The present disclosure generally relates to devices and methods for accessing blood vessels during intravascular medical treatments. More specifically, the present disclosure relates to a catheter capable of radial expansion to facilitate the manufacturing and assembly of a catheter.
Catheters serve a broad range of functions in intravascular medical treatments. They are typically a thin tube manufactured from medical grade materials that can be inserted into a body and can be used to deliver drugs or other devices, perform surgical procedures, remove blockages from vessels, and a variety of other purposes.
There are a number of access challenges that can make it difficult to access a target site. Distant areas such as the neurovascular bed are challenging with conventional technology, as the target vessels are small in diameter, remote relative to the site of insertion, and are highly tortuous. Aspiration and/or access catheters for removing vessel occlusions in these areas need to be capable of enduring high flexure strains without kinking and progress through loops and increasingly smaller vessel sizes without causing trauma in order to access a target site. It is not unusual that a catheter will have to navigate windy pathways with multiple loops, where vessel segment can have several extreme bends in quick succession over only a few centimeters of travel.
The catheters must also have good compressive stiffness (for pushability, and stability and integrity when clot retrieval devices are withdrawn into them) and good tensile stiffness (to avoid stretching and deformation when placed in tension, such as when being retrieved into an outer sheath while holding a large clot). Managing the stiffness transitions from proximal to distal sections to avoid kinking is critical for these devices. The catheters must also allow for the easy transmission of other devices through the internal lumen. For these reasons trackability, flexibility, kink-resistance, and internal lubricity are often key design parameters associated with catheters used in these procedures. However, it can be tricky for designers of traditional catheters to combine these characteristics effectively without large trade-offs.
By modifying the material or adjusting the way a catheter is manufactured, it is possible to tailor the stiffness of different sections of the catheter for particular applications. Many current catheters control transitions from stiffer materials to softer materials by changing the configuration of a braided member backbone (changing the braid PIC count or coil pitch), utilizing a custom machined metallic support frame backbone, and/or by changing the durometer hardness of the surrounding polymeric materials. Coils of the braided wires used to reinforce the catheter shaft are often a continuous metallic super-elastic or stainless steel of very fine size which can be prone to kink and difficult to manufacture with the consistency needed for a uniform product. These materials can also add considerable cost and complexity.
The easy delivery of auxiliary devices (such as guidewires, microcatheters, clot retrieval/stentriever devices, etc.) through the internal lumen without excessive friction from binding must be considered. Many contemporary devices attempt to utilize an internal low friction liner to greatly enhance the lubricity of the catheter lumen. Such devices can be complicated to manufacture, since the inner diameter of the braid or metallic support frame backbone must be roughly the same or slightly smaller than the outer diameter of the inner liner on a mandrel during construction. Current backbone designs do not allow for the radial expansion necessary to slide over the liner during assembly without excessive friction.
The present designs are aimed at providing an improved catheter support frames and manufacturing methods to address the above-stated deficiencies.
The innovations of this disclosure involve controlling the axial and lateral stiffness along the length of a catheter shaft and allowing the underlying support tube of the shaft to be radially expandable for assembly over a liner on a mandrel during manufacture. The catheter shaft tube can, for example, be cut from a hypotube into an axial series of circumferentially discontinuous ribs. The ribs can form an interlocking structure to give the shaft good resistance to both tensile elongation and compressive shortening while maintaining excellent lateral flexibility. Alignment of the circumferential discontinuities of the ribs can form longitudinal seams which allow the frame of the shaft to be expanded for ease of assembly with a low friction inner liner. The designs can manage stiffness transitions along the length of the shaft to avoid kinking by changing the configuration the features cut into the support tube over different axial segments of the shaft.
The catheter can have a shaft comprising a support tube, a proximal end, and a distal end. The support tube can have an inner liner disposed around a longitudinal axis. The support tube can have an axial series of interlocking segments formed from a plurality of circumferentially discontinuous ribs. This structure can create a substantially tubular profile along the longitudinal axis and define a lumen through the inner liner extending therethrough. In some examples, a spine can connect each of the plurality of ribs, with the spine following a non-linear profile around and along the axis of the support tube due to the circumferential discontinuities in the ribs.
The circumferentially discontinuous ribs of the support tube can form one or more axial seams in the support tube due to the relative longitudinal alignment of the axial splits in the ribs of the interlocking segments. In this way the support tube can radially open along the seam similar to a clamshell. The support tube can have a nominal, unexpanded inner diameter equal to or slightly less than the outer diameter of the inner liner prior to assembly. When expanded, the support tube can have an expanded inner diameter that is slightly larger than the outer diameter of the inner liner.
The spacing between adjacent interlocking segments can also be varied to tailor the catheter stiffness in different axial sections of the support tube. In one example, a first segment pitch measured between a first pair of adjacent interlocking segments can be the same as a second segment pitch measured between a second pair of adjacent interlocking segments. In another example, a first segment pitch measured between a first pair of adjacent interlocking segments can be different than a second segment pitch measured between a second pair of adjacent interlocking segments.
The manner in which the interlocking segments fit together around the axial seam or seams can take multiple forms. In one example, each of the axial series of interlocking segments can have a top half which can have a pair of inset teeth extending from respective ribs. Opposing this, the interlocking segments can have a bottom half with a pair of outset teeth extending from respective ribs which can define and bound a reception space between them. In some cases, the inset and outset teeth of the interlocking segments can have a triangular, quadrilateral, or other polygonal shape. In other examples, the teeth can form substantially L-shaped projections.
The apposition between the reception spaces of the bottom half and the inset teeth of the top half can be configured so the halves are in complimentary engagement with one another. When the support tube is assembled, this engagement creates the aligned gap of the one or more axial seams. The gap can be defined by the perimeter of the interface between the reception spaces of the bottom half and the inset teeth of the top half so that the seam or seams are continuous down the long axis of the support tube. When the seam follows this perimeter around the projections of the teeth along the axis, it can have a circumferentially and axially non-linear profile. The spine can also follow a non-linear path alternating between the top half and the bottom half along the ribs.
The distal end of the support tube can be configured to have any of a number of different tips or mouths attached depending on the objectives of a given procedure. In one case, the distal end can feature a face approximately perpendicular to the longitudinal axis. The face can be the distalmost rib, or a more specific ringed bracket. Such a face can allow for the attachment of therapeutic tips, expandable mouths, or other similar devices.
In other cases, a flexible support tube for a catheter shaft body can have a laser cut framework of struts forming substantially circular ribs distributed along a longitudinal axis of the support tube. The ribs can have one or more circumferential discontinuities around the circumference of the support tube. To link individual ribs, a spine can extend the length of the long axis of the support tube, navigating around the circumference of the tube and the gaps created by the discontinuities in the ribs. The distal end of the support tube can have a face configured for connecting catheter tips or mouths for conducting intravascular procedures.
The circumferential discontinuities in the ribs can create gaps which can be aligned to form one or more axial seams. The continuity the one or more seams can give some radial expansion capability to the support tube. This expansion can allow the support tube to be sized with a nominal inner diameter smaller than the outer diameter of an inner low friction liner. The support tube can then be expanded to slide over the liner on a mandrel as the catheter is assembled during manufacture.
The ribs of the framework of struts can be grouped to form an axial series of interlocking segments having a substantially tubular profile along a longitudinal axis. The interlocking segments can each have a top half and a bottom half. In some examples, the halves can be divided by a plane passing through the longitudinal axis and at least a portion of one of the one or more seams that is parallel to the axis. In some examples, a pair of inset teeth can extend from respective ribs of an interlocking segment on the top half. In a similar way, the corresponding bottom half of the same interlocking segment can have a pair of outset teeth extending from respective ribs and bounding a reception space.
The interlocking segments can be aligned such that each pair of inset teeth of the top half and each pair of outset teeth of the bottom half are in apposition to one another but are circumferentially separated from one another by the one or more axial seams when the support tube is assembled. As a result, the teeth can fit together like a zipper but not be fixedly connected to each other. The inset teeth of the top half can reside in the reception space created by the outset teeth of the bottom half. This overlapping engagement of the inset teeth into the reception space of the outset teeth can also limit the axial expansion of the support tube if the teeth are shaped such that there is a physical stop to expansion.
The inset teeth of each top half and the outset teeth of each bottom half of the interlocking segments can have projections normal to the longitudinal axis of the support tube. In other examples, the teeth can have projections parallel to the longitudinal axis or projections both parallel and normal to the axis. These shapes, combined with the overlap of the teeth into the reception spaces, can mean the one or more axial seams are a continuous gap defined by the perimeter of the interface of the outset teeth of the bottom half with the inset teeth of the top half of the interlocking segments. This perimeter can give the one or more axial seams a circumferentially and axially non-linear profile. The seam allows the support tube to radially expand while limiting the total expansion due to the engagement of the teeth. The engagement of the teeth can also limit any axial expansion of the support tube.
Dimensions of the support tube structure can also be varied to change the stiffness profile in different portions of the catheter. For example, a first rib width of a rib can be the same or different than a second rib width of another rib. Similarly, a first segment pitch measured between a first pair of adjacent interlocking segments can be the same or different than a second segment pitch measured between a second pair of adjacent interlocking segments.
Other processing beyond dimensional aspects can also be used to tailor the stiffness and bending flexibility of the catheter. For example, a series of polymeric jackets can be reflowed over the support tube to bond the underlying structure and create the outer surface of the catheter body. These outer jackets can have varying durometer hardness to create a proximal portion with more column stiffness and transition into a distal portion with more lateral flexibility.
Also included can be a method for manufacturing a catheter. The method can include the step of positioning a low friction inner liner on a first application mandrel. The liner can be PTFE or a like polymer.
Another step can involve forming a support tube having an axial seam allowing radial expansion of the support tube. In some examples, the support tube can be machined from a hypotube of a shape memory superelastic alloy such as Nitinol (NiTi) to have an unexpanded inner diameter equal to or slightly smaller than the outer diameter of the inner liner on the application mandrel.
The support tube can be laser cut to have a plurality of circumferentially discontinuous ribs disposed along the longitudinal axis between the proximal end and the distal end. The seam can be formed through the alignment of the circumferential discontinuities of the ribs along the axis. The ribs can thus also form a spine following a circumferentially and axially non-linear profile, alternating between the top half and the bottom half, which links each of the ribs.
The axial seam can be stretched by expanding the support tube on a substantially tubular second oversized mandrel. The oversized mandrel can have an outer diameter slightly larger than the outer diameter of inner the liner on the application mandrel. The method can then have the step of chilling the laser cut support tube on the oversized mandrel to a temperature at least below the Austenite finish (Af) temperature of the alloy, and ideally at or below the Martensite finish (Mf) temperature. As an alternative, the support tube could be chilled to the desired temperature before expansion over the oversized mandrel. The second oversized mandrel can then be removed, and the radially expanded support tube positioned around the inner liner on the first application mandrel.
A plurality of outer polymer jackets can be reflowed or laminated to the support tube. The jackets can be in an axial series and have varying durometer hardness. In an alternate example, the jackets could be applied in a radial series or be a blend of materials. The reflow process can adhere the liner and support tube by flowing through the gaps between the ribs. The first application mandrel can then be removed once the structure has been bonded.
Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.
The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.
The objectives for the designs presented herein can be for a variably flexible and kink-resistant elongated catheter for vascular applications. The designs are flexible enough to access remote vessel occlusions but also benefit from good compressive and tensile stiffness. The designs can have proximal and distal ends and a laser cut support tube frame extending there between. The support tube frame can have an interlocking structure of ribs with at least one continuous split seam to allow some radial expansion during the manufacturing process while maintaining longitudinal stiffness. A low friction inner liner can be disposed on the interior surface of frame section. An outer polymer layer or laminating jacket can coat or encapsulate the struts of the frame, preventing disengagement of the interlocking structure while the catheter is pushed through tortuous anatomy. A distal face can allow for connecting any of a number of catheter tips, such as expandable funnel mouths for aspiration and clot retrieval.
The catheter can also be compatible with relatively low-profile access sheaths and outer catheters, so that a puncture wound in the patient's groin (in the case of femoral access) can be easily and reliably closed. While the following description is in many cases in the context of mechanical thrombectomy clot retrieval or other treatments in the neurovascular bed, the devices and methods described may be easily adapted for other procedures and in other body passageways as well.
Specific examples of the present invention are now described in detail with reference to the Figures, where identical reference numbers indicate elements which are functionally similar or identical. Accessing the various vessels within the vascular, whether they are coronary, pulmonary, or cerebral, involves well-known procedural steps and the use of a number of conventional, commercially available accessory products. These products can involve angiographic materials, rotating hemostasis valves, luers, and guidewires as widely used in laboratory and medical procedures. Though they may not be mentioned specifically by name, when these or similar products are necessarily employed in conjunction with the devices and methods of this invention in the description below, their function and exact constitution are not described in detail.
Turning to the figures, in
The ribs 118 can be circumferentially discontinuous such that a longitudinal seam 116 splits the structure of the support tube 100 to allow for some radial expansion. Radial expansion can be beneficial, for example, during manufacturing when the laser cut support tube structure can be expanded to fit over the inner liner 160 or other layers on a supporting mandrel 10 as shown here. Without this ability to expand over the liner, there would be too much friction to effectively slide the frame over the liner/mandrel pair during assembly. Furthermore, if the support tube were sized larger than the diameter of the liner from the outset it would not sit concentrically on the liner and the wall thickness of the resulting catheter would be too large.
The support tube 100 can then have an expanded inner diameter 108 larger than the outer diameter 162 of the liner 160 on the mandrel. In this unrestrained state, the expanded ID 108 can be only slightly larger (0.001 inches, or up to 0.002-0.003 inches) than the OD if the liner.
Although the seam 116 can be continuous along the entire length of the support tube 100, a spine 126 can exist through the continuous running of the ribs 118 circumferentially on radially opposing sides of the seam. The spine 126 links the structure longitudinally but can allow for greater flexibility than would exist with, for example, a continuous and linear spine member running the length of the support tube 100 parallel to the longitudinal axis 111.
In some instances, the support tube 100 can be formed integrally with an expandable tip section 310 which can expand to a larger radial size when deployed from the distal end of a sheath or outer catheter. An enlarged tip can offer improved aspiration efficiency and can also allow for the gradual compression of a captured clot once it has been dislodged from the vessel and ingested.
An example of a flat cut pattern for the support tube 100 from
The top half 102 of the interlocking segments, for example, can have a pair of inset teeth 103 cut in a shape that is primarily square as shown. Similarly, the bottom half 104 of the segments can have a pair of outset teeth 105. The outset teeth can border a reception space 106 for each interlocking segment where the inset teeth 103 can engage. In other examples, the teeth can have a triangular, quadrilateral, or other polygonal shape which can interlock and also improve the torque response of the catheter.
It can be appreciated that the reception space 106 for coupling the inset teeth 103 of the top half 102 and the outset teeth 105 of the bottom half 104 can be sized differently for differing interlocking segments 120, 130, 140 so that the size of the gap created by the inset teeth and reception spaces can be varied depending on the design parameters for different sections of the support tube 100. When secured together, the interlocking segments can therefore influence flexibility and/or bias bending of the assembly along certain planes.
Bending stiffness of the support tube 100 can also be tailored either through a combination of varying the cut width and rib width. Where the cut width is kept constant (for instance, the width of a laser beam) the rib width can be varied to tailor bending stiffness. Where the cut width is varied, the rib width can be kept constant or varied and the laser can be used to remove material. It is appreciated that by using a cut width equal to that of the laser beam, no pieces of material are removed, and the cost of manufacture is greatly reduced. On the other hand, by using the laser to remove pieces of material, greater variation in shaft design can be achieved. It is also appreciated that combination of both approaches may be used so the shaft incorporates more cost-effective cutting/processing at the proximal end and more costly approaches are kept distally where more complicated cuts can be required to achieve the desired flexibility performance. For example, a proximal section of the shaft may be cut from SS and be joined to a distal section cut from a superelastic alloy such as NiTi. This construction can reduce overall cost while affording the benefits of NiTi to the distal end of the device, where it is required for enhanced resilience in tight bending curves and also to provide some expansion and recovery characteristics. For such a device, the SS and NiTi sections can be joined by welding directly, by welding to a more weldable intermediate metal such as a platinum marker band. As an alternative, laser cut interlocking features can hold both cut tube sections together in the longitudinal direction. An outer membrane cover or jacket can secure the tubes together in a radial direction.
In some examples, the small size of the axial and radial gaps between the teeth of the interlocking segments can provide resistance to elongation and/or compression of the support tube while maintaining lateral flexibility required to navigate through the vasculature. The support tube can be prevented from stretching when it is being withdrawn back into an outer catheter and maintain stability against bunching up when a stentriever or another device is being withdrawn through the lumen.
Various dimensional parameters of the laser cut frame of the support tube 100 can also be adjusted to tune the catheter shaft for the desired flexibility performance as seen in
For instance, a first segment pitch 122 for an interlocking segment 130 can be narrowed or shortened to provide better trackability and torque response near the proximal end 112 of the support tube. Similarly, near the distal end 114 where lateral flexibility is more of a concern, the support tube 100 can transition to a second segment pitch 132 of an interlocking segment 140 greater than the first segment pitch 122 to better optimize those physical capabilities. The change in pitch also changes the spacing between the teeth extensions 117 interlocking in adjacent reception spaces 106.
The segment pitch 122, 132 can alternatively be continuously varied along the longitudinal length of the support tube 100. As a result, adjacent interlocking segments 120, 130, 140 of the tube can become progressively closer together or further apart by a small but incrementally constant percentage with each successive segment. A continuously varied pitch can result in a more gradual stiffness transition along the length of the support tube 100 and provide rigidity while preventing the formation of kink points which can otherwise form at transitions with a higher stiffness gradient. This configuration can also aid in delivering a balanced and consistent push or thrust force through the length of the support tube 100 and ensure the operator receives decent tactile feedback from manipulating the catheter during a procedure.
Another design variable which can be altered to optimize the stiffness and flexibility of the support tube 100 is the width or cross sectional shape of the struts forming the ribs 118. For example, a smaller rib cross section can allow the support tube to flex more easily by affording greater space between ribs. As illustrated in
The cut support tube 100 can have an outer polymer layer 180 or jacket around the ribs 118 of the interlocking segments, as shown in
In one example, an outer jacket 180 can be reflowed over a laser cut hypotube and into the spaces between the ribs 118. After such a process, there can sometimes be material radially protruding at the location of the laser cut ribs 118. In this situation, the assembly can be pulled through a sizing die to remove any excess material above the struts such that the overall outer diameter of the support tube 100 shaft is consistent for a desired delivery profile. Alternatively, an uneven or ribbed profile may be desired to reduce friction between the outer surface of the catheter and an outer sheath or blood vessel.
In another example, the outer polymer layer 180 can be injection molded into the spaces of the support tube 100 during manufacturing. In a further example, the layer or jacket 180 can be adhered to the struts 118 of the support tube 100 using an adhesive with a primer component for bonding.
A cross sectional view through the wall of the catheter body from
The use of interior and exterior polymeric coatings, which may extend into, interface with, or blend with each other through the spaces in the laser cut support tube 100 aid in allowing the teeth of the interlocking segments to flex and interlock without plastic deformation. The ribs 118 can therefore have some independent flexing capability while having a limited constraint imposed by the outer jacket or jackets.
The layout and construction of the inner liner 160 and outer jacket 180 can be varied. For example, the outer jacket 180 material can extend radially inward to or beyond an inner surface of the support tube 100 or to an intermediate position within the inner diameter and outer diameter of the support tube interstitial of the ribs 118. Alternately, the outer jacket 180 may only be bonded to the surface of the outer diameter of the support tube. Having a jacket 180 which is bonded only to the outer diameter will allow the ribs 118 of the support tube to bend more freely, since a jacket extending more radially inward relative to the wall thickness of the support tube can stiffen the catheter. The unfilled gaps between support tube ribs 118 leave the ribs free to move axially. Other variabilities in stiffness can be achieved by having an outer jacket 180 composed of a composite series of radial jackets 182 each having a different thickness and/or being of differing materials. It can also be appreciated that the radial series of jackets 182 could be arranged in different manners for various axial segments of the catheter.
As previously discussed, the outer polymer layer can also be a formed from an axial series of polymer jackets. Different jackets or sets of jackets 183, 184, 185 can be disposed around the ribs 118 at discrete lengths along the axis of the support tube 100 in order to give distinct pushability and flexibility characteristics to different sections of the tubular portion of the catheter as shown in
In many examples, materials can be selected so the jacket layers 183, 184, 185 decrease in durometer distally. By configuring the jackets in an axial series, and using polymers with differing durometer hardness, it is possible to transition the overall stiffness of the catheter from being stiff and pushable at the proximal end to extremely flexible at the distal end. General selections for the outer jacket layers can be PTFE and Pebax®, but much more specialized materials or blends can be incorporated into specific axial sections of the support tube 100. In more proximal sections of the catheter where axial stiffness and resistance to collapse are important, the jacket segments can be made from a suitable robust polymer such as polyimide, nylon, polypropylene, or other materials with a higher density. For more distal sections where flexibility is required, the jacket segments can be for instance a polyurethane, PVC, low density polyethylene (LDPE), or other polymers of suitable modulus and softness. Blends, co-extrusions, and/or mixtures of these and other materials can also be used to obtain the right material properties for a particular segment.
Transitions between jackets can also be tapered or slotted to give a more gradual stiffness transition between abutting jackets in longitudinal series. When the jackets are applied through a reflow or lamination process, they can bond the underlying structure together and provide a smooth exterior finish. Slots or other features can then be added through machining or forming dies.
At the distal end 114 of the support tube 100, following the distalmost interlocking segment, the laser cut structure can have a face 115 approximately perpendicular to the longitudinal axis 111. The face can be another circular rib, a collar, or other suitable anchoring structure. Such a face can allow for the attachment of therapeutic tips, expandable mouths, or other similar devices.
The example expandable tip 310 shown in
The tip 310 can be constructed from a shape memory allow and heat set so that it is capable of self-expanding when deployed from the distal end of an outer sheath or catheter. The support arms 316 can have enlarged cell openings 317 which can allow the arms to shorten and lengthen on opposing sides around the longitudinal axis 111 of the tip frame so that the device can track easily through an outer sheath or catheter in tortuous vessel paths. The branching of the support arm 316 struts can also allow the arms to torque and bend more freely than if a single strut without a cell 317 directly linked the distal hoops 315 with the distal face 115.
In many examples, the funnel shape formed by the tip 310 can be covered with another atraumatic polymer jacket or membrane (not shown). The enlarged mouth of the tip can improve aspiration efficiency, arrest unwanted flow, and lessen the risk of vessel trauma from snagging on vessel openings. When deployed, the tip 310 can match the vessel diameter and have sufficient radial force to seal with the vessel, or create enough of a flow restriction such that the majority of aspiration will be applied to blood and the clot distal of the mouth rather than fluid proximal of the tip.
In another example, the support tube 100 can have distal face 115 connected with an expandable mouth tip 410 which can have a radial array of struts or strands organized into a closed cell braid, as illustrated in
The braid array can be made of wire or cut from a shape memory alloy such that the mouth can be heat set to self-expand from a collapsed delivery configuration to an enlarged deployed configuration. The mouth tip 410 can be adhered or otherwise bonded at the distal end 114 of the support tube 100. In one example, the braided tip 410 can be manufactured so as to have a single circumferential joint or ring collar for attaching the support tube 100. Alternatively, the individual strands of the braid can be bonded directly to the distal face 115 of the tube or embedded within a polymer jacket.
In another example, the expandable tip 410 can be a closed cell mesh array with a continuous polygonal pattern made of triangular or quadrilateral cell pores 415 which are interlocked through the vertices of the adjacent cells of the mesh. The pattern can be one of those commonly seen in stenting applications, where a minimally invasive mesh is used to support and hold open vessel passages. In one case, an elongated quadrilateral pattern forms cell pores 415 where local array peaks mark the shared vertices. The pattern can repeat in an axial and radial fashion and the distalmost array peaks of adjacent pores 415 can be joined by atraumatic curved distal hoops or crowns 412 to mark the distal end 414 of the expandable tip 410.
A method for manufacturing a catheter utilizing the disclosed expandable laser cut support tube 100 is graphically illustrated in
A laser cut support tube frame 100 is formed in
In
Alternatively, the chilling steps can be eliminated by disposing a thin outer metal sleeve (not shown) around the oversized mandrel 20. The support tube 100 can be elastically expanded over the sleeve/oversized mandrel assembly and the oversized mandrel removed. The sleeve constrains the support tube radially so that it can then be slid over the inner liner 160 on the application mandrel 10. When the sleeve support is removed, the support frame 100 can contract down onto the inner liner 160.
The expanded support tube 100 can be slid over the inner liner 160 on the SPC application mandrel 10 as depicted in
A similar process is outlined in the method flow diagram in
Referring to
In step 11040, the support tube can be elastically expanded by stretching the axial seam so that the support tube can be placed on a second oversized mandrel. In some examples, the oversized mandrel can be sized so that the expanded inner diameter of the support tube frame is slightly larger than the outer diameter of the inner liner on the application mandrel. In some examples, the ID can be approximately 0.003-0.005 inches larger than the OD of the liner. Once the support tube is expanded on the oversized mandrel, it can be chilled to a temperature at least below the Af temperature, and ideally close to or below the Mf temperature of the material to induce a phase change to martensite. The martensitic phase is thermodynamically stable, so the support tube can be kept chilled and will retain its expanded state when the second oversized mandrel is removed in step 11060.
The expanded support tube can then be slid over and positioned around the inner liner on the first application mandrel in step 11070. A series of outer polymer jackets of varying durometer hardness can then be reflowed to the support tube (step 11080). The jackets can be in an axial series, a radial series, or some combination. The flow of the jacket materials can allow them to encapsulate the ribs struts of the support tube and bond with the inner liner. The first application mandrel can be removed in step 11090 once the assembly is completed.
The invention is not necessarily limited to the examples described, which can be varied in construction and detail. The terms “distal” and “proximal” are used throughout the preceding description and are meant to refer to a positions and directions relative to a treating physician. As such, “distal” or distally” refer to a position distant to or a direction away from the physician. Similarly, “proximal” or “proximally” refer to a position near or a direction towards the physician. Furthermore, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.
As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%.
In describing example embodiments, terminology has been resorted to for the sake of clarity. As a result, not all possible combinations have been listed, and such variants are often apparent to those of skill in the art and are intended to be within the scope of the claims which follow. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose without departing from the scope and spirit of the invention. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Similarly, some steps of a method can be performed in a different order than those described herein without departing from the scope of the disclosed technology.
Number | Name | Date | Kind |
---|---|---|---|
4243040 | Beecher | Jan 1981 | A |
4324262 | Hall | Apr 1982 | A |
4351342 | Wiita et al. | Sep 1982 | A |
4575371 | Nordqvist et al. | Mar 1986 | A |
4592356 | Gutierrez | Jun 1986 | A |
4719924 | Crittenden et al. | Jan 1988 | A |
4738666 | Fuqua | Apr 1988 | A |
4767404 | Renton | Aug 1988 | A |
4793348 | Palmaz | Dec 1988 | A |
4873978 | Ginsburg | Oct 1989 | A |
5011488 | Ginsburg | Apr 1991 | A |
5092839 | Kipperman | Mar 1992 | A |
5102415 | Guenther et al. | Apr 1992 | A |
5122136 | Guglielmi et al. | Jun 1992 | A |
5123840 | Nates | Jun 1992 | A |
5171233 | Amplatz | Dec 1992 | A |
5234437 | Sepetka | Aug 1993 | A |
5256144 | Kraus et al. | Oct 1993 | A |
5261916 | Engelson | Nov 1993 | A |
5372124 | Takayama et al. | Dec 1994 | A |
5385562 | Adams | Jan 1995 | A |
5387219 | Rappe | Feb 1995 | A |
5387226 | Miraki | Feb 1995 | A |
5396902 | Brennen et al. | Mar 1995 | A |
5449372 | Schmaltz | Sep 1995 | A |
5520651 | Sutcu | May 1996 | A |
5538512 | Zenzon et al. | Jul 1996 | A |
5549626 | Miller et al. | Aug 1996 | A |
5558652 | Henke | Sep 1996 | A |
5601600 | Ton | Feb 1997 | A |
5609627 | Goicoechea et al. | Mar 1997 | A |
5624461 | Mariant | Apr 1997 | A |
5639277 | Mariant | Jun 1997 | A |
5645558 | Horton | Jul 1997 | A |
5658296 | Bates | Aug 1997 | A |
5662671 | Barbut | Sep 1997 | A |
5695519 | Summers et al. | Dec 1997 | A |
5709704 | Nott et al. | Jan 1998 | A |
5713853 | Clark | Feb 1998 | A |
5728078 | Powers, Jr. | Mar 1998 | A |
5769871 | Mers Kelly | Jun 1998 | A |
5779716 | Cano | Jul 1998 | A |
5810874 | Lefebvre | Sep 1998 | A |
5814064 | Daniel et al. | Sep 1998 | A |
5827304 | Hart | Oct 1998 | A |
5846251 | Hart | Dec 1998 | A |
5855598 | Pinchuk | Jan 1999 | A |
5893869 | Barnhart et al. | Apr 1999 | A |
5895398 | Wensel | Apr 1999 | A |
5897567 | Ressemann | Apr 1999 | A |
5904698 | Thomas et al. | May 1999 | A |
5911725 | Boury | Jun 1999 | A |
5935139 | Bates | Aug 1999 | A |
5938645 | Gordon | Aug 1999 | A |
5947995 | Samuels | Sep 1999 | A |
5968057 | Taheri | Oct 1999 | A |
5971938 | Hart et al. | Oct 1999 | A |
5997939 | Moechnig et al. | Dec 1999 | A |
6022343 | Johnson et al. | Feb 2000 | A |
6063113 | Kavteladze | May 2000 | A |
6066149 | Samson et al. | May 2000 | A |
6066158 | Engelson | May 2000 | A |
6093196 | Okada | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6096053 | Bates | Aug 2000 | A |
6099534 | Bates | Aug 2000 | A |
6102932 | Kurz | Aug 2000 | A |
6106548 | Roubin et al. | Aug 2000 | A |
6129739 | Khosravi | Oct 2000 | A |
6142957 | Diamond et al. | Nov 2000 | A |
6146396 | Kónya et al. | Nov 2000 | A |
6146404 | Kim | Nov 2000 | A |
6165194 | Denardo | Dec 2000 | A |
6165199 | Barbut | Dec 2000 | A |
6168604 | Cano | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6174318 | Bates et al. | Jan 2001 | B1 |
6179861 | Khosravi | Jan 2001 | B1 |
6203561 | Ramee | Mar 2001 | B1 |
6214026 | Lepak | Apr 2001 | B1 |
6221006 | Dubrul | Apr 2001 | B1 |
6238412 | Dubrul | May 2001 | B1 |
6245087 | Addis | Jun 2001 | B1 |
6251122 | Tsukernik | Jun 2001 | B1 |
6254571 | Hart | Jul 2001 | B1 |
6264663 | Cano | Jul 2001 | B1 |
6306163 | Fitz | Oct 2001 | B1 |
6309379 | Willard | Oct 2001 | B1 |
6312407 | Zando-Azizi et al. | Nov 2001 | B1 |
6312444 | Barbut | Nov 2001 | B1 |
6315778 | Gambale et al. | Nov 2001 | B1 |
6325819 | Pavcnik et al. | Dec 2001 | B1 |
6334864 | Amplatz et al. | Jan 2002 | B1 |
6336934 | Gilson et al. | Jan 2002 | B1 |
6346116 | Brooks et al. | Feb 2002 | B1 |
6348056 | Bates | Feb 2002 | B1 |
6350271 | Kurz et al. | Feb 2002 | B1 |
6361545 | Macoviak | Mar 2002 | B1 |
6371963 | Nishtala et al. | Apr 2002 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6383205 | Samson et al. | May 2002 | B1 |
6383206 | Gillick | May 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6402771 | Palmer | Jun 2002 | B1 |
6409683 | Fonseca et al. | Jun 2002 | B1 |
6416541 | Denardo | Jul 2002 | B2 |
6425909 | Dieck et al. | Jul 2002 | B1 |
6432122 | Gilson et al. | Aug 2002 | B1 |
6436112 | Wensel | Aug 2002 | B2 |
6458139 | Palmer | Oct 2002 | B1 |
6485497 | Wensel | Nov 2002 | B2 |
6485501 | Green | Nov 2002 | B1 |
6485502 | Don Michael | Nov 2002 | B2 |
6511492 | Rosenbluth | Jan 2003 | B1 |
6517551 | Driskill | Feb 2003 | B1 |
6520934 | Lee et al. | Feb 2003 | B1 |
6520951 | Carrillo, Jr. et al. | Feb 2003 | B1 |
6530935 | Wensel | Mar 2003 | B2 |
6530939 | Hopkins | Mar 2003 | B1 |
6540768 | Diaz et al. | Apr 2003 | B1 |
6544279 | Hopkins | Apr 2003 | B1 |
6551341 | Boylan et al. | Apr 2003 | B2 |
6551342 | Shen et al. | Apr 2003 | B1 |
6575997 | Palmer et al. | Jun 2003 | B1 |
6582448 | Boyle | Jun 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6592607 | Palmer et al. | Jul 2003 | B1 |
6592616 | Stack | Jul 2003 | B1 |
6602271 | Adams | Aug 2003 | B2 |
6602272 | Boylan et al. | Aug 2003 | B2 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6610077 | Hancock et al. | Aug 2003 | B1 |
6616679 | Khosravi | Sep 2003 | B1 |
6632241 | Hancock et al. | Oct 2003 | B1 |
6638245 | Miller | Oct 2003 | B2 |
6638293 | Makower et al. | Oct 2003 | B1 |
6641590 | Palmer et al. | Nov 2003 | B1 |
6652555 | VanTassel et al. | Nov 2003 | B1 |
6656218 | Denardo et al. | Dec 2003 | B1 |
6660021 | Palmer et al. | Dec 2003 | B1 |
6663650 | Sepetka | Dec 2003 | B2 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6685722 | Rosenbluth | Feb 2004 | B1 |
6692504 | Kurz et al. | Feb 2004 | B2 |
6692508 | Wensel | Feb 2004 | B2 |
6692509 | Wensel | Feb 2004 | B2 |
6702782 | Miller | Mar 2004 | B2 |
6712834 | Yassour et al. | Mar 2004 | B2 |
6726701 | Gilson et al. | Apr 2004 | B2 |
6726703 | Broome et al. | Apr 2004 | B2 |
6730104 | Sepetka | May 2004 | B1 |
6824545 | Sepetka | Nov 2004 | B2 |
6855155 | Denardo et al. | Feb 2005 | B2 |
6878163 | Denardo et al. | Apr 2005 | B2 |
6890340 | Duane | May 2005 | B2 |
6913612 | Palmer | Jul 2005 | B2 |
6913618 | Denardo et al. | Jul 2005 | B2 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6989019 | Mazzocchi | Jan 2006 | B2 |
6989021 | Bosma et al. | Jan 2006 | B2 |
6994718 | Groothuis et al. | Feb 2006 | B2 |
6997939 | Linder | Feb 2006 | B2 |
7004954 | Voss et al. | Feb 2006 | B1 |
7004955 | Shen | Feb 2006 | B2 |
7004956 | Palmer | Feb 2006 | B2 |
7008434 | Kurz et al. | Mar 2006 | B2 |
7033376 | Tsukernik | Apr 2006 | B2 |
7041116 | Goto | May 2006 | B2 |
7048758 | Boyle | May 2006 | B2 |
7058456 | Pierce | Jun 2006 | B2 |
7063707 | Bose | Jun 2006 | B2 |
7153320 | Euteneuer et al. | Dec 2006 | B2 |
7175655 | Malaei | Feb 2007 | B1 |
7179273 | Palmer et al. | Feb 2007 | B1 |
7220269 | Ansel | May 2007 | B1 |
7220271 | Clubb | May 2007 | B2 |
7226464 | Garner et al. | Jun 2007 | B2 |
7229472 | DePalma et al. | Jun 2007 | B2 |
7232462 | Schaeffer | Jun 2007 | B2 |
7288112 | Denardo et al. | Oct 2007 | B2 |
7306618 | Demond | Dec 2007 | B2 |
7316692 | Huffmaster | Jan 2008 | B2 |
7323001 | Cubb | Jan 2008 | B2 |
7331976 | McGuckin, Jr. et al. | Feb 2008 | B2 |
7344550 | Carrison et al. | Mar 2008 | B2 |
7399308 | Borillo et al. | Jul 2008 | B2 |
7410491 | Hopkins | Aug 2008 | B2 |
7452496 | Brady et al. | Nov 2008 | B2 |
7491215 | Vale et al. | Feb 2009 | B2 |
7491216 | Brady | Feb 2009 | B2 |
7510565 | Gilson et al. | Mar 2009 | B2 |
7534252 | Sepetka | May 2009 | B2 |
7556636 | Mazzocchi | Jul 2009 | B2 |
7582111 | Krolik et al. | Sep 2009 | B2 |
7594926 | Linder et al. | Sep 2009 | B2 |
7604649 | McGuckin et al. | Oct 2009 | B2 |
7618434 | Santra et al. | Nov 2009 | B2 |
7662165 | Gilson et al. | Feb 2010 | B2 |
7670356 | Mazzocchi | Mar 2010 | B2 |
7691121 | Rosenbluth | Apr 2010 | B2 |
7691124 | Balgobin | Apr 2010 | B2 |
7708770 | Linder | May 2010 | B2 |
7736385 | Agnew | Jun 2010 | B2 |
7766934 | Pal | Aug 2010 | B2 |
7771452 | Pal | Aug 2010 | B2 |
7780694 | Palmer | Aug 2010 | B2 |
7780696 | Daniel et al. | Aug 2010 | B2 |
7819893 | Brady et al. | Oct 2010 | B2 |
7828815 | Mazzocchi | Nov 2010 | B2 |
7846176 | Mazzocchi | Nov 2010 | B2 |
7846175 | Bonnette et al. | Dec 2010 | B2 |
7850708 | Pal | Dec 2010 | B2 |
7887560 | Kusleika | Feb 2011 | B2 |
7901426 | Gilson et al. | Mar 2011 | B2 |
7914549 | Morsi | Mar 2011 | B2 |
7922732 | Mazzocchi | Apr 2011 | B2 |
7927349 | Brady et al. | Apr 2011 | B2 |
7927784 | Simpson | Apr 2011 | B2 |
7931659 | Bose et al. | Apr 2011 | B2 |
7998165 | Huffmaster | Aug 2011 | B2 |
8002822 | Glocker et al. | Aug 2011 | B2 |
8021379 | Thompson et al. | Sep 2011 | B2 |
8021380 | Thompson et al. | Sep 2011 | B2 |
8043326 | Hancock et al. | Oct 2011 | B2 |
8048151 | O'Brien et al. | Nov 2011 | B2 |
8052640 | Fiorella et al. | Nov 2011 | B2 |
8057497 | Raju et al. | Nov 2011 | B1 |
8066757 | Ferrera et al. | Nov 2011 | B2 |
8070791 | Ferrera et al. | Dec 2011 | B2 |
8088140 | Ferrera et al. | Jan 2012 | B2 |
8100935 | Rosenbluth et al. | Jan 2012 | B2 |
8109941 | Richardson | Feb 2012 | B2 |
8118829 | Carrison et al. | Feb 2012 | B2 |
8123769 | Osborne | Feb 2012 | B2 |
8137377 | Palmer | Mar 2012 | B2 |
8142422 | Makower et al. | Mar 2012 | B2 |
8142442 | Palmer et al. | Mar 2012 | B2 |
8182508 | Magnuson et al. | May 2012 | B2 |
8187298 | Pal | May 2012 | B2 |
8246641 | Osborne et al. | Aug 2012 | B2 |
8246672 | Osborne | Aug 2012 | B2 |
8252017 | Paul, Jr. et al. | Aug 2012 | B2 |
8252018 | Valaie | Aug 2012 | B2 |
8357178 | Grandfield et al. | Jan 2013 | B2 |
8357179 | Grandfield et al. | Jan 2013 | B2 |
8357893 | Xu et al. | Jan 2013 | B2 |
8361095 | Osborne | Jan 2013 | B2 |
8366663 | Fiorella et al. | Feb 2013 | B2 |
8372133 | Douk et al. | Feb 2013 | B2 |
8382742 | Hermann et al. | Feb 2013 | B2 |
8409215 | Sepetka et al. | Apr 2013 | B2 |
8419748 | Valaie | Apr 2013 | B2 |
8460312 | Bose et al. | Jun 2013 | B2 |
8460313 | Huffmaster | Jun 2013 | B2 |
8486104 | Samson et al. | Jul 2013 | B2 |
8529596 | Grandfield et al. | Sep 2013 | B2 |
8574262 | Ferrera et al. | Nov 2013 | B2 |
8579915 | French et al. | Nov 2013 | B2 |
8585643 | Vo et al. | Nov 2013 | B2 |
8585713 | Ferrera et al. | Nov 2013 | B2 |
8608761 | Osbourne et al. | Dec 2013 | B2 |
8679142 | Slee et al. | Mar 2014 | B2 |
8696622 | Fiorella et al. | Apr 2014 | B2 |
8702652 | Fiorella et al. | Apr 2014 | B2 |
8702724 | Olsen et al. | Apr 2014 | B2 |
8784434 | Rosenbluth et al. | Jul 2014 | B2 |
8784441 | Rosenbluth et al. | Jul 2014 | B2 |
8795305 | Grandfield et al. | Aug 2014 | B2 |
8795317 | Grandfield et al. | Aug 2014 | B2 |
8795345 | Grandfield et al. | Aug 2014 | B2 |
8814892 | Galdonik et al. | Aug 2014 | B2 |
8814925 | Hilaire et al. | Aug 2014 | B2 |
8900265 | Ulm, III | Dec 2014 | B1 |
8939991 | Krolick et al. | Jan 2015 | B2 |
8945143 | Ferrera et al. | Feb 2015 | B2 |
8945172 | Ferrera et al. | Feb 2015 | B2 |
8968330 | Rosenbluth et al. | Mar 2015 | B2 |
9039749 | Shrivastava et al. | May 2015 | B2 |
9072537 | Grandfield et al. | Jul 2015 | B2 |
9113936 | Palmer et al. | Aug 2015 | B2 |
9119656 | Bose et al. | Sep 2015 | B2 |
9138307 | Valaie | Sep 2015 | B2 |
9149609 | Ansel et al. | Oct 2015 | B2 |
9155552 | Ulm, III | Oct 2015 | B2 |
9161766 | Slee et al. | Oct 2015 | B2 |
9173668 | Ulm, III | Nov 2015 | B2 |
9186487 | Dubrul et al. | Nov 2015 | B2 |
9198687 | Fulkerson et al. | Dec 2015 | B2 |
9204887 | Cully et al. | Dec 2015 | B2 |
9221132 | Bowman | Dec 2015 | B2 |
9232992 | Heidner | Jan 2016 | B2 |
9532792 | Galdonik et al. | Jan 2017 | B2 |
9532873 | Kelley | Jan 2017 | B2 |
9533344 | Monetti et al. | Jan 2017 | B2 |
9539011 | Chen et al. | Jan 2017 | B2 |
9539022 | Bowman | Jan 2017 | B2 |
9539122 | Burke et al. | Jan 2017 | B2 |
9539382 | Nelson | Jan 2017 | B2 |
9549830 | Bruszewski et al. | Jan 2017 | B2 |
9554805 | Tompkins et al. | Jan 2017 | B2 |
9561125 | Bowman et al. | Feb 2017 | B2 |
9572982 | Burnes et al. | Feb 2017 | B2 |
9579484 | Barnell | Feb 2017 | B2 |
9585642 | Dinsmoor et al. | Mar 2017 | B2 |
9615832 | Bose et al. | Apr 2017 | B2 |
9615951 | Bennett et al. | Apr 2017 | B2 |
9622753 | Cox | Apr 2017 | B2 |
9636115 | Henry et al. | May 2017 | B2 |
9636439 | Chu et al. | May 2017 | B2 |
9642635 | Vale et al. | May 2017 | B2 |
9642675 | Werneth et al. | May 2017 | B2 |
9655633 | Leynov et al. | May 2017 | B2 |
9655645 | Staunton | May 2017 | B2 |
9655989 | Cruise et al. | May 2017 | B2 |
9662129 | Galdonik et al. | May 2017 | B2 |
9662238 | Dwork et al. | May 2017 | B2 |
9662425 | Lilja et al. | May 2017 | B2 |
9668898 | Wong | Jun 2017 | B2 |
9675477 | Thompson | Jun 2017 | B2 |
9675782 | Connolly | Jun 2017 | B2 |
9676022 | Ensign et al. | Jun 2017 | B2 |
9692557 | Murphy | Jun 2017 | B2 |
9693852 | Lam et al. | Jul 2017 | B2 |
9700262 | Janik et al. | Jul 2017 | B2 |
9700399 | Acosta-Acevedo | Jul 2017 | B2 |
9717421 | Griswold et al. | Aug 2017 | B2 |
9717500 | Tieu et al. | Aug 2017 | B2 |
9717502 | Teoh et al. | Aug 2017 | B2 |
9724103 | Cruise et al. | Aug 2017 | B2 |
9724526 | Strother et al. | Aug 2017 | B2 |
9750565 | Bloom et al. | Sep 2017 | B2 |
9757260 | Greenan | Sep 2017 | B2 |
9764111 | Gulachenski | Sep 2017 | B2 |
9770251 | Bowman et al. | Sep 2017 | B2 |
9770577 | Li et al. | Sep 2017 | B2 |
9775621 | Tompkins et al. | Oct 2017 | B2 |
9775706 | Paterson et al. | Oct 2017 | B2 |
9775732 | Khenansho | Oct 2017 | B2 |
9788800 | Mayoras, Jr. | Oct 2017 | B2 |
9795391 | Saatchi et al. | Oct 2017 | B2 |
9801980 | Karino et al. | Oct 2017 | B2 |
9808599 | Bowman et al. | Nov 2017 | B2 |
9833252 | Sepetka et al. | Dec 2017 | B2 |
9833604 | Lam et al. | Dec 2017 | B2 |
9833625 | Waldhauser et al. | Dec 2017 | B2 |
10028759 | Wallace et al. | Jul 2018 | B2 |
10149692 | Turjman et al. | Dec 2018 | B2 |
10265086 | Vale | Apr 2019 | B2 |
10610668 | Burkholz et al. | Apr 2020 | B2 |
10716915 | Ogle et al. | Jul 2020 | B2 |
10835271 | Ma | Nov 2020 | B2 |
11076879 | Yee et al. | Aug 2021 | B2 |
20010001315 | Bates | May 2001 | A1 |
20010011182 | Dubrul et al. | Aug 2001 | A1 |
20010016755 | Addis | Aug 2001 | A1 |
20010041899 | Foster | Nov 2001 | A1 |
20010044598 | Parodi | Nov 2001 | A1 |
20010044634 | Don Michael et al. | Nov 2001 | A1 |
20010051810 | Dubrul | Dec 2001 | A1 |
20020002383 | Sepetka et al. | Jan 2002 | A1 |
20020016609 | Wensel | Feb 2002 | A1 |
20020022859 | Hogendijk | Feb 2002 | A1 |
20020026211 | Khosravi | Feb 2002 | A1 |
20020049468 | Streeter | Apr 2002 | A1 |
20020052620 | Barvut | May 2002 | A1 |
20020068954 | Foster | Jun 2002 | A1 |
20020072764 | Sepetka | Jun 2002 | A1 |
20020082558 | Samson | Jun 2002 | A1 |
20020091407 | Zadno-Azizi et al. | Jul 2002 | A1 |
20020095171 | Belef | Jul 2002 | A1 |
20020123765 | Sepetka | Sep 2002 | A1 |
20020143362 | Macoviak et al. | Oct 2002 | A1 |
20020156455 | Barbut | Oct 2002 | A1 |
20020161393 | Demond | Oct 2002 | A1 |
20020165576 | Boyle et al. | Nov 2002 | A1 |
20020173819 | Leeflang et al. | Nov 2002 | A1 |
20020177800 | Bagaoisan et al. | Nov 2002 | A1 |
20020188276 | Evans | Dec 2002 | A1 |
20030004536 | Boylan et al. | Jan 2003 | A1 |
20030004538 | Secrest | Jan 2003 | A1 |
20030004542 | Wensel | Jan 2003 | A1 |
20030009146 | Muni | Jan 2003 | A1 |
20030009191 | Wensel | Jan 2003 | A1 |
20030023204 | Vo et al. | Jan 2003 | A1 |
20030040769 | Kelley et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030050663 | Khachin | Mar 2003 | A1 |
20030105484 | Boyle et al. | Jun 2003 | A1 |
20030125798 | Matrin | Jul 2003 | A1 |
20030130682 | Broome et al. | Jul 2003 | A1 |
20030144687 | Brady et al. | Jul 2003 | A1 |
20030144689 | Brady et al. | Jul 2003 | A1 |
20030153940 | Nohilly et al. | Aug 2003 | A1 |
20030153943 | Michael et al. | Aug 2003 | A1 |
20030153944 | Phung | Aug 2003 | A1 |
20030163064 | Vrba | Aug 2003 | A1 |
20030163158 | Wlite | Aug 2003 | A1 |
20030171769 | Barbu | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030187495 | Cully et al. | Oct 2003 | A1 |
20030195537 | Dubrul | Oct 2003 | A1 |
20030195554 | Shen | Oct 2003 | A1 |
20030199917 | Knudson | Oct 2003 | A1 |
20030204202 | Palmer | Oct 2003 | A1 |
20030212430 | Bose | Nov 2003 | A1 |
20030216611 | Vu | Nov 2003 | A1 |
20030236533 | Wilson | Dec 2003 | A1 |
20040010280 | Adams et al. | Jan 2004 | A1 |
20040010282 | Kusleika | Jan 2004 | A1 |
20040014002 | Lundgren | Jan 2004 | A1 |
20040068288 | Palmer et al. | Apr 2004 | A1 |
20040073243 | Sepetka | Apr 2004 | A1 |
20040079429 | Miller | Apr 2004 | A1 |
20040082962 | Demarais et al. | Apr 2004 | A1 |
20040093065 | Yachia et al. | May 2004 | A1 |
20040133231 | Maitland | Jul 2004 | A1 |
20040138692 | Phung | Jul 2004 | A1 |
20040153049 | Hewitt et al. | Aug 2004 | A1 |
20040153118 | Clubb | Aug 2004 | A1 |
20040193107 | Pierpont et al. | Sep 2004 | A1 |
20040199202 | Dubrul et al. | Oct 2004 | A1 |
20040260333 | Dubrul et al. | Dec 2004 | A1 |
20050015047 | Shah | Jan 2005 | A1 |
20050020974 | Noriega | Jan 2005 | A1 |
20050033348 | Sepetka | Feb 2005 | A1 |
20050038447 | Huffmaster | Feb 2005 | A1 |
20050038468 | Panetta et al. | Feb 2005 | A1 |
20050049619 | Sepetka | Mar 2005 | A1 |
20050049669 | Jones | Mar 2005 | A1 |
20050049670 | Jones et al. | Mar 2005 | A1 |
20050055033 | Leslie et al. | Mar 2005 | A1 |
20050055047 | Greenhalgh | Mar 2005 | A1 |
20050059993 | Ramzipoor et al. | Mar 2005 | A1 |
20050059995 | Sepetka | Mar 2005 | A1 |
20050085849 | Sepetka | Apr 2005 | A1 |
20050090857 | Kusleika et al. | Apr 2005 | A1 |
20050119524 | Sckine et al. | Jun 2005 | A1 |
20050119668 | Teague et al. | Jun 2005 | A1 |
20050125024 | Sepetka | Jun 2005 | A1 |
20050131449 | Salahieh et al. | Jun 2005 | A1 |
20050149111 | Kanazawa et al. | Jul 2005 | A1 |
20050171566 | Kanamaru | Aug 2005 | A1 |
20050187570 | Nguyen et al. | Aug 2005 | A1 |
20050267491 | Kellett et al. | Aug 2005 | A1 |
20050216030 | Sepetka | Sep 2005 | A1 |
20050216050 | Sepetka | Sep 2005 | A1 |
20050288686 | Sepetka | Sep 2005 | A1 |
20050228417 | Teitelbaum et al. | Oct 2005 | A1 |
20060009785 | Maitland et al. | Jan 2006 | A1 |
20060009799 | Kleshinski et al. | Jan 2006 | A1 |
20060010636 | Vacher | Jan 2006 | A1 |
20060030933 | DeLeggge et al. | Feb 2006 | A1 |
20060036271 | Schomer et al. | Feb 2006 | A1 |
20060058836 | Bose | Mar 2006 | A1 |
20060058837 | Bose | Mar 2006 | A1 |
20060058838 | Bose | Mar 2006 | A1 |
20060064151 | Guterman et al. | Mar 2006 | A1 |
20060149313 | Arguello et al. | Jul 2006 | A1 |
20060155305 | Freudenthal | Jul 2006 | A1 |
20060155322 | Sater et al. | Jul 2006 | A1 |
20060161187 | Levine et al. | Jul 2006 | A1 |
20060195137 | Sepetka | Aug 2006 | A1 |
20060224177 | Finitsis | Oct 2006 | A1 |
20060224179 | Kucharczyk | Oct 2006 | A1 |
20060229638 | Abrams et al. | Oct 2006 | A1 |
20060282111 | Morsi | Dec 2006 | A1 |
20060287701 | Pal | Dec 2006 | A1 |
20070088383 | Pal et al. | Apr 2007 | A1 |
20070142858 | Bates | Jun 2007 | A1 |
20070149996 | Coughlin | Jun 2007 | A1 |
20070156170 | Hancock | Jul 2007 | A1 |
20070165170 | Fukuda | Jul 2007 | A1 |
20070179513 | Deutsch | Aug 2007 | A1 |
20070191866 | Palmer et al. | Aug 2007 | A1 |
20070198028 | Miloslavski | Aug 2007 | A1 |
20070198051 | Clubb et al. | Aug 2007 | A1 |
20070198075 | Levy | Aug 2007 | A1 |
20070208367 | Fiorella | Sep 2007 | A1 |
20070208371 | French | Sep 2007 | A1 |
20070213765 | Adams et al. | Sep 2007 | A1 |
20070225749 | Martin | Sep 2007 | A1 |
20070239182 | Glines et al. | Oct 2007 | A1 |
20070239254 | Chia et al. | Oct 2007 | A1 |
20070244505 | Gilson et al. | Oct 2007 | A1 |
20070270902 | Slazas et al. | Nov 2007 | A1 |
20070288038 | Bimbo | Dec 2007 | A1 |
20070293887 | Okushi et al. | Dec 2007 | A1 |
20080045881 | Teitelbaum et al. | Feb 2008 | A1 |
20080082107 | Miller et al. | Apr 2008 | A1 |
20080086190 | Ta | Apr 2008 | A1 |
20080091223 | Pokorney | Apr 2008 | A1 |
20080097398 | Mitelberg | Apr 2008 | A1 |
20080109031 | Sepetka | May 2008 | A1 |
20080109032 | Sepetka | May 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080177296 | Sepetka | Jul 2008 | A1 |
20080183197 | Sepetka | Jul 2008 | A1 |
20080183198 | Sepetka | Jul 2008 | A1 |
20080183205 | Sepetka | Jul 2008 | A1 |
20080188876 | Sepetka | Aug 2008 | A1 |
20080188885 | Sepetka | Aug 2008 | A1 |
20080188928 | Salahieh | Aug 2008 | A1 |
20080200946 | Braun | Aug 2008 | A1 |
20080215077 | Sepetka | Sep 2008 | A1 |
20080221600 | Dieck et al. | Sep 2008 | A1 |
20080228209 | DeMello et al. | Sep 2008 | A1 |
20080234706 | Sepetka | Sep 2008 | A1 |
20080243170 | Jenson | Oct 2008 | A1 |
20080255596 | Jenson | Oct 2008 | A1 |
20080262528 | Martin | Oct 2008 | A1 |
20080262532 | Martin | Oct 2008 | A1 |
20080269774 | Garcia et al. | Oct 2008 | A1 |
20080275488 | Fleming | Nov 2008 | A1 |
20080275493 | Farmiga | Nov 2008 | A1 |
20080281350 | Sepetka | Nov 2008 | A1 |
20080312681 | Ansel | Dec 2008 | A1 |
20090024157 | Anukhin | Jan 2009 | A1 |
20090054918 | Henson | Feb 2009 | A1 |
20090069828 | Martin | Mar 2009 | A1 |
20090076539 | Valaie | Mar 2009 | A1 |
20090105722 | Fulkerson | Apr 2009 | A1 |
20090105737 | Fulkerson | Apr 2009 | A1 |
20090131908 | McKay | May 2009 | A1 |
20090163846 | Aklog et al. | May 2009 | A1 |
20090177206 | Lozier et al. | Jul 2009 | A1 |
20090182336 | Brenzel et al. | Jul 2009 | A1 |
20090221967 | Thommen et al. | Sep 2009 | A1 |
20090270815 | Stamp et al. | Oct 2009 | A1 |
20090281610 | Parker | Nov 2009 | A1 |
20090292297 | Ferrere | Nov 2009 | A1 |
20090292307 | Razack | Nov 2009 | A1 |
20090299374 | Tilson et al. | Dec 2009 | A1 |
20090299393 | Martin | Dec 2009 | A1 |
20090306702 | Miloslavski | Dec 2009 | A1 |
20100004607 | Wilson et al. | Jan 2010 | A1 |
20100016957 | Jager et al. | Jan 2010 | A1 |
20100030186 | Stivland | Feb 2010 | A1 |
20100030256 | Dubrul et al. | Feb 2010 | A1 |
20100036312 | Krolik et al. | Feb 2010 | A1 |
20100087908 | Hilaire | Apr 2010 | A1 |
20100114017 | Lenker | May 2010 | A1 |
20100125326 | Kalstad | May 2010 | A1 |
20100125327 | Agnew | May 2010 | A1 |
20100191272 | Keating | Jul 2010 | A1 |
20100211094 | Sargent, Jr. | Aug 2010 | A1 |
20100249815 | Jantzen et al. | Sep 2010 | A1 |
20100268264 | Bonnett et al. | Oct 2010 | A1 |
20100268265 | Krolik et al. | Oct 2010 | A1 |
20100292726 | Olsen et al. | Nov 2010 | A1 |
20100305566 | Rosenblatt et al. | Dec 2010 | A1 |
20100305604 | Pah | Dec 2010 | A1 |
20100318178 | Rapaport et al. | Dec 2010 | A1 |
20100324649 | Mattsson | Dec 2010 | A1 |
20100331949 | Habib | Dec 2010 | A1 |
20110009875 | Grandfield et al. | Jan 2011 | A1 |
20110009940 | Grandfield et al. | Jan 2011 | A1 |
20110009942 | Gregorich | Jan 2011 | A1 |
20110022149 | Cox et al. | Jan 2011 | A1 |
20110054514 | Arcand | Mar 2011 | A1 |
20110054516 | Keegan | Mar 2011 | A1 |
20110060359 | Hannes | Mar 2011 | A1 |
20110071432 | Carrillo, Jr. et al. | Mar 2011 | A1 |
20110077620 | deBeer | Mar 2011 | A1 |
20110098683 | Wiita et al. | Apr 2011 | A1 |
20110054504 | Wolf et al. | May 2011 | A1 |
20110125181 | Brady et al. | May 2011 | A1 |
20110130756 | Everson, Jr. et al. | Jun 2011 | A1 |
20110152920 | Eckhouse et al. | Jun 2011 | A1 |
20110160763 | Ferrera et al. | Jun 2011 | A1 |
20110166586 | Sepetka et al. | Jul 2011 | A1 |
20110196414 | Porter et al. | Aug 2011 | A1 |
20110202088 | Eckhouse et al. | Aug 2011 | A1 |
20110213290 | Chin et al. | Sep 2011 | A1 |
20110213297 | Aklog et al. | Sep 2011 | A1 |
20110213393 | Aklog et al. | Sep 2011 | A1 |
20110213403 | Aboytes | Sep 2011 | A1 |
20110218564 | Drasler et al. | Sep 2011 | A1 |
20110224707 | Miloslavaski et al. | Sep 2011 | A1 |
20110264132 | Strauss et al. | Oct 2011 | A1 |
20110276120 | Gilson et al. | Nov 2011 | A1 |
20110319917 | Ferrera et al. | Dec 2011 | A1 |
20120041449 | Eckhouse et al. | Feb 2012 | A1 |
20120041474 | Eckhouse et al. | Feb 2012 | A1 |
20120059356 | diPama et al. | Mar 2012 | A1 |
20120089216 | Rapaport et al. | Apr 2012 | A1 |
20120101510 | Lenker et al. | Apr 2012 | A1 |
20120116351 | Chomas et al. | May 2012 | A1 |
20120116440 | Eynov et al. | May 2012 | A1 |
20120143237 | Cam et al. | Jun 2012 | A1 |
20120143239 | Aklog et al. | Jun 2012 | A1 |
20120150147 | Leynov et al. | Jun 2012 | A1 |
20120165858 | Eckhouse et al. | Jun 2012 | A1 |
20120165859 | Eckhouse et al. | Jun 2012 | A1 |
20120215250 | Grandfield et al. | Aug 2012 | A1 |
20120277788 | Cattaneo | Nov 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120296362 | Cam et al. | Nov 2012 | A1 |
20120316600 | Ferrera et al. | Dec 2012 | A1 |
20130006284 | Aggerholm et al. | Jan 2013 | A1 |
20130030461 | Marks et al. | Jan 2013 | A1 |
20130046330 | McIntosh et al. | Feb 2013 | A1 |
20130046333 | Jones et al. | Feb 2013 | A1 |
20130046334 | Jones et al. | Feb 2013 | A1 |
20130116774 | Strauss et al. | May 2013 | A1 |
20130131614 | Hassan et al. | May 2013 | A1 |
20130144326 | Brady et al. | Jun 2013 | A1 |
20130144328 | Weber et al. | Jun 2013 | A1 |
20130158592 | Porter | Jun 2013 | A1 |
20130184703 | Shireman et al. | Jul 2013 | A1 |
20130184739 | Brady et al. | Jul 2013 | A1 |
20130197567 | Brady et al. | Aug 2013 | A1 |
20130226146 | Tekulve | Aug 2013 | A1 |
20130268050 | Wilson et al. | Oct 2013 | A1 |
20130281788 | Garrison | Oct 2013 | A1 |
20130289697 | Baker et al. | Oct 2013 | A1 |
20130325055 | Eckhouse et al. | Dec 2013 | A1 |
20130325056 | Eckhouse et al. | Dec 2013 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140012281 | Wang et al. | Jan 2014 | A1 |
20140046359 | Bowman et al. | Feb 2014 | A1 |
20140052097 | Petersen et al. | Feb 2014 | A1 |
20140081243 | Zhou et al. | Mar 2014 | A1 |
20140121672 | Folk | May 2014 | A1 |
20140128905 | Molaei | May 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140180377 | Bose et al. | Jun 2014 | A1 |
20140188127 | Dubrul et al. | Jul 2014 | A1 |
20140194919 | Losordo et al. | Jul 2014 | A1 |
20140200607 | Sepetka et al. | Jul 2014 | A1 |
20140200608 | Brady et al. | Jul 2014 | A1 |
20140236220 | Inoue | Aug 2014 | A1 |
20140257018 | Farnan | Sep 2014 | A1 |
20140257362 | Eldenschink | Sep 2014 | A1 |
20140276922 | McLain et al. | Sep 2014 | A1 |
20140277003 | Hendrick | Sep 2014 | A1 |
20140277053 | Wang et al. | Sep 2014 | A1 |
20140277079 | Vale et al. | Sep 2014 | A1 |
20140309657 | Ben-Ami | Oct 2014 | A1 |
20140309673 | Dacuycuy et al. | Oct 2014 | A1 |
20140330302 | Tekulve et al. | Nov 2014 | A1 |
20140343585 | Ferrera et al. | Nov 2014 | A1 |
20140364896 | Consigny | Dec 2014 | A1 |
20140371769 | Vale et al. | Dec 2014 | A1 |
20140371777 | Rudakov et al. | Dec 2014 | A1 |
20140371779 | Vale et al. | Dec 2014 | A1 |
20140371780 | Vale et al. | Dec 2014 | A1 |
20140379023 | Brady et al. | Dec 2014 | A1 |
20150018859 | Quick et al. | Jan 2015 | A1 |
20150018860 | Quick et al. | Jan 2015 | A1 |
20150080937 | Davidson | Mar 2015 | A1 |
20150081003 | Wainwright et al. | Mar 2015 | A1 |
20150112376 | Molaei et al. | Apr 2015 | A1 |
20150133990 | Davidson | May 2015 | A1 |
20150142043 | Furey | May 2015 | A1 |
20150164523 | Brady et al. | Jun 2015 | A1 |
20150173782 | Garrison et al. | Jun 2015 | A1 |
20150173783 | Tah et al. | Jun 2015 | A1 |
20150238314 | Börtlein et al. | Aug 2015 | A1 |
20150250497 | Marks et al. | Sep 2015 | A1 |
20150257775 | Gilvarry et al. | Sep 2015 | A1 |
20150258270 | Kunis | Sep 2015 | A1 |
20150290437 | Rudakov et al. | Oct 2015 | A1 |
20150297252 | Miloslavski et al. | Oct 2015 | A1 |
20150306311 | Pinchuk et al. | Oct 2015 | A1 |
20150313617 | Grandfield et al. | Nov 2015 | A1 |
20150320431 | Ulm, III | Nov 2015 | A1 |
20150351770 | Fulton, III | Dec 2015 | A1 |
20150352325 | Quick | Dec 2015 | A1 |
20150359547 | Vale et al. | Dec 2015 | A1 |
20150374391 | Quick et al. | Dec 2015 | A1 |
20150374393 | Brady et al. | Dec 2015 | A1 |
20150374479 | Vale | Dec 2015 | A1 |
20160015402 | Brady et al. | Jan 2016 | A1 |
20160022296 | Brady et al. | Jan 2016 | A1 |
20160066921 | Brady et al. | Mar 2016 | A1 |
20160074067 | Furnish et al. | Mar 2016 | A1 |
20160106448 | Brady et al. | Apr 2016 | A1 |
20160106449 | Brady et al. | Apr 2016 | A1 |
20160113663 | Brady et al. | Apr 2016 | A1 |
20160113664 | Brady et al. | Apr 2016 | A1 |
20160113665 | Brady et al. | Apr 2016 | A1 |
20160120558 | Brady et al. | May 2016 | A1 |
20160121080 | Cottone | May 2016 | A1 |
20160135829 | Holochwost et al. | May 2016 | A1 |
20160143653 | Vale et al. | May 2016 | A1 |
20160151079 | Aklog et al. | Jun 2016 | A1 |
20160192953 | Brady et al. | Jul 2016 | A1 |
20160192954 | Brady et al. | Jul 2016 | A1 |
20160192955 | Brady et al. | Jul 2016 | A1 |
20160192956 | Brady et al. | Jul 2016 | A1 |
20160228134 | Martin et al. | Aug 2016 | A1 |
20160256180 | Vale et al. | Sep 2016 | A1 |
20160262880 | Li et al. | Sep 2016 | A1 |
20160317168 | Brady et al. | Nov 2016 | A1 |
20160346002 | Avneri et al. | Dec 2016 | A1 |
20170007264 | Cruise et al. | Jan 2017 | A1 |
20170007265 | Guo et al. | Jan 2017 | A1 |
20170020670 | Murray et al. | Jan 2017 | A1 |
20170020700 | Bienvenu et al. | Jan 2017 | A1 |
20170027640 | Kunis et al. | Feb 2017 | A1 |
20170027692 | Bonhoeffer et al. | Feb 2017 | A1 |
20170027725 | Argentine | Feb 2017 | A1 |
20170035436 | Morita | Feb 2017 | A1 |
20170035567 | Duffy | Feb 2017 | A1 |
20170042548 | Lam | Feb 2017 | A1 |
20170049596 | Schabert | Feb 2017 | A1 |
20170065401 | Fearnot et al. | Mar 2017 | A1 |
20170071614 | Vale et al. | Mar 2017 | A1 |
20170071737 | Kelley | Mar 2017 | A1 |
20170072452 | Monetti et al. | Mar 2017 | A1 |
20170079671 | Morero et al. | Mar 2017 | A1 |
20170079680 | Bowman | Mar 2017 | A1 |
20170079766 | Wang et al. | Mar 2017 | A1 |
20170079767 | Leon-Yip | Mar 2017 | A1 |
20170079812 | Lam et al. | Mar 2017 | A1 |
20170079817 | Sepetka et al. | Mar 2017 | A1 |
20170079819 | Pung et al. | Mar 2017 | A1 |
20170079820 | Lam et al. | Mar 2017 | A1 |
20170086851 | Wallace et al. | Mar 2017 | A1 |
20170086862 | Vale et al. | Mar 2017 | A1 |
20170086863 | Brady et al. | Mar 2017 | A1 |
20170086864 | Greenhalgh et al. | Mar 2017 | A1 |
20170086996 | Peterson et al. | Mar 2017 | A1 |
20170239447 | Greenhalgh et al. | Mar 2017 | A1 |
20170095138 | Nakade | Apr 2017 | A1 |
20170095259 | Tompkins et al. | Apr 2017 | A1 |
20170100126 | Bowman et al. | Apr 2017 | A1 |
20170100141 | Morero et al. | Apr 2017 | A1 |
20170100143 | Granfield | Apr 2017 | A1 |
20170100183 | Iaizzo et al. | Apr 2017 | A1 |
20170105743 | Vale et al. | Apr 2017 | A1 |
20170112515 | Brady et al. | Apr 2017 | A1 |
20170113023 | Steingisser et al. | Apr 2017 | A1 |
20170147765 | Mehta | May 2017 | A1 |
20170151032 | Loisel | Jun 2017 | A1 |
20170165062 | Rothstein | Jun 2017 | A1 |
20170165065 | Rothstein | Jun 2017 | A1 |
20170165454 | Tuohy | Jun 2017 | A1 |
20170172554 | Bortlein et al. | Jun 2017 | A1 |
20170172581 | Bose et al. | Jun 2017 | A1 |
20170172766 | Vong et al. | Jun 2017 | A1 |
20170172772 | Khenansho | Jun 2017 | A1 |
20170189033 | Sepetka et al. | Jul 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170215902 | Leynov et al. | Aug 2017 | A1 |
20170216484 | Cruise et al. | Aug 2017 | A1 |
20170224350 | Shimizu et al. | Aug 2017 | A1 |
20170224355 | Bowman et al. | Aug 2017 | A1 |
20170224467 | Piccagli et al. | Aug 2017 | A1 |
20170224511 | Dwork et al. | Aug 2017 | A1 |
20170224953 | Tran et al. | Aug 2017 | A1 |
20170231749 | Perkins et al. | Aug 2017 | A1 |
20170238953 | Yang et al. | Aug 2017 | A1 |
20170252043 | Fuller et al. | Sep 2017 | A1 |
20170252064 | Staunton | Sep 2017 | A1 |
20170259042 | Nguyen et al. | Sep 2017 | A1 |
20170265983 | Lam et al. | Sep 2017 | A1 |
20170281192 | Tieu et al. | Oct 2017 | A1 |
20170281331 | Perkins et al. | Oct 2017 | A1 |
20170281344 | Costello | Oct 2017 | A1 |
20170281909 | Northrop et al. | Oct 2017 | A1 |
20170281912 | Melder et al. | Oct 2017 | A1 |
20170290593 | Sethna | Oct 2017 | A1 |
20170290654 | Sethna | Oct 2017 | A1 |
20170296324 | Argentine | Oct 2017 | A1 |
20170296325 | Marrocco et al. | Oct 2017 | A1 |
20170303939 | Greenhalgh et al. | Oct 2017 | A1 |
20170303942 | Greenhalgh et al. | Oct 2017 | A1 |
20170303947 | Greenhalgh et al. | Oct 2017 | A1 |
20170303948 | Wallace et al. | Oct 2017 | A1 |
20170304041 | Argentine | Oct 2017 | A1 |
20170304097 | Corwin et al. | Oct 2017 | A1 |
20170304595 | Nagasrinivasa et al. | Oct 2017 | A1 |
20170312109 | Le | Nov 2017 | A1 |
20170312484 | Shipley et al. | Nov 2017 | A1 |
20170316561 | Helm et al. | Nov 2017 | A1 |
20170319826 | Bowman et al. | Nov 2017 | A1 |
20170333228 | Orth et al. | Nov 2017 | A1 |
20170333236 | Greenan | Nov 2017 | A1 |
20170333678 | Bowman et al. | Nov 2017 | A1 |
20170340383 | Bloom et al. | Nov 2017 | A1 |
20170348014 | Wallace et al. | Dec 2017 | A1 |
20170348514 | Guyon et al. | Dec 2017 | A1 |
20180008407 | Maimon et al. | Jan 2018 | A1 |
20180042623 | Batiste | Feb 2018 | A1 |
20180193050 | Hawkins et al. | Jul 2018 | A1 |
20180193591 | Jaroch et al. | Jul 2018 | A1 |
20180235743 | Farago et al. | Aug 2018 | A1 |
20180256177 | Cooper et al. | Sep 2018 | A1 |
20180303610 | Anderson | Oct 2018 | A1 |
20190021755 | Johnson et al. | Jan 2019 | A1 |
20190021759 | Krolik et al. | Jan 2019 | A1 |
20190029820 | Zhou et al. | Jan 2019 | A1 |
20190029825 | Fitterer et al. | Jan 2019 | A1 |
20190046219 | Marchand et al. | Feb 2019 | A1 |
20190192175 | Chida et al. | Jun 2019 | A1 |
20190209206 | Patel et al. | Jul 2019 | A1 |
20190216476 | Barry et al. | Jul 2019 | A1 |
20190239907 | Brady et al. | Aug 2019 | A1 |
20190247627 | Korkuch et al. | Aug 2019 | A1 |
20190255290 | Snyder et al. | Aug 2019 | A1 |
20190269491 | Jalgaonkar et al. | Sep 2019 | A1 |
20190274810 | Phouasalit et al. | Sep 2019 | A1 |
20190298396 | Gamba et al. | Oct 2019 | A1 |
20190365411 | Avneri et al. | Dec 2019 | A1 |
20190366049 | Hannon et al. | Dec 2019 | A1 |
20200038628 | Chou et al. | Feb 2020 | A1 |
20200214859 | Sherburne | Jul 2020 | A1 |
20200281611 | Kelly et al. | Sep 2020 | A1 |
20200353208 | Merhi et al. | Nov 2020 | A1 |
20200383698 | Miao et al. | Dec 2020 | A1 |
20210085935 | Fahey et al. | Mar 2021 | A1 |
20210153883 | Casey et al. | May 2021 | A1 |
20210153884 | Casey et al. | May 2021 | A1 |
20210154433 | Casey et al. | May 2021 | A1 |
20210219821 | Appling et al. | Jul 2021 | A1 |
20220117614 | Salmon et al. | Apr 2022 | A1 |
20220125450 | Sirhan et al. | Apr 2022 | A1 |
20220313426 | Gifford, III et al. | Oct 2022 | A1 |
20230054898 | Gurovich | Feb 2023 | A1 |
Number | Date | Country |
---|---|---|
1658920 | Aug 2005 | CN |
1972728 | May 2007 | CN |
103071195 | May 2013 | CN |
104507380 | Apr 2015 | CN |
104905873 | Sep 2015 | CN |
105007973 | Oct 2015 | CN |
105307582 | Feb 2016 | CN |
105726163 | Jul 2016 | CN |
106232059 | Dec 2016 | CN |
113040865 | Jun 2021 | CN |
202009001951 | Apr 2010 | DE |
102009056450 | Jun 2011 | DE |
102010010849 | Sep 2011 | DE |
102010014778 | Oct 2011 | DE |
102010024085 | Dec 2011 | DE |
102011014586 | Sep 2012 | DE |
20 2020 107013 | Jan 2021 | DE |
2301450 | Mar 2011 | EP |
2628455 | Aug 2013 | EP |
3302312 | Apr 2018 | EP |
3335647 | Jun 2018 | EP |
3 420 978 | Jan 2019 | EP |
4049704 | Aug 2022 | EP |
2498349 | Jul 2013 | GB |
9-19438 | Jan 1997 | JP |
WO 9304722 | Mar 1993 | WO |
WO 9424926 | Nov 1994 | WO |
WO 9727808 | Aug 1997 | WO |
WO 9738631 | Oct 1997 | WO |
WO 9920335 | Apr 1999 | WO |
WO 9956801 | Nov 1999 | WO |
WO 9960933 | Dec 1999 | WO |
WO 0121077 | Mar 2001 | WO |
WO 0202162 | Jan 2002 | WO |
WO 0211627 | Feb 2002 | WO |
WO 0243616 | Jun 2002 | WO |
WO 02070061 | Sep 2002 | WO |
WO 02094111 | Nov 2002 | WO |
WO 03002006 | Jan 2003 | WO |
WO 03018085 | Mar 2003 | WO |
WO 03030751 | Apr 2003 | WO |
WO 03051448 | Jun 2003 | WO |
WO 2004028571 | Apr 2004 | WO |
WO 2004056275 | Jul 2004 | WO |
WO 2005000130 | Jan 2005 | WO |
WO 2005027751 | Mar 2005 | WO |
WO 2005027779 | Mar 2005 | WO |
WO 2006021407 | Mar 2006 | WO |
WO 2006031410 | Mar 2006 | WO |
WO 2006107641 | Oct 2006 | WO |
WO 2006135823 | Dec 2006 | WO |
WO 2007054307 | May 2007 | WO |
WO 2007068424 | Jun 2007 | WO |
WO 2008034615 | Mar 2008 | WO |
WO 2008051431 | May 2008 | WO |
WO 2008131116 | Oct 2008 | WO |
WO 2009019664 | Feb 2009 | WO |
WO 2009031338 | Mar 2009 | WO |
WO 2009076482 | Jun 2009 | WO |
WO 2009086482 | Jul 2009 | WO |
WO 2009103125 | Aug 2009 | WO |
WO 2009105710 | Aug 2009 | WO |
WO 2010010545 | Jan 2010 | WO |
WO 2010046897 | Apr 2010 | WO |
WO 2010075565 | Jul 2010 | WO |
WO 2010102307 | Sep 2010 | WO |
WO 2010146581 | Dec 2010 | WO |
WO 2011013556 | Feb 2011 | WO |
WO 2011066961 | Jun 2011 | WO |
WO 2011082319 | Jul 2011 | WO |
WO 2011095352 | Aug 2011 | WO |
WO 2011106426 | Sep 2011 | WO |
WO 2011110316 | Sep 2011 | WO |
WO 2012052982 | Apr 2012 | WO |
WO 2012064726 | May 2012 | WO |
WO 2012081020 | Jun 2012 | WO |
WO 2012110619 | Aug 2012 | WO |
WO 2012120490 | Sep 2012 | WO |
WO 2012156924 | Nov 2012 | WO |
WO 2013016435 | Jan 2013 | WO |
WO 2013072777 | May 2013 | WO |
WO 2013105099 | Jul 2013 | WO |
WO 2013109756 | Jul 2013 | WO |
WO 2014081892 | May 2014 | WO |
WO 2014139845 | Sep 2014 | WO |
WO 2014169266 | Oct 2014 | WO |
WO 2014178198 | Nov 2014 | WO |
WO 2014188300 | Nov 2014 | WO |
WO 2015061365 | Apr 2015 | WO |
WO 2015134625 | Sep 2015 | WO |
WO 2015179324 | Nov 2015 | WO |
WO 2015179377 | Nov 2015 | WO |
WO 2015189354 | Dec 2015 | WO |
WO 2016010995 | Jan 2016 | WO |
WO 2017004234 | Jan 2017 | WO |
WO 2017097616 | Jun 2017 | WO |
WO 2018178979 | Oct 2018 | WO |
WO 2018193603 | Oct 2018 | WO |
WO 2019064306 | Apr 2019 | WO |
WO 2019079296 | Apr 2019 | WO |
WO 2020139979 | Jul 2020 | WO |
WO 2021016213 | Jan 2021 | WO |
WO 2021167653 | Aug 2021 | WO |
WO 2022020366 | Jan 2022 | WO |
Entry |
---|
US 6,348,062 B1, 02/2002, Hopkins (withdrawn) |
Struffert, T., et al. “Intravenous flat detector CT angiography for non-invasive visualisation of intracranial flow diverter: technical feasibility” Eur Radiol 21:1797-1801 (2011). |
Partial European Search Report dated Jul. 15, 2022 issued in European Application No. 22 15 8145. |
Number | Date | Country | |
---|---|---|---|
20220265963 A1 | Aug 2022 | US |