsing leaflet and configured in accordance with an embodiment hereof. The system 100 includes a flexible canopy 102 and an elongated tether 104. Further, the system 100 includes a delivery configuration, wherein the system is compressed for percutaneous delivery within a delivery catheter to a desired treatment location, and a deployed configuration, which is shown in FIG. 3A. When the system 100 is in the delivery configuration, the flexible canopy 102 can be folded, rolled, or otherwise compressed. The method of compressing the flexible canopy 102 is selected based upon a variety of characteristics including, but not limited to the order or sequence of anchor fixation or deployment.


As shown in FIG. 3A, the flexible canopy 102 is formed of a flexible material and includes a proximal end 106, a distal end 108 opposite the proximal end 106, an underside or first surface 114 and a top or second surface 116 opposite the first surface 114. The flexible canopy 102 may be formed of materials which will bond to the prolapsing leaflet via growth such as, but not limited to Dacron®, pericardial tissue, or other suitable materials. The proximal end 106 of the flexible canopy 102 is configured to be anchored in situ at or on an annulus of the heart valve. As used herein, “at or on” an annulus means at or on a level of a plane of the annulus of the native heart valve, including disposition at or on a level of an upper surface of the annulus or other superior levels of the valve. Further, when the system 100 is in the deployed configuration, the flexible canopy 102 is configured to overlay an underlying or concealed portion of a prolapsing leaflet of the native heart valve such that the first surface 114 abuts against or contacts the underlying portion of the prolapsing leaflet, as described in more detail below. The flexible nature of the flexible canopy 102 permits the flexible canopy 102 to conform to the shape of the native prolapsing leaflet as best shown in FIG. 3B. FIG. 3B shows the system 100 with the flexible canopy 102 thereof overlaying and conforming to a native posterior leaflet PL, with the flexible canopy 102 coapting with a native anterior leaflet AL of a native heart valve. As used herein, the term “conform” means that the flexible canopy 102 assumes the same shape, outline, or contour of the underlying anatomy of the native prolapsing leaflet such that the flexible canopy 102 maintains consistent and close contact with the native prolapsing leaflet adjacent thereto. Thus, while the flexible canopy 102 of FIG. 3A is shown with a particular shape, this is by way of example and not limitation, and it will be understood that the flexible canopy 102 assumes or conforms to the shape of the native prolapsing leaflet. Such conformability is required in order for the system 100, and more particularly the flexible canopy 102 to prevent the native leaflet from prolapsing when the system 100 is in the deployed configuration as described in greater detail below. Over time, due to the material of the flexible canopy 102, the first surface 114 of the flexible canopy 102 bonds or fuses to the underlying first surface of the prolapsing leaflet.


In the embodiment of FIG. 3A, the first surface 114 of the flexible canopy 102 includes a plurality of micro-tines or micro-barbs 110 configured to aid in coupling the first surface 114 of the flexible canopy 102 to the underlying first surface of the native prolapsing leaflet. While shown in FIG. 3A with three (3) micro-barbs 110, this is by way of example and not limitation and more or fewer micro-barbs 110 may be used. In an embodiment, the micro-barbs 110 may have a diameter in a range of between about 0.005 inches and about 0.010 inches, and the length of the micro-barbs 110 may be in a range of between about 0.010 inches and about 0.100 inches. The micro-barbs 110 may be shaped to embed into an adjacent surface such as, but not limited to, a wedged shape where the tip of the wedge comes in contact with the adjacent surface. In another embodiment, the micro-barbs 110 may be a series of metallic wires.


In the embodiment depicted in FIGS. 3A and 3B, the flexible canopy 102 is unsupported. Stated another way, in the embodiment depicted in FIGS. 3A and 3B, the flexible canopy 102 does not include a support frame and consists only of the flexible material that has the first surface 114 and the opposing second surface 116. As used herein, “unsupported” means that the flexible canopy has no radial or longitudinal support along its length and is not attached to a scaffold or frame structure. Due to the unsupported nature thereof, the flexible canopy 102 is permitted to conform to the underlying leaflet structure and further is non-traumatic to the surrounding native anatomy.


The size and perimeter of the flexible canopy 102 may be selected based upon the desired amount of leaflet coverage, the shape of the native anatomy, and/or desired anchoring positions. As best shown in FIG. 3B, in an embodiment hereof, the flexible canopy 102 has an oblong shape and is configured to overlay the prolapsing leaflet of the native heart valve such that the first surface 114 of the flexible canopy is in contact with substantially the entire underlying surface (i.e., at least 90%) of the prolapsing leaflet of the native heart valve. In another embodiment hereof, the flexible canopy 102 is configured to overlay the prolapsing leaflet of the native heart valve such that the first surface 114 of the flexible canopy is in contact with between forty and ninety percent (40-90%) of the underlying surface of the prolapsing leaflet of the native heart valve. In addition, while the flexible canopy 102 of FIGS. 3A and 3B is shown with a particular length that extends distally a particular distance, this is by way of example and not limitation, and it will be understood that other lengths that are suitable to treat valvular regurgitation may be used. More particularly, as best shown in FIG. 3B, in an embodiment the flexible canopy 102 extends distally beyond a distal end of the native posterior leaflet PL. However, in an alternative embodiment, the flexible canopy 102 does not extend beyond a prolapsing portion of the posterior leaflet PL. It will be understood that the shape and size of the flexible canopy 102 may assume any and all possible permutations including, but not limited to the flexible canopy 102 spanning most of the native prolapsing leaflet, spanning just past the prolapsing portion of the native prolapsing leaflet or any other configurations suitable for the purposes described herein.


The elongated tether 104 will now be described in more detail with reference to FIG. 3A. The elongated tether 104 has a first length L1 extending from a proximal end 120 thereof, which is attached to the distal end 108 of the flexible canopy 102, to a distal end 122 thereof. The proximal end 120 of the elongated tether 104 may be coupled to the distal end 108 of the flexible canopy 102 by methods including but not limited to adhesives, tying, sutures, mechanical devices, fusing, or any other method suitable for the purposes described herein. The elongated tether 104 includes an elastic portion 124 coupled to an inelastic portion 126. The elastic portion 124 is an elongate member having elastic qualities. As used herein, “elastic” means that the elongate member returns or is able to resume its original length or shape after distortion. The elastic portion 124 may be formed of elastic materials such as, but not limited to prosthetic chordae materials such as silicone, gore, Gore-tex®, or any other suitable material. When the system 100 is in the deployed configuration in situ, the elastic portion 124 is configured to allow for dynamic movement of the flexible canopy 102. The inelastic portion 126 is an elongate member having inelastic qualities. As used herein, “inelastic” means that the elongate member 126 is not elastic and cannot be stretched. The inelastic portion 126 may be formed of inelastic materials such as, but not limited to a monofilament or plastic suture materials such as polypropylene, metal alloys such as stainless steel, titanium, or nickel-titanium alloys (i.e. NITINOL), or any other suitable material.


The elongated tether 104 is continuous or stated another way, the elastic portion 124 and the inelastic portion 126 collectively form the elongated tether 104. The elastic portion 124 includes a proximal end 128 and a distal end 130, while the inelastic portion 126 includes a proximal end 132 and a distal end 134. In the embodiment of FIGS. 3-6, the elastic portion 124 is disposed proximal of the inelastic portion 126. More specifically, the proximal end 128 of the elastic portion 124 is coupled to the distal end 108 of the flexible canopy 102 and the distal end 130 of the elastic portion 124 is coupled to the proximal end 132 of the inelastic portion 126. The proximal end 132 of the inelastic portion 126 may be coupled to the distal end 130 of the elastic portion 124 by methods including, but not limited to adhesives, tying, sutures, mechanical devices, fusing, or any other method suitable for the purposes described herein. The ratio of the elastic portion 124 to the inelastic portion 126 with reference to the first length L1 of the elongated tether 104 is selected based on a variety of characteristics including, but not limited to the native valve location, the native anatomy, and the characteristics and geometry of the system 100. In an embodiment hereof, as shown in FIGS. 3A and 3B, the elastic portion 124 is longer than the inelastic portion 126 to ensure that dynamic movement of the flexible canopy 102 is permitted in situ. For example, the ratio of the elastic portion 124 to the inelastic portion 126 of the elongated tether 104 may be 50/50, 60/40, 70/30, or other ratio found suitable for repairing valvular regurgitation.


The distal end 122 of the elongated tether 104 is coupled to a distal anchor (not shown in FIG. 3A) which is anchored in a ventricle adjacent the prolapsing valve. The elongated tether 104 is configured to be placed into tension when the system 100 is in the deployed configuration and implanted in situ, as described in more detail below. When placed into tension, the elongated tether 104 pulls on the distal end 108 of the flexible canopy 102 in a distal direction as indicated by a directional arrow 150. Stated another way, when the elongated tether 104 is placed into tension during implantation, the elongated tether 104 places the flexible canopy 102 into tension. Further, the tension on the elongated tether 104 is configured to be adjustable in situ to adjust or tune the curvature of the flexible canopy 102 and/or the angle at which the flexible canopy 102 coapts with the non-prolapsing leaflet or leaflets of the heart valve to minimize or reduce regurgitation. When the tension applied to the elongated tether 104 is increased, the elastic portion 124 of the elongated tether 104 stretches or elongates and the first length L1 of the elongated tether 104 relatively increases. Conversely, when the tension applied to the elongated tether 104 is decreased, the elastic portion 124 of the elongated tether 104 shortens and the first length L1 of the elongated tether 104 relatively decreases. Devices and methods for placing the elongated tether 104 into tension will be discussed in more detail with respect to FIG. 4 below.


The interaction of the components of the system 100 will now be described with reference to FIGS. 4-6. FIGS. 4 and 5 are schematic sectional illustrations of the system 100 in a deployed configuration implanted within a heart HE, with FIG. 4 illustrating a native mitral valve MV of the heart in an open configuration and FIG. 5 illustrating the native mitral valve MV of the heart HE in a closed configuration. FIG. 6 is a top view illustration of the native mitral valve MV of the heart HE in the closed configuration. Within FIGS. 4-6, the direction of blood flow is indicated by arrows BF. The system 100 is configured to repair a prolapsing posterior leaflet PL of the mitral valve MV. More particularly, when the system 100 is in the deployed configuration and implanted within the heart HE, the proximal end 106 of the flexible canopy 102 is anchored or coupled to an annulus AN of the mitral valve MV by at least one proximal anchor 136. The first surface 114 of the flexible canopy 102 overlays and is in contact with an underlying first surface of the first or posterior leaflet PL of the mitral valve MV. The elongated tether 104 extends from the distal end 108 of the flexible canopy 102 to a distal anchor 138 in the left ventricle LV.


The proximal and distal anchors 136, 138 may be of any anchor suitable for embedding into the tissue of the annulus AN and the left ventricle LV, respectively, including but limited to helical screws or anchors, barbs, or clips. In the embodiment illustrated in FIGS. 4 and 5, each of the proximal anchors 136 and the distal anchor 138 are shown as helical screws or anchors. Each helical anchor 136, 138 is rotatable by a corresponding releasable shaft of a delivery catheter to embed the respective helical anchor in myocardial tissue. For example, and not by way of limitation, each of the proximal and distal anchors 136, 138 may be an anchor as described in U.S. Pat. No. 3,974,834 to Kane or U.S. Pat. No. 4,046,151 to Rose, each of which is assigned to the same assignee of the present invention and each of which is hereby incorporated by reference in its entirety herein. While described herein as helical anchors 136, 138, this is by way of example and not limitation and the shape of the proximal and distal anchors 136, 138 may have other shapes and other methods for delivery. For example, and not by way of limitation, the proximal and/or distal anchors 136, 138 may be an anchor as described in U.S. Pat. No. 4,341,226 to Peters or U.S. Pat. No. 9,775,982 to Grubac et al., each of which is assigned to the same assignee of the present invention and each of which is hereby incorporated by reference in its entirety herein.


As described above, when the system 100 is in the deployed configuration and implanted in situ as shown in FIG. 4, the elongated tether 104 is placed into tension in order to properly position the flexible canopy 102 to overlay the underlying first surface of the first or posterior leaflet PL of the mitral valve MV. In an embodiment hereof, the distal end 122 of the elongated tether 104 is pre-attached to the distal anchor 138 and the elongated tether 104 is placed into tension by attaching the distal anchor 138 to the left ventricle LV in such a way that provides tension to the elongated tether 104. More particularly, tension is provided to the elongated tether 104 by varying the amount that the distal anchor 138 is advanced or embedded into a wall of the left ventricle LV. For example, when the distal anchor 138 is a helical screw as shown, the distal anchor 138 may be screwed into the wall of the left ventricle LV a greater amount or distance to increase the tension applied to the elongated tether 104. Conversely, the distal anchor 138 may be unscrewed to decrease the tension applied to the elongated tether 104, if desired. In another embodiment hereof, the distal end 122 of the elongated tether 104 is pre-attached to the distal anchor 138, and the elongated tether 104 is placed into tension by varying the angle at which the elongated tether 104 extends from the flexible canopy 102. More particularly, the location of the distal anchor 138 may be moved to increase or decrease the angle at which the elongated tether 104 extends from the flexible canopy 102. For example, the location of the distal anchor 138 may be moved towards the apex AP of the left ventricle LV to increase the tension applied to the elongated tether 104. Conversely, the location of the distal anchor 138 may be moved towards the interventricular septum IVS of the left ventricle LV to decrease the tension applied to the elongated tether 104.


In another embodiment hereof, the elongated tether 104 is configured to be placed into tension via a tensioning device or tensioner (now shown). For example, a tensioning device as described in U.S. Pat. No. 9,452,048 to O'Bierne et al., assigned to the same assignee of the present invention and which is hereby incorporated by reference in its entirety herein, may be modified and utilized as a tensioning device or tensioner. For example, the elongated tether 104 may initially be slidably coupled to the distal anchor 138 via an integral loop of the elongated tether 104 such that a free end of the elongated tether 104 extends proximally through a delivery catheter and is accessible to the physician. After the distal anchor 138 is secured to the wall of the ventricle, the physician may pull on the accessible free end of the elongated tether 104 to effectively decrease the first length L1 of the elongated tether 104 in situ and further effectively increase the tension placed on the elongated tether 104. Conversely, the physician may release or push the free end of the elongated tether 104 to effectively increase the first length L1 of the elongated tether 104 in situ and further effectively decrease the tension placed the elongated tether 104. Once the tension is optimized, a locking mechanism as described in U.S. Pat. No. 9,452,048 to O'Bierne et al., previously incorporated by reference above, may be slid or advanced over the free end of the elongated tether 104 and through the delivery catheter until the locking mechanism abuts against the distal anchor 138 and thereby secures the position of the elongated tether 104 being placed under the desired amount of tension. Any excess length of the elongated tether 104, i.e., the length of tether extending from the locking mechanism to the free end extending proximally back to the physician, may be cut and removed from the patient. A tensioning device has been described herein by way of example and not limitation. It will be understood that the tensioning device may be any suitable device configured to permit the elongated tether 104 to be placed into tension, and more specifically to adjust or change the first length L1 of the elongated tether 104 to increase or decrease the amount of tension placed onto the elongated tether 104 as described above.


Regardless of which method or device is used to place the elongated tether 104 into tension, the first length L1 of the elongated tether 104 is varied during adjustment of the tension placed on the elongated tether 104. Accordingly, when the first length L1 of the elongated tether 104 is reduced to increase the tension placed on the elongated tether 104, the elastic portion 124 thereof is stretched. Because of the desire of the elastic portion 124 to return to its resting shape or length, the elastic portion 124 is placed into spring tension. This spring tension is transferred to adjacent coupled components as a tension force. More precisely, the spring tension pulls on the proximal end 132 of the inelastic portion 126 and is transferred through the inelastic portion 126 to the distal end 122 of the elongated tether 104 anchored to the left ventricle LV by the distal anchor 138 with a first tension force represented by a directional arrow TF1 illustrated in FIG. 5. Further, the spring tension pulls on the distal end 108 of the flexible canopy 102 and is transferred through the flexible canopy 102 to the proximal end 106 of the flexible canopy 102 anchored at the annulus AN by the at least one proximal anchor 136 with a second tension force represented by a directional arrow TF2 illustrated in FIG. 5. For the purposes described herein, the distal anchor 138 and the at least one proximal anchor 136 are stationary relative to the system 100. It will be understood that the first and second tension forces TF1 and TF2 are equal and opposite. The distal end 108 of the flexible canopy 102 is pulled in the direction of the arrow TF2 with sufficient tension force that the flexible canopy 102, or more precisely the first surface 114 thereof is placed into contact with the underlying first surface of the posterior leaflet PL, and thereby prevents the posterior leaflet PL from prolapsing. Further, the tension force on the flexible canopy 102 may be adjusted to optimize coaptation of the flexible canopy 102 with the second leaflet of the heart valve, and to minimize valvular regurgitation. Stated another way, the tension force on the elongated tether 104 is adjustable to maximize coaptation of a portion of the second surface 116 of the flexible canopy 102 with an opposing mating portion of an anterior leaflet AL of the mitral valve MV, and to minimize or eliminate regurgitation at the mitral valve MV.


While shown with three proximal anchors 136 in specific locations in FIG. 6, this is by way of example and not limitation. It will be understood that more or fewer proximal anchors 136 may be used, and that the proximal anchor(s) 136 may be disposed at other locations. Further, while the distal anchor 138 is shown in FIG. 5 disposed at the apex AP of the left ventricle LV, this too is by way of example and not limitation. The distal anchor 138 may be disposed at any location within the left ventricle LV to optimize an angle between the coapting surfaces of the flexible canopy 102 and the anterior leaflet AL. For example, the distal anchor 138 may be disposed at any location within the left ventricle LV including, but not limited to the apex AP, the ventricle wall, the interventricular septum IVS, or the papillary muscle PM.



FIG. 7A is a perspective view of a system 200 for treating regurgitation of a heart valve due to a prolapsing leaflet and configured in accordance with another embodiment hereof. The system 200 includes a flexible canopy 202 and an elongated tether 204, the elongated tether 204 including an elastic portion 224 and an inelastic portion 226. In the embodiment in FIG. 7A, the flexible canopy 202 includes a frame 242 and the elongated tether 204 has an alternative configuration than the elongated tether 104 described above.


As shown in FIG. 7A, the flexible canopy 202 is formed of a flexible material and is similar to the flexible canopy 102 previously described. Therefore, similar details of the configuration and materials of the flexible canopy 202 will not be repeated. However, the flexible canopy 202 is supported by a frame 242 coupled to the material of the flexible canopy 202. The frame 242 is disposed at a proximal portion 248 of the flexible canopy 202. In the embodiment of FIG. 7A, the frame 242 has a D-shaped configuration and a first or curved end portion 244 of the frame 242 is disposed adjacent a proximal end 206 of the flexible canopy 202. The frame 242 is disposed adjacent to a perimeter of the flexible canopy 202 and the frame 242 further generally follows the shape of the perimeter of the flexible canopy 202. However, this is not meant to be limiting, and it will be understood that the frame 242 may be disposed at any location of the flexible canopy 202. In embodiments hereof, the frame 242 is configured to provide structural support to a proximal portion 248 of the flexible canopy 202. Further, the frame 242 serves to maintain coaptation angles between the flexible canopy 202 and the non-prolapsing leaflet or leaflets of the heart valve when the system 200 is in a deployed configuration and the heart valve is in a closed configuration. While shown with a specific shape, the frame 242 may have other shapes including but not limited to an ellipse, a circle, or any other shape suitable for the purposes described herein. Further, embodiments of the frame 242 may include additional struts or other strengthening members. The frame 242 may be formed of materials such as, but not limited to nickel titanium alloys (e.g. NITINOL), stainless steel, or other suitable materials. The frame 242 may be sewn into the flexible canopy 202 or may be coupled to the flexible canopy 202 by any other suitable method. In an embodiment, the frame 242 is attached to a plurality of proximal anchors 236.


In the embodiment of FIG. 7A, the frame 242 is configured to be disposed only on the atrial side of the native mitral valve when the system 200 is in a deployed configuration in situ. When the frame 242 is disposed only on the atrial side of the native mitral valve, the flexible canopy 202 is permitted to have increased flexibility within the left ventricle. Further, with the frame 242 disposed only on the atrial side of the native mitral valve, there are no relatively rigid or stiff elements of the frame 242 within the left ventricle LV that have potential to damage the chordae or other native anatomy within the left ventricle LV. In an alternate embodiment, the frame 242 may extend distally into the adjacent ventricle.


The elongated tether 204 of FIG. 7A is similar to the elongated tether 104 of FIG. 3A, except that the configuration or arrangement of the elastic and inelastic portions 224, 226, respectively are reversed from the configuration of the elongated tether 104 shown in FIG. 3A. More particularly, in the embodiment of FIG. 7A, the elastic portion 224 is disposed distal of the inelastic portion 226. The elastic portion 224 includes a proximal end 228 and a distal end 230. In the embodiment of FIG. 7A, the elastic portion 224 is a helical spring. As with the elastic portion 124 of FIG. 3A, the elastic portion 224 is configured to impart a tension force on the flexible canopy 202 as previously described with respect to the elastic portion 124 of FIG. 3A, and therefore is not described in detail with respect to FIG. 7A.


The configuration of the inelastic portion 226 of the elongated tether 204 of FIG. 7A includes a proximal end 232 coupled to the distal end 208 of the flexible canopy 202, a distal end 234 of the inelastic portion 226 coupled to the proximal end 228 of the elastic portion 224, and the distal end 230 of the elastic portion 224 coupled to the ventricle as previously described with respect to the distal end 134 of FIGS. 4-6. While the inelastic portion 226 and the elastic portion 224 are positioned at opposite ends of the elongated tether 204 than the elastic portion 124 and the inelastic portion 126 of the elongated tether 104 of FIG. 3A, it will be understood that applying and adjusting the tension force on the flexible canopy 202 is similarly accomplished by lengthening or shortening the length of the elongated tether 204.


While described herein with one (1) spring elastic portion 224, in an alternative embodiment, an elongated tether 204′ includes two (2) spring elastic portions 224a and 224b, disposed at the proximal end 232′ and the distal end 234′, respectively, of the inelastic portion 226′, as shown in FIG. 7B. The two spring elastic portions 224a and 224b help to ensure that dynamic movement of the flexible canopy 202 is permitted in situ.



FIGS. 8-14 are sectional cut-away views of a heart HE illustrating method steps of treating regurgitation at a mitral valve MV via a transseptal approach for delivering and deploying the system 100 of FIG. 3 in accordance with an embodiment hereof. Access to the mitral valve MV can be accomplished through a patient's vasculature in a percutaneous manner. In an embodiment, the approach to the mitral valve is antegrade and may be accomplished via entry into the left atrium by crossing the interatrial septum. As is known in the art, a guidewire (not shown) may be advanced intravascularly using any number of techniques, e.g., through the inferior vena cava or superior vena cava (FIG. 1), into the right atrium RA through a penetration hole cut in the inter-atrial septum (not shown) and into the left atrium LA (FIG. 1). A guide catheter (not shown) may be advanced along the guidewire and into the right atrium RA, through the penetration hole in the inter-atrial septum, and into the left atrium LA. The guide catheter may have a pre-shaped or steerable distal end to shape or steer the guide catheter such that it will direct a delivery catheter toward the mitral valve MV.


Alternatively, the mitral valve may also be accessed via a transatrial approach for e.g., directly through an incision in the left atrium LA. Access to the heart may be obtained through an intercostal incision in the chest without removing ribs, and a guiding catheter (not shown) may be placed into the left atrium LA through an atrial incision sealed with a purse-string suture. A delivery catheter may then be advanced through the guiding catheter to the mitral valve. Alternatively, the delivery catheter may include a guidewire lumen such that it may be tracked over a guidewire and placed directly through the atrial incision without the use of a guiding catheter.


Referring to FIG. 8, a distal segment 303 of a delivery catheter 301 is shown positioned in the left atrium LA. The delivery catheter 301 is delivered through the vasculature into the left atrium LA with the system 100 in a delivery configuration, in which the system 100 is radially compressed and disposed within the distal segment 303 of the delivery catheter 301. Intravascular access to the right atrium RA may be achieved via a percutaneous access site in a femoral, brachial, radial, or axillary artery. As will be understood by those knowledgeable in the art, a handle component (not visible in FIGS. 8-14), as well as some length of a proximal segment of the delivery catheter 301, are exposed externally of the patient for access by a clinician. By manipulating the handle of the delivery catheter 301 from outside the vasculature, a clinician may advance and remotely manipulate and steer the distal segment 303 of the delivery catheter 301 through the sometimes tortuous intravascular path. The distal segment 303 of the delivery catheter 301 may be distally advanced into the left atrium LA and positioned generally above (e.g., upstream) the mitral valve MV to deliver the system 100 to the mitral valve MV.


In a next delivery step shown in FIG. 9, three proximal anchors 136 are embedded in tissue at an annulus AN of the mitral valve MV. Embedding of each proximal anchor 136 at the annulus AN may be accomplished by various methods understood by those knowledgeable in the art. For example, and not by way of limitation, each proximal anchor 136 may be a helical anchor, rotated by a respective proximal anchor shaft 305 of the delivery catheter 301 to embed each proximal anchor 136 into tissue at the annulus AN. Each proximal anchor shaft 305 may be a shaft, rod, or lead as described, for example, in U.S. Pat. Nos. 3,974,834 or 4,046,151, each of which has previously been incorporated by reference in its entirety. Once each proximal anchor 136 is embedded at the annulus AN, the proximal anchor 136 is released from the respective proximal anchor shaft 305.


In the embodiment of FIG. 9, each proximal anchor 136 is pre-attached to the flexible canopy 102 prior to delivery with the delivery catheter 301. Thus, once the proximal anchors 136 are embedded at the annulus AN and each proximal anchor 136 is released from the respective proximal anchor shaft 305, the proximal end 106 of the flexible canopy 102 remains attached to each of the proximal anchors 136 at the annulus AN, as shown in FIG. 10. The proximal end 106 is attached to the plurality of proximal anchors 136 to effectively anchor or secure the proximal end 106 of the flexible canopy 102 to the annulus AN of the native mitral valve MV.


While described herein with the flexible canopy 102 pre-attached to the plurality of proximal anchors 136 prior to delivery by the delivery catheter 301, this is by way of example and not limitation. It will be understood that the flexible canopy 102 can alternatively be coupled to the plurality of proximal anchors 136 after each of the proximal anchors 136 has been embedded at the annulus AN of the native mitral valve MV. For example, and not by way of limitation, the flexible canopy 102 may include a plurality of eyelets attached thereto with each proximal anchor shaft 305 disposed through a corresponding eyelet. The flexible canopy 102 can be deployed from the delivery catheter 301 by a push shaft or other device, and each eyelet and the flexible canopy 102 slide distally along the respective plurality of proximal anchor shafts 305 to couple to the corresponding proximal anchors 136. Once the flexible canopy 102 is coupled to the plurality of proximal anchors 136, each proximal anchor 136 is released by the respective proximal anchor shaft 305.


As shown in FIG. 11, in a next step the distal anchor 138 is embedded in tissue within the left ventricle LV with a distal anchor shaft 307. Embedding of the distal anchor 138 may be accomplished by various methods understood by those knowledgeable in the art. For example, and not by way of limitation, the distal anchor 138 may be a helical anchor, rotated by the distal anchor shaft 307 to embed the distal anchor 138 in an apex AP of the left ventricle LV. The distal anchor shaft 307 may be a shaft, rod, or lead as described, for example, in U.S. Pat. Nos. 3,974,834 or 4,046,151 assigned to Medtronic, Inc., each of which has previously been incorporated by reference in its entirety. While shown with the distal anchor 138 embedded in tissue at an apex AP of the left ventricle LV, this is by way of example and not limitation. As previously described, the location of the distal anchor 138 within the left ventricle LV may be determined based upon the angle of the flexible canopy 102 in relation to the anterior leaflet AL to achieve optimal coaptation between the flexible canopy 102 and the anterior leaflet AL to minimize or eliminate regurgitation. Once the distal anchor 138 is embedded at the desired location of the left ventricle LV, the distal anchor 138 is released from the distal anchor shaft 307.


In the embodiment of FIG. 11, the distal anchor 138 is pre-attached to the elongated tether 104 prior to delivery with the delivery catheter 301. Accordingly, once the distal anchor 138 is embedded in the left ventricle LV and the distal anchor 138 is released from the distal anchor shaft 307, the distal end 122 of the elongated tether 104 is attached to the distal anchor 138, as shown in FIG. 12. The distal end 122 is attached to the distal anchor 138 to effectively secure or anchor the distal end 122 of the elongated tether 104 to the left ventricle LV.


Although the elongated tether 104 has been described as coupled to the distal anchors 138 prior to delivery by the delivery catheter 301, this is by way of example and not limitation. It will be understood that the elongated tether 104 may alternatively be delivered separately and coupled to the distal anchor 138 after the distal anchor 138 has been embedded in the left ventricle LV. For example, and not by way of limitation, the elongated tether 104 can include an eyelet at the distal end 122 with the distal anchor shaft 307 disposed through the eyelet of the elongated tether 104. The elongated tether 104 can be deployed from the delivery catheter 301 by a push shaft or other device, and the eyelet and the elongated tether 104 slid distally along the distal anchor shaft 307 to couple to the eyelet of the elongated tether 104 to the distal anchor 138. Once the elongated tether 104 is coupled to the distal anchor 138, the distal anchor 138 is released by the distal anchor shaft 307.


When the proximal end 106 of the flexible canopy 102 is coupled to the annulus AN and the distal end 122 of the elongated tether 104 is coupled to the left ventricle LV, with the flexible canopy 102 overlaying the posterior leaflet PL, tension is applied and/or adjusted as described above with respect to FIGS. 4 and 5 to apply a tension force on the flexible canopy 102. More precisely, as described above in more detail, the elastic portion 124 of the elongated tether 104 is placed under spring tension and the spring tension on the elastic portion 124 is transferred to the distal end 108 of the flexible canopy 102 as a second tension force TF2 as indicated by the arrow TF2. The second tension force TF2 on the flexible canopy 102 prevents the posterior leaflet PL from prolapsing and insures coaptation of the flexible canopy 102 with the anterior leaflet AL, as shown in FIG. 13.


In a next step, the mitral valve MV is checked for valvular regurgitation. Checking for regurgitation of the mitral valve MV may be accomplished by various methods including, but not limited to echocardiogram, to visualize placement of the flexible canopy 102 and prolapse of the posterior leaflet PL of the mitral valve MV. Accordingly, an echogenic coating may be applied to one or more integral portions of the system 100 to aid in visualization. When the mitral valve MV has been checked for valvular regurgitation, the treating clinician may further adjust the tension force on the flexible canopy 102 to minimize valvular regurgitation and optimize coaptation of the flexible canopy 102 with the anterior leaflet AL, as shown in FIG. 14. The steps of checking for valvular regurgitation and readjusting the tension force on the flexible canopy 102 may be repeated to optimize performance of the repaired mitral valve MV. Following delivery, deployment and adjustment of the system 100 at the mitral valve MV (or other desired valve location), the delivery catheter 301 and remaining guidewire (if any) may be removed from the heart 10 and out of the body of the patient.


Image guidance, enhanced echogenicity, or other methods may be used to aid the clinician's delivery and positioning of the system 100. Image guidance, e.g., intracardiac echocardiography (ICE), fluoroscopy, computed tomography (CT), intravascular ultrasound (IVUS), optical coherence tomography (OCT), or another suitable guidance modality, or combination thereof, may be used to aid the clinician's positioning and manipulation of the system 100 at the target native valve region. For example, such image guidance technologies can be used to aid in determining the positioning of the flexible canopy 102 with relation to the underlying, prolapsing native leaflet. In some embodiments, image guidance components (e.g., IVUS, OCT) can be coupled to the distal portion of the delivery catheter 301, a guide catheter, or both to provide three-dimensional images of the area proximate to the target heart valve region to facilitate positioning, orienting and/or deployment of the system 100 within the heart valve region. Accordingly, an echogenic coating may be applied to components of the system to aid in visualization.


Various method steps described above for delivery and deployment of embodiments of the system within a native heart valve of a patient may also be interchanged to form additional embodiments of the present technology. For example, while the method steps described above are presented in a given order, alternative embodiments may perform steps in a different order. The various embodiments described herein may also be combined to provide further embodiments.


Furthermore, while the delivery catheter described above is discussed as being suitable for delivering embodiments of the system to the native mitral valve using a transseptal approach, it will be understood that the delivery catheter may also be suitable for delivering systems for repair of other heart valves (e.g., pulmonary valve, tricuspid valve, etc.) and utilizing other approaches (e.g. retrograde, antegrade). Various arrangements of the delivery catheters suitable for use with embodiments of systems and methods described herein may also be used to deliver other therapeutic or medical tools within body lumens.


While various embodiments have been described above, it should be understood that they have been presented only as illustrations and examples of the present technology, and not by way of limitation. It will be apparent to persons skilled in the relevant art that various changes in form and detail may be made therein without departing from the spirit and scope of the present technology. Thus, the breadth and scope of the present technology should not be limited by any of the above-described embodiments, but should be defined only in accordance with the appended claims and their equivalents. It will also be understood that each feature of each embodiment discussed herein, and of each reference cited herein, may be used in combination with the features of any other embodiment. All patents and publications discussed herein are incorporated by reference herein in their entirety.

Claims
  • 1. A system for treating a native heart valve, the system including a delivery configuration and a deployed configuration, the system comprising: a flexible canopy;an elongated tether configured to be placed under tension in situ, the elongated tether including an elastic portion and an inelastic portion coupled to the elastic portion, wherein the elastic portion is at least as long as the inelastic portion with a ratio of the elastic portion to the inelastic portion being between 50/50 and 70/30 and a proximal end of the elongated tether is attached to a distal end of the flexible canopy; anda distal anchor configured to be embedded into tissue of a ventricle, wherein a distal end of the elongated tether is coupled to the distal anchor,wherein when the system is in the deployed configuration, a proximal end of the flexible canopy is anchored to an annulus of the heart valve and the distal end of the elongated tether is anchored to tissue of a ventricle via the distal anchor such that the elongated tether is placed under tension.
  • 2. The system of claim 1, wherein the flexible canopy includes a first surface and a second surface opposite the first surface, wherein when the system is in the deployed configuration, the first surface of the flexible canopy overlays to an underlying first surface of a first leaflet of the heart valve, and the system is configured to prevent the first leaflet of the heart valve from prolapsing, and to permit a portion of the second surface of the flexible canopy to coapt with at least an opposing mating portion of a second leaflet of the heart valve.
  • 3. The system of claim 2, further comprising: a frame coupled to a portion of the flexible canopy.
  • 4. The system of claim 2, wherein the flexible canopy is unsupported and does not include a frame coupled thereto.
  • 5. The system of claim 2, wherein the first surface of the flexible canopy includes at least one micro-barb and the at least one micro-barb is configured to couple the first surface of the flexible canopy to the underlying first surface of the first leaflet of the heart valve.
  • 6. The system of claim 1, wherein the inelastic portion of the elongated tether is positioned distal of the elastic portion of the elongated tether.
  • 7. The system of claim 1, wherein the elastic portion of the elongated tether is positioned distal of the inelastic portion of the elongated tether.
  • 8. The system of claim 1, wherein the elastic portion of the elongated tether is longer than the inelastic portion of the elongated tether.
  • 9. The system of claim 1, wherein the elastic portion of the elongated tether is a spring.
  • 10. The system of claim 1, wherein the distal anchor is helical.
  • 11. A system for treating a native heart valve, the system including a delivery configuration and a deployed configuration, the system comprising: a flexible canopy and a frame attached to the flexible canopy to provide structural support thereto;an elongated tether configured to be placed under tension in situ, the elongated tether including an elastic portion and an inelastic portion coupled to the elastic portion, wherein the elastic portion is at least as long as the inelastic portion with a ratio of the elastic portion to the inelastic portion being between 50/50 and 70/30 and a proximal end of the elongated tether is attached to a distal end of the flexible canopy; anda distal anchor configured to be embedded into tissue of a ventricle, wherein a distal end of the elongated tether is coupled to the distal anchor,wherein when the system is in the deployed configuration, a proximal end of the flexible canopy is anchored to an annulus of the heart valve and the distal end of the elongated tether is anchored to tissue of a ventricle via the distal anchor such that the elongated tether is placed under tension.
  • 12. The system of claim 11, wherein the flexible canopy has a first surface and a second surface opposite the first surface, wherein when the system is in the deployed configuration, the first surface of the flexible canopy overlays an underlying first surface of a first leaflet of the heart valve, and the system is configured to prevent the first leaflet of the heart valve from prolapsing, and to permit a portion of the second surface of the flexible canopy to coapt with at least an opposing mating portion of a second leaflet of the heart valve.
  • 13. The system of claim 12, wherein the first surface of the flexible canopy includes at least one micro-barb and the at least one micro-barb is configured to couple the first surface of the flexible canopy to the underlying first surface of the first leaflet of the heart valve.
  • 14. The system of claim 11, wherein the inelastic portion of the elongated tether is positioned distal of the elastic portion of the elongated tether.
  • 15. The system of claim 11, wherein the elastic portion of the elongated tether is positioned distal of the inelastic portion of the elongated tether.
  • 16. The system of claim 11, wherein the elastic portion of the elongated tether is longer than the inelastic portion of the elongated tether.
  • 17. The system of claim 11, wherein the elastic portion of the elongated tether is a spring.
  • 18. The system of claim 11, wherein the distal anchor is helical.
  • 19. The system of claim 11, wherein the frame has a shape that follows a perimeter of the flexible canopy.
  • 20. The system of claim 11, wherein the frame is formed from a nickel titanium alloy.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/352,963, filed on Mar. 14, 2019, which claims the benefit of U.S. Provisional Patent Application Ser. No. 62/645,306, filed Mar. 20, 2018, which is hereby incorporated by reference in its entirety for all purposes.

US Referenced Citations (795)
Number Name Date Kind
6165183 Kuehen et al. Dec 2000 A
6260552 Mortier et al. Jul 2001 B1
6269819 Oz et al. Aug 2001 B1
6312447 Grimes Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6355030 Aldrich et al. Mar 2002 B1
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6419696 Ortiz et al. Jul 2002 B1
6461366 Seguin Oct 2002 B1
6537314 Langberg et al. Mar 2003 B2
6575971 Hauck et al. Jun 2003 B2
6602288 Cosgrove et al. Aug 2003 B1
6619291 Hlavka et al. Sep 2003 B2
6626930 Allen et al. Sep 2003 B1
6629534 St. Goar et al. Oct 2003 B1
6656221 Taylor et al. Dec 2003 B2
6676702 Mathis Jan 2004 B2
6689164 Seguin et al. Feb 2004 B1
6695866 Kuehen et al. Feb 2004 B1
6702826 Liddicoat et al. Mar 2004 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6718985 Hlavka et al. Apr 2004 B2
6719767 Kimblad Apr 2004 B1
6723038 Schroeder et al. Apr 2004 B1
6743239 Keuhn et al. Jun 2004 B1
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6770083 Seguin Aug 2004 B2
6790231 Liddicoat et al. Sep 2004 B2
6793673 Kowalsky et al. Sep 2004 B2
6797001 Mathis et al. Sep 2004 B2
6797002 Spence et al. Sep 2004 B2
6800090 Alferness et al. Oct 2004 B2
6805711 Quijano et al. Oct 2004 B2
6810882 Langberg et al. Nov 2004 B2
6824562 Mathis et al. Nov 2004 B2
6840246 Downing Jan 2005 B2
6875224 Grimes Apr 2005 B2
6890353 Cohn et al. May 2005 B2
6908478 Alferness et al. Jun 2005 B2
6913608 Liddicoat et al. Jul 2005 B2
6926715 Hauck et al. Aug 2005 B1
6926730 Nguyen et al. Aug 2005 B1
6949122 Adams et al. Sep 2005 B2
6960229 Mathis et al. Nov 2005 B2
6962605 Cosgrove et al. Nov 2005 B2
6964683 Kowalsky et al. Nov 2005 B2
6964684 Ortiz et al. Nov 2005 B2
6966926 Mathis Nov 2005 B2
6976995 Mathis et al. Dec 2005 B2
6978176 Lattouf Dec 2005 B2
6986775 Morales et al. Jan 2006 B2
6989028 Lashinski et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7004176 Lau Feb 2006 B2
7004958 Adams et al. Feb 2006 B2
7011669 Kimblad Mar 2006 B2
7011682 Lashinski et al. Mar 2006 B2
7037334 Hlavka et al. May 2006 B1
7044967 Solem et al. May 2006 B1
7052487 Cohn et al. May 2006 B2
7070618 Streeter Jul 2006 B2
7077861 Spence Jul 2006 B2
7077862 Vidlund et al. Jul 2006 B2
7083628 Bachman Aug 2006 B2
7090695 Solem et al. Aug 2006 B2
7094244 Schreck Aug 2006 B2
7112207 Allen et al. Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7122043 Greenhalgh et al. Oct 2006 B2
7125420 Rourke et al. Oct 2006 B2
7166126 Spence et al. Jan 2007 B2
7166127 Spence et al. Jan 2007 B2
7179282 Alferness et al. Feb 2007 B2
7179291 Rourke et al. Feb 2007 B2
7186264 Liddicoat et al. Mar 2007 B2
7189199 McCarthy et al. Mar 2007 B2
7192442 Solem et al. Mar 2007 B2
7192443 Solem et al. Mar 2007 B2
7211110 Rowe et al. May 2007 B2
7226467 Lucatero et al. Jun 2007 B2
7229469 Witzel et al. Jun 2007 B1
7247134 Vidlund et al. Jul 2007 B2
7270676 Alferness et al. Sep 2007 B2
7288097 Seguin Oct 2007 B2
7291168 Macoviak et al. Nov 2007 B2
7296577 Lashinski et al. Nov 2007 B2
7300462 Swinford et al. Nov 2007 B2
7309354 Mathis et al. Dec 2007 B2
7311728 Solem et al. Dec 2007 B2
7311729 Mathis et al. Dec 2007 B2
7311731 Lesniak et al. Dec 2007 B2
7314485 Mathis Jan 2008 B2
7316706 Bloom et al. Jan 2008 B2
7351259 Swinford et al. Apr 2008 B2
7351260 Nieminen et al. Apr 2008 B2
7357815 Shaoulian et al. Apr 2008 B2
7361190 Shaoulian et al. Apr 2008 B2
7364588 Mathis et al. Apr 2008 B2
7373207 Lattouf May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381220 Macoviak et al. Jun 2008 B2
7396364 Moaddeb et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7431692 Zollinger et al. Oct 2008 B2
7431726 Spence et al. Oct 2008 B2
7442207 Rafiee Oct 2008 B2
7452375 Mathis et al. Nov 2008 B2
7464712 Oz et al. Dec 2008 B2
7473274 Sater Jan 2009 B2
7485143 Webler et al. Feb 2009 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7503932 Mathis et al. Mar 2009 B2
7507252 Lashinski et al. Mar 2009 B2
7509959 Oz et al. Mar 2009 B2
7510576 Langberg et al. Mar 2009 B2
7510577 Moaddeb et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7527646 Rahdert et al. May 2009 B2
7527647 Spence May 2009 B2
7534204 Starksen et al. May 2009 B2
7534260 Lattouf May 2009 B2
7536228 Shaolian et al. May 2009 B2
7559936 Levine et al. Jul 2009 B2
7563267 Goldfarb et al. Jul 2009 B2
7563273 Goldfarb et al. Jul 2009 B2
7569062 Kuehen et al. Aug 2009 B1
7588582 Ancora Sep 2009 B2
7591826 Alferness et al. Sep 2009 B2
7604646 Goldfarb et al. Oct 2009 B2
7608091 Goldfarb et al. Oct 2009 B2
7608120 Adams et al. Oct 2009 B2
7628797 Tieu et al. Dec 2009 B2
7635329 Goldfarb et al. Dec 2009 B2
7635386 Gammie Dec 2009 B1
7635387 Reuter et al. Dec 2009 B2
7637945 Solem et al. Dec 2009 B2
7637946 Solem et al. Dec 2009 B2
7655015 Goldfarb et al. Feb 2010 B2
7655040 Douk et al. Feb 2010 B2
7666193 Starksen et al. Feb 2010 B2
7666204 Thornton et al. Feb 2010 B2
7666224 Vidlund et al. Feb 2010 B2
7674287 Alferness et al. Mar 2010 B2
7682319 Martin et al. Mar 2010 B2
7682369 Seguin Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7695512 Lashinski et al. Apr 2010 B2
7699892 Rafiee et al. Apr 2010 B2
7704277 Zakay et al. Apr 2010 B2
7713298 Shaoulian et al. May 2010 B2
7717954 Solem et al. May 2010 B2
7722523 Mortier et al. May 2010 B2
7722668 Moaddeb et al. May 2010 B2
7736388 Goldfarb et al. Jun 2010 B2
7744609 Allen et al. Jun 2010 B2
7744611 Nguyen et al. Jun 2010 B2
7753858 Starksen et al. Jul 2010 B2
7753922 Starksen Jul 2010 B2
7753923 St. Goar et al. Jul 2010 B2
7753924 Starksen et al. Jul 2010 B2
7758595 Allen et al. Jul 2010 B2
7758596 Oz et al. Jul 2010 B2
7758637 Starksen et al. Jul 2010 B2
7758639 Mathis Jul 2010 B2
7766812 Schroeder et al. Aug 2010 B2
7785366 Maurer et al. Aug 2010 B2
7794496 Gordon et al. Sep 2010 B2
7803187 Hauser Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7811296 Goldfarb et al. Oct 2010 B2
7814635 Gordon et al. Oct 2010 B2
7828841 Mathis et al. Nov 2010 B2
7828842 Nieminen et al. Nov 2010 B2
7828843 Alferness et al. Nov 2010 B2
7837728 Nieminen et al. Nov 2010 B2
7837729 Gordon et al. Nov 2010 B2
7857846 Alferness et al. Dec 2010 B2
7871368 Zollinger et al. Jan 2011 B2
7871433 Lattouf Jan 2011 B2
7883538 To et al. Feb 2011 B2
7887552 Bachman Feb 2011 B2
7887582 Mathis et al. Feb 2011 B2
7914544 Nguyen et al. Mar 2011 B2
7922762 Starksen Apr 2011 B2
7927370 Webler et al. Apr 2011 B2
7931684 Cosgrove et al. Apr 2011 B2
7935146 Langberg et al. May 2011 B2
7938827 Hauck et al. May 2011 B2
7942927 Kaye et al. May 2011 B2
7942928 Webler et al. May 2011 B2
7955384 Rafiee et al. Jun 2011 B2
7981020 Mortier et al. Jul 2011 B2
7981123 Seguin Jul 2011 B2
7988725 Gross et al. Aug 2011 B2
7988726 Langberg et al. Aug 2011 B2
7993397 Lashinski et al. Aug 2011 B2
7998151 St. Goar et al. Aug 2011 B2
8016882 Macoviak et al. Sep 2011 B2
8029565 Lattouf Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052592 Goldfarb et al. Nov 2011 B2
8057493 Goldfarb et al. Nov 2011 B2
8062313 Kimblad Nov 2011 B2
8062358 Mathis et al. Nov 2011 B2
8066766 To et al. Nov 2011 B2
8070746 Orton et al. Dec 2011 B2
8070805 Vidlund et al. Dec 2011 B2
8075616 Solem et al. Dec 2011 B2
8092363 Leinsing et al. Jan 2012 B2
8092525 Eliasen et al. Jan 2012 B2
8096985 Legaspi et al. Jan 2012 B2
8100964 Spence Jan 2012 B2
8109984 Solem et al. Feb 2012 B2
8123703 Martin et al. Feb 2012 B2
8128691 Keränen Mar 2012 B2
8133239 Oz et al. Mar 2012 B2
8133272 Hyde Mar 2012 B2
8142493 Spence et al. Mar 2012 B2
8142494 Rahdert et al. Mar 2012 B2
8147542 Maisano et al. Apr 2012 B2
8163013 Machold et al. Apr 2012 B2
8172856 Eigler et al. May 2012 B2
8172898 Alferness et al. May 2012 B2
8182529 Gordon et al. May 2012 B2
8187207 Machold et al. May 2012 B2
8187266 Dickens et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8187323 Mortier et al. May 2012 B2
8202315 Hlavka et al. Jun 2012 B2
8211171 Kim et al. Jul 2012 B2
8216230 Hauck et al. Jul 2012 B2
8216256 Raschdorf et al. Jul 2012 B2
8216302 Wilson et al. Jul 2012 B2
8216303 Navia Jul 2012 B2
8226709 Groothuis et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8241304 Bachman Aug 2012 B2
8241351 Cabiri Aug 2012 B2
8252050 Maisano et al. Aug 2012 B2
8262724 Seguin et al. Sep 2012 B2
8277502 Miller et al. Oct 2012 B2
8287555 Starksen et al. Oct 2012 B2
8287557 To et al. Oct 2012 B2
8303608 Goldfarb et al. Nov 2012 B2
8303622 Alkhatib Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8328798 Witzel et al. Dec 2012 B2
8333777 Schaller et al. Dec 2012 B2
8343173 Starksen et al. Jan 2013 B2
8343174 Goldfarb et al. Jan 2013 B2
8353956 Miller et al. Jan 2013 B2
8357195 Kuehn Jan 2013 B2
8361086 Allen et al. Jan 2013 B2
8382829 Call et al. Feb 2013 B1
8388680 Starksen et al. Mar 2013 B2
8409273 Thornton et al. Apr 2013 B2
8425504 Orton et al. Apr 2013 B2
8439971 Reuter et al. May 2013 B2
8449606 Eliasen et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8454683 Rafiee et al. Jun 2013 B2
8460370 Zakay et al. Jun 2013 B2
8460371 Hlavka et al. Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8475472 Bachman Jul 2013 B2
8486136 Maurer et al. Jul 2013 B2
8500761 Goldfarb et al. Aug 2013 B2
8500800 Maisano et al. Aug 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8518107 Tsukashima et al. Aug 2013 B2
8523881 Cabiri et al. Sep 2013 B2
8540620 Mortier et al. Sep 2013 B2
8545414 Fitzgerald et al. Oct 2013 B2
8545553 Zipory et al. Oct 2013 B2
8551161 Dolan Oct 2013 B2
8579967 Webler et al. Nov 2013 B2
8579968 Shannon et al. Nov 2013 B1
8591460 Wilson et al. Nov 2013 B2
8608797 Gross et al. Dec 2013 B2
8632585 Seguin et al. Jan 2014 B2
8641727 Ancora Feb 2014 B2
8647254 Callas et al. Feb 2014 B2
8663322 Keränen Mar 2014 B2
8690858 Machold et al. Apr 2014 B2
8690939 Miller et al. Apr 2014 B2
8709074 Solem et al. Apr 2014 B2
8715342 Zipory et al. May 2014 B2
8721665 Oz et al. May 2014 B2
8728097 Sugimoto et al. May 2014 B1
8734467 Miller et al. May 2014 B2
8734505 St. Goar et al. May 2014 B2
8740918 Seguin Jun 2014 B2
8740920 Goldfarb et al. Jun 2014 B2
8753373 Chau et al. Jun 2014 B2
8758257 Cecere et al. Jun 2014 B2
8758393 Zentgraf Jun 2014 B2
8758432 Solem et al. Jun 2014 B2
8771292 Allen et al. Jul 2014 B2
8777966 Dale et al. Jul 2014 B2
8778016 Janovsky et al. Jul 2014 B2
8778017 Eliasen et al. Jul 2014 B2
8784482 Rahdert et al. Jul 2014 B2
8784483 Navia Jul 2014 B2
8790394 Miller et al. Jul 2014 B2
8795298 Hernlund et al. Aug 2014 B2
8795352 O'Beirne et al. Aug 2014 B2
8808368 Maisano et al. Aug 2014 B2
8821570 Dumontelle et al. Sep 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8845723 Spence et al. Sep 2014 B2
8852213 Gammie et al. Oct 2014 B2
8858622 Machold et al. Oct 2014 B2
8858623 Miller et al. Oct 2014 B2
8864822 Spence et al. Oct 2014 B2
8888843 Khairkhanan et al. Nov 2014 B2
8888844 Eliasen et al. Nov 2014 B2
8894705 Eliasen et al. Nov 2014 B2
8911461 Traynor et al. Dec 2014 B2
8911494 Hammer et al. Dec 2014 B2
8920322 Mansi et al. Dec 2014 B2
8926695 Gross et al. Jan 2015 B2
8926696 Cabiri et al. Jan 2015 B2
8926697 Gross et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8938283 Zentgraf et al. Jan 2015 B2
8940042 Miller et al. Jan 2015 B2
8940044 Hammer et al. Jan 2015 B2
8945177 Dell et al. Feb 2015 B2
8945211 Sugimoto Feb 2015 B2
8951285 Sugimoto et al. Feb 2015 B2
8951286 Sugimoto et al. Feb 2015 B2
8956406 Subramanian et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8961597 Subramanian et al. Feb 2015 B2
8968335 Robinson et al. Mar 2015 B2
8968393 Rothstein Mar 2015 B2
8974445 Warnking et al. Mar 2015 B2
8974525 Nieminen et al. Mar 2015 B2
8979923 Spence et al. Mar 2015 B2
8979925 Chang et al. Mar 2015 B2
8992605 Zakai et al. Mar 2015 B2
8998794 Mortier et al. Apr 2015 B2
8998933 Rothstein et al. Apr 2015 B2
9011463 Adams et al. Apr 2015 B2
9011468 Ketai et al. Apr 2015 B2
9011520 Miller et al. Apr 2015 B2
9011530 Reich et al. Apr 2015 B2
9011531 Rourke et al. Apr 2015 B2
9044221 Zentgraf et al. Jun 2015 B2
9044246 Goldfarb et al. Jun 2015 B2
9050187 Sugimoto et al. Jun 2015 B2
9060858 Thornton et al. Jun 2015 B2
9066710 Dale et al. Jun 2015 B2
9107658 Schaller et al. Aug 2015 B2
9107750 Cartledge et al. Aug 2015 B2
9119718 Keränen Sep 2015 B2
9119719 Zipory et al. Sep 2015 B2
9125632 Loulmet et al. Sep 2015 B2
9125653 Kovach Sep 2015 B2
9131928 Zlotnick et al. Sep 2015 B2
9131939 Call et al. Sep 2015 B1
9168137 Subramanian et al. Oct 2015 B2
9173646 Fabro Nov 2015 B2
9179896 Machold et al. Nov 2015 B2
9180005 Lashinski et al. Nov 2015 B1
9180006 Keranen Nov 2015 B2
9180007 Reich et al. Nov 2015 B2
9180008 Yellin et al. Nov 2015 B2
9192374 Zentgraf Nov 2015 B2
9192471 Bolling Nov 2015 B2
9192472 Gross et al. Nov 2015 B2
9198757 Schroeder et al. Dec 2015 B2
9216018 Sutherland et al. Dec 2015 B2
9226787 Merryman et al. Jan 2016 B2
9226825 Starksen et al. Jan 2016 B2
9232942 Seguin et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9237886 Seguin et al. Jan 2016 B2
9254141 Morris et al. Feb 2016 B2
9259218 Robinson Feb 2016 B2
9259261 Boronyak et al. Feb 2016 B2
9259317 Wilson et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9271833 Kim et al. Mar 2016 B2
9277994 Miller et al. Mar 2016 B2
9282964 Cohen et al. Mar 2016 B1
9301842 Bielefeld Apr 2016 B2
9314242 Bachman Apr 2016 B2
9320600 Nieminen et al. Apr 2016 B2
9326857 Cartledge et al. May 2016 B2
9345470 Tuval May 2016 B2
9351830 Gross et al. May 2016 B2
9358111 Spence et al. Jun 2016 B2
9358112 Hlavka et al. Jun 2016 B2
9370424 Call et al. Jun 2016 B2
9393080 Zentgraf et al. Jul 2016 B2
9402721 Buchbinder et al. Aug 2016 B2
9408695 Mathis et al. Aug 2016 B2
9414852 Gifford et al. Aug 2016 B2
9414918 Chau et al. Aug 2016 B2
9414921 Miller et al. Aug 2016 B2
9421098 Gifford et al. Aug 2016 B2
9421099 Dolan Aug 2016 B2
9427237 Oz et al. Aug 2016 B2
9433503 Tsukashima et al. Sep 2016 B2
9445898 Tuval et al. Sep 2016 B2
9452048 O'Beirne et al. Sep 2016 B2
9474605 Rowe et al. Oct 2016 B2
9474606 Zipory et al. Oct 2016 B2
9474608 Mathis et al. Oct 2016 B2
9492276 Lee et al. Nov 2016 B2
9498228 Dale et al. Nov 2016 B2
9498330 Solem Nov 2016 B2
9498331 Chang et al. Nov 2016 B2
9504570 Hauser et al. Nov 2016 B2
9510829 Goldfarb et al. Dec 2016 B2
9510837 Seguin Dec 2016 B2
9510946 Chau et al. Dec 2016 B2
9510948 Padala et al. Dec 2016 B2
9526613 Gross et al. Dec 2016 B2
9526614 Keränen Dec 2016 B2
9526616 Nieminen et al. Dec 2016 B2
9532874 Griffin et al. Jan 2017 B2
9545305 Wilson et al. Jan 2017 B2
9561104 Miller et al. Feb 2017 B2
9561105 Rowe Feb 2017 B2
9572666 Basude et al. Feb 2017 B2
9572667 Solem Feb 2017 B2
9579200 Lederman et al. Feb 2017 B2
9592118 Khairkhahan et al. Mar 2017 B2
9592122 Zipory et al. Mar 2017 B2
9597184 Machold et al. Mar 2017 B2
9610082 Morris et al. Apr 2017 B2
9610161 Macoviak et al. Apr 2017 B2
9610162 Zipory et al. Apr 2017 B2
9610163 Khairkhahan et al. Apr 2017 B2
9615926 Lashinski et al. Apr 2017 B2
9616197 Serina et al. Apr 2017 B2
9622862 Lashinski et al. Apr 2017 B2
9636106 Meier et al. May 2017 B2
9636107 Morales et al. May 2017 B2
9636223 Khalil et al. May 2017 B2
9636224 Zipory et al. May 2017 B2
9642706 Eidenschink May 2017 B2
9649106 Nobles et al. May 2017 B2
9662205 Eidenschink May 2017 B2
9662208 Padala et al. May 2017 B2
9662209 Gross et al. May 2017 B2
9706996 Nguyen et al. Jul 2017 B2
20010005787 Oz et al. Jun 2001 A1
20020183837 Streeter et al. Dec 2002 A1
20030105519 Fasol et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030120341 Shennib et al. Jun 2003 A1
20040019378 Hlavka et al. Jan 2004 A1
20040024414 Downing Feb 2004 A1
20040030382 St. Goar et al. Feb 2004 A1
20040039442 St. Goar et al. Feb 2004 A1
20040044350 Martin et al. Mar 2004 A1
20040102839 Cohn et al. May 2004 A1
20040127982 Machold et al. Jul 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133063 McCarthy et al. Jul 2004 A1
20040133240 Adams et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040153144 Seguin et al. Aug 2004 A1
20040158321 Reuter et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040167539 Kuehen et al. Aug 2004 A1
20040210240 Saint Oct 2004 A1
20040220654 Mathis et al. Nov 2004 A1
20040220657 Nieminen et al. Nov 2004 A1
20040243227 Starksen et al. Dec 2004 A1
20040254600 Zarbatany et al. Dec 2004 A1
20040260394 Douk et al. Dec 2004 A1
20040267083 McCarthy et al. Dec 2004 A1
20050027351 Rueter et al. Feb 2005 A1
20050033446 Deem et al. Feb 2005 A1
20050049679 Taylor et al. Mar 2005 A1
20050070999 Spence Mar 2005 A1
20050071000 Liddicoat et al. Mar 2005 A1
20050075723 Schroeder et al. Apr 2005 A1
20050107810 Morales et al. May 2005 A1
20050107811 Starksen et al. May 2005 A1
20050107871 Realyvasquez et al. May 2005 A1
20050137449 Nieminen et al. Jun 2005 A1
20050137450 Aronson et al. Jun 2005 A1
20050143811 Realyvasquez Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050149014 Hauck et al. Jul 2005 A1
20050159810 Filsoufi Jul 2005 A1
20050177228 Solem et al. Aug 2005 A1
20050184122 Hlavka et al. Aug 2005 A1
20050197692 Pai et al. Sep 2005 A1
20050197693 Pai et al. Sep 2005 A1
20050197694 Pai et al. Sep 2005 A1
20050209690 Mathis et al. Sep 2005 A1
20050216039 Lederman Sep 2005 A1
20050216078 Starksen et al. Sep 2005 A1
20050222488 Chang et al. Oct 2005 A1
20050222489 Rahdert et al. Oct 2005 A1
20050228422 Machold et al. Oct 2005 A1
20050240202 Shennib et al. Oct 2005 A1
20050267529 Crockett et al. Dec 2005 A1
20050267574 Cohn et al. Dec 2005 A1
20050273138 To et al. Dec 2005 A1
20050288777 Rhee et al. Dec 2005 A1
20050288778 Shaoulian et al. Dec 2005 A1
20060015178 Moaddeb et al. Jan 2006 A1
20060025787 Morales et al. Feb 2006 A1
20060069429 Spence et al. Mar 2006 A1
20060100699 Vidlund et al. May 2006 A1
20060106278 Machold et al. May 2006 A1
20060106279 Machold et al. May 2006 A1
20060122633 To et al. Jun 2006 A1
20060136053 Rourke et al. Jun 2006 A1
20060149368 Spence Jul 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161169 Nieminen et al. Jul 2006 A1
20060167474 Bloom et al. Jul 2006 A1
20060178700 Quinn Aug 2006 A1
20060184230 Solem et al. Aug 2006 A1
20060184242 Lichtenstein Aug 2006 A1
20060195012 Mortier et al. Aug 2006 A1
20060206203 Yang et al. Sep 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060241746 Shaoulian et al. Oct 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20060271174 Nieminen et al. Nov 2006 A1
20060281968 Duran et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060293698 Douk Dec 2006 A1
20070027533 Douk Feb 2007 A1
20070038293 St. Goar et al. Feb 2007 A1
20070038297 Bobo et al. Feb 2007 A1
20070050022 Vidlund et al. Mar 2007 A1
20070055206 To et al. Mar 2007 A1
20070055368 Rhee et al. Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070067027 Moaddeb et al. Mar 2007 A1
20070073391 Bourang et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070080188 Spence et al. Apr 2007 A1
20070100356 Lucatero et al. May 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112244 McCarthy et al. May 2007 A1
20070112424 Spence et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118215 Moaddeb May 2007 A1
20070129737 Goldfarb et al. Jun 2007 A1
20070135913 Moaddeb et al. Jun 2007 A1
20070156235 Rourke et al. Jul 2007 A1
20070173926 Bobo et al. Jul 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070198038 Cohen et al. Aug 2007 A1
20070203391 Bloom et al. Aug 2007 A1
20070213758 Rourke et al. Sep 2007 A1
20070232941 Rabinovich Oct 2007 A1
20070233238 Huynh et al. Oct 2007 A1
20070244554 Rafiee et al. Oct 2007 A1
20070244555 Rafiee et al. Oct 2007 A1
20070244556 Rafiee et al. Oct 2007 A1
20070255396 Douk et al. Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070265702 Lattouf Nov 2007 A1
20070270793 Lattouf Nov 2007 A1
20070276437 Call et al. Nov 2007 A1
20070276478 Marmureanu et al. Nov 2007 A1
20070282429 Hauser et al. Dec 2007 A1
20070293943 Quinn Dec 2007 A1
20080004597 Lattouf et al. Jan 2008 A1
20080015688 Hill et al. Jan 2008 A1
20080039935 Buch et al. Feb 2008 A1
20080050347 Ichim Feb 2008 A1
20080065205 Nguyen et al. Mar 2008 A1
20080091059 Machold et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080140188 Rahdert et al. Jun 2008 A1
20080140190 Macoviak et al. Jun 2008 A1
20080167714 St. Goar et al. Jul 2008 A1
20080177380 Starksen et al. Jul 2008 A1
20080183283 Downing Jul 2008 A1
20080183285 Shaoulian et al. Jul 2008 A1
20080195126 Solem Aug 2008 A1
20080195200 Vidlund et al. Aug 2008 A1
20080200981 Shaoulian et al. Aug 2008 A1
20080228032 Starksen et al. Sep 2008 A1
20080228201 Zarbatany et al. Sep 2008 A1
20080228265 Spence et al. Sep 2008 A1
20080228266 McNamara et al. Sep 2008 A1
20080228272 Moaddeb et al. Sep 2008 A1
20080234701 Morales et al. Sep 2008 A1
20080234702 Morales et al. Sep 2008 A1
20080234813 Heuser Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080249504 Lattouf et al. Oct 2008 A1
20080249618 Huynh et al. Oct 2008 A1
20080319541 Filsoufi Dec 2008 A1
20090043381 Macoviak et al. Feb 2009 A1
20090069885 Rahdert et al. Mar 2009 A1
20090076600 Quinn Mar 2009 A1
20090088838 Shaolian et al. Apr 2009 A1
20090118744 Wells et al. May 2009 A1
20090118825 Rourke et al. May 2009 A1
20090149949 Quinn Jun 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090182418 Solem et al. Jul 2009 A1
20090182419 Bolling Jul 2009 A1
20090209950 Starksen Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222081 Linder et al. Sep 2009 A1
20090228100 Solem et al. Sep 2009 A1
20090287179 Machold et al. Nov 2009 A1
20090306622 Machold et al. Dec 2009 A1
20090306685 Fill Dec 2009 A1
20090326648 Machold et al. Dec 2009 A1
20100023056 Johansson et al. Jan 2010 A1
20100023118 Medlock et al. Jan 2010 A1
20100030330 Bobo et al. Feb 2010 A1
20100036483 Rourke et al. Feb 2010 A1
20100049213 Serina et al. Feb 2010 A1
20100094248 Nguyen et al. Apr 2010 A1
20100121349 Meier et al. May 2010 A1
20100121433 Bolling et al. May 2010 A1
20100121435 Subramanian et al. May 2010 A1
20100121437 Subramanian et al. May 2010 A1
20100131057 Subramanian et al. May 2010 A1
20100137887 Crockett et al. Jun 2010 A1
20100152845 Bloom et al. Jun 2010 A1
20100161044 Chang et al. Jun 2010 A1
20100185172 Fabro Jul 2010 A1
20100185273 Solem et al. Jul 2010 A1
20100198056 Fabro et al. Aug 2010 A1
20100198192 Serina et al. Aug 2010 A1
20100198208 Napp et al. Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217283 St. Goar et al. Aug 2010 A1
20100249920 Bolling et al. Sep 2010 A1
20100280602 Mathis Nov 2010 A1
20100298929 Thornton et al. Nov 2010 A1
20100298930 Orlov Nov 2010 A1
20100318184 Spence Dec 2010 A1
20100331971 Keränen et al. Dec 2010 A1
20110009957 Langberg et al. Jan 2011 A1
20110011917 Loulmet Jan 2011 A1
20110015722 Hauser et al. Jan 2011 A1
20110022164 Quinn et al. Jan 2011 A1
20110022166 Dahlgren et al. Jan 2011 A1
20110060407 Ketai et al. Mar 2011 A1
20110066234 Gordon et al. Mar 2011 A1
20110092988 Cohen et al. Apr 2011 A1
20110093063 Schreck Apr 2011 A1
20110106106 Meier et al. May 2011 A1
20110106117 Mathis et al. May 2011 A1
20110144743 Lattouf Jun 2011 A1
20110172754 Starksen et al. Jul 2011 A1
20110207996 Starksen Aug 2011 A1
20110213387 Nguyen et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110230961 Langer et al. Sep 2011 A1
20110230962 Moaddeb et al. Sep 2011 A1
20110251684 Rahdert et al. Oct 2011 A1
20110257740 Shaoulian et al. Oct 2011 A1
20110257741 Moaddeb et al. Oct 2011 A1
20110264208 Duffy et al. Oct 2011 A1
20120010461 Goldfarb et al. Jan 2012 A1
20120041548 Crabtree Feb 2012 A1
20120053680 Bolling et al. Mar 2012 A1
20120065464 Ellis et al. Mar 2012 A1
20120095552 Spence et al. Apr 2012 A1
20120101442 Legaspi et al. Apr 2012 A1
20120109288 Bolling May 2012 A1
20120109289 Bolling May 2012 A1
20120123532 Mathis May 2012 A1
20120136433 Marmureanu et al. May 2012 A1
20120158020 Crockett et al. Jun 2012 A1
20120179184 Orlov Jul 2012 A1
20120185040 Rahdert et al. Jul 2012 A1
20120197388 Khairkhahan Aug 2012 A1
20120203072 Lattouf et al. Aug 2012 A1
20120209376 Hauser et al. Aug 2012 A1
20120209379 Shaolian et al. Aug 2012 A1
20120215305 Le et al. Aug 2012 A1
20120221101 Moaddeb et al. Aug 2012 A1
20120271331 To et al. Oct 2012 A1
20120310331 Eigler et al. Dec 2012 A1
20120323314 Callas et al. Dec 2012 A1
20130023985 Khairkhahan et al. Jan 2013 A1
20130035757 Zentgraf et al. Feb 2013 A1
20130110230 Solem May 2013 A1
20130116776 Gross et al. May 2013 A1
20130123913 Kuehn May 2013 A1
20130131791 Hlavka et al. May 2013 A1
20130253639 Alkhatib Sep 2013 A1
20130253641 Lattouf Sep 2013 A1
20130282059 Ketai et al. Oct 2013 A1
20130304093 Serina et al. Nov 2013 A1
20130304197 Buchbinder et al. Nov 2013 A1
20140039607 Kovach Feb 2014 A1
20140066693 Goldfarb et al. Mar 2014 A1
20140067048 Chau et al. Mar 2014 A1
20140088693 Seguin et al. Mar 2014 A1
20140135799 Henderson May 2014 A1
20140148849 Serina et al. May 2014 A1
20140155783 Starksen et al. Jun 2014 A1
20140172084 Callas et al. Jun 2014 A1
20140188108 Goodine et al. Jul 2014 A1
20140207154 Bielefeld et al. Jul 2014 A1
20140207161 Dell et al. Jul 2014 A1
20140222138 Machold et al. Aug 2014 A1
20140228871 Cohen et al. Aug 2014 A1
20140243860 Morris et al. Aug 2014 A1
20140243894 Groothuis et al. Aug 2014 A1
20140243963 Sheps et al. Aug 2014 A1
20140257341 Eidenschink et al. Sep 2014 A1
20140275757 Goodwin et al. Sep 2014 A1
20140276648 Hammer et al. Sep 2014 A1
20140276971 Kovach Sep 2014 A1
20140276979 Sauer et al. Sep 2014 A1
20140309661 Sheps et al. Oct 2014 A1
20140336756 Lee et al. Nov 2014 A1
20140364875 Zentgraf Dec 2014 A1
20140371843 Wilson et al. Dec 2014 A1
20140379002 Morris et al. Dec 2014 A1
20140379006 Sutherland et al. Dec 2014 A1
20150018940 Quill et al. Jan 2015 A1
20150018941 Lee et al. Jan 2015 A1
20150032127 Gammie et al. Jan 2015 A1
20150038988 Tegels et al. Feb 2015 A1
20150045815 Eidenschink Feb 2015 A1
20150051697 Spence et al. Feb 2015 A1
20150057682 Kovach Feb 2015 A1
20150066138 Alexander et al. Mar 2015 A1
20150073547 Eliasen et al. Mar 2015 A1
20150105804 Dell et al. Apr 2015 A1
20150105855 Cabiri et al. Apr 2015 A1
20150112432 Reich et al. Apr 2015 A1
20150119981 Khairkhahan et al. Apr 2015 A1
20150127091 Cecere et al. May 2015 A1
20150133999 Robinson et al. May 2015 A1
20150134050 Solem et al. May 2015 A1
20150134053 Morris et al. May 2015 A1
20150134055 Spence et al. May 2015 A1
20150134057 Rourke et al. May 2015 A1
20150142105 Bolling et al. May 2015 A1
20150157459 Macoviak et al. Jun 2015 A1
20150164639 Starksen et al. Jun 2015 A1
20150173740 Sugimoto et al. Jun 2015 A1
20150173900 Hauser et al. Jun 2015 A1
20150182223 Ketai et al. Jul 2015 A1
20150223793 Goldfarb et al. Aug 2015 A1
20150272586 Herman et al. Oct 2015 A1
20150272734 Sheps et al. Oct 2015 A1
20150297212 Reich et al. Oct 2015 A1
20150313713 Zentgraf et al. Nov 2015 A1
20150335430 Loulmet et al. Nov 2015 A1
20150366556 Khairkhahan et al. Dec 2015 A1
20150366666 Khairkhahan et al. Dec 2015 A1
20160008132 Cabiri et al. Jan 2016 A1
20160015515 Lashinski et al. Jan 2016 A1
20160015517 Sutherland et al. Jan 2016 A1
20160022419 Yellin et al. Jan 2016 A1
20160038285 Glenn et al. Feb 2016 A1
20160038286 Yellin et al. Feb 2016 A1
20160058557 Reich et al. Mar 2016 A1
20160067043 Machold et al. Mar 2016 A1
20160106420 Foerster et al. Apr 2016 A1
20160113762 Clague et al. Apr 2016 A1
20160113767 Miller et al. Apr 2016 A1
20160120642 Shaolian et al. May 2016 A1
20160143737 Zentgraf et al. May 2016 A1
20160174979 Wei Jun 2016 A1
20160192925 Bachman Jul 2016 A1
20160242909 Ketai et al. Aug 2016 A1
20160262887 Chang et al. Sep 2016 A1
20160287387 Wei Oct 2016 A1
20160354082 Oz et al. Dec 2016 A1
20160374812 Machold et al. Dec 2016 A1
20170007405 Griffin et al. Jan 2017 A1
20170020521 Krone et al. Jan 2017 A1
20170042546 Goldfarb et al. Feb 2017 A1
20170049455 Seguin Feb 2017 A1
20170055969 Machold et al. Mar 2017 A1
20170143330 Basude et al. May 2017 A1
20170189013 Morris et al. Jul 2017 A1
20170202554 Eidenschink Jul 2017 A1
Foreign Referenced Citations (2)
Number Date Country
2012068541 May 2012 WO
2017115123 Jul 2017 WO
Non-Patent Literature Citations (1)
Entry
The International Search Report and Written Opinion dated Aug. 9, 2019 in International Appln. No. PCT/US2019/022680.
Related Publications (1)
Number Date Country
20210290390 A1 Sep 2021 US
Provisional Applications (1)
Number Date Country
62645306 Mar 2018 US
Continuations (1)
Number Date Country
Parent 16352963 Mar 2019 US
Child 17339353 US