Flexible catheter shaft frame with seam

Information

  • Patent Grant
  • 11872354
  • Patent Number
    11,872,354
  • Date Filed
    Wednesday, February 24, 2021
    3 years ago
  • Date Issued
    Tuesday, January 16, 2024
    3 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Stiles; Amber R
    • Staton; Phoebe Anne
    Agents
    • TROUTMAN PEPPER HAMILTON SANDERS LLP
Abstract
The designs herein can be for a flexible and kink-resistant catheter with a support tube which can be radially expanded to enable it to be slid over an inner liner on a mandrel during assembly. The designs are flexible enough to allow the catheter to access remote vessel occlusions but also benefit from good compressive and tensile stiffness. The designs can have a laser cut frame with interlocking structure of circumferentially discontinuous rib struts. The discontinuities can be aligned to form at least one continuous axial seam which is separable to allow for the radial expansion during manufacturing. A series of polymeric outer jackets can coat or encapsulate the struts of the frame, giving variable stiffness and preventing disengagement of the interlocking structure while the catheter is pushed through tortuous anatomy.
Description
FIELD OF THE INVENTION

The present disclosure generally relates to devices and methods for accessing blood vessels during intravascular medical treatments. More specifically, the present disclosure relates to a catheter capable of radial expansion to facilitate the manufacturing and assembly of a catheter.


BACKGROUND

Catheters serve a broad range of functions in intravascular medical treatments. They are typically a thin tube manufactured from medical grade materials that can be inserted into a body and can be used to deliver drugs or other devices, perform surgical procedures, remove blockages from vessels, and a variety of other purposes.


There are a number of access challenges that can make it difficult to access a target site. Distant areas such as the neurovascular bed are challenging with conventional technology, as the target vessels are small in diameter, remote relative to the site of insertion, and are highly tortuous. Aspiration and/or access catheters for removing vessel occlusions in these areas need to be capable of enduring high flexure strains without kinking and progress through loops and increasingly smaller vessel sizes without causing trauma in order to access a target site. It is not unusual that a catheter will have to navigate windy pathways with multiple loops, where vessel segment can have several extreme bends in quick succession over only a few centimeters of travel.


The catheters must also have good compressive stiffness (for pushability, and stability and integrity when clot retrieval devices are withdrawn into them) and good tensile stiffness (to avoid stretching and deformation when placed in tension, such as when being retrieved into an outer sheath while holding a large clot). Managing the stiffness transitions from proximal to distal sections to avoid kinking is critical for these devices. The catheters must also allow for the easy transmission of other devices through the internal lumen. For these reasons trackability, flexibility, kink-resistance, and internal lubricity are often key design parameters associated with catheters used in these procedures. However, it can be tricky for designers of traditional catheters to combine these characteristics effectively without large trade-offs.


By modifying the material or adjusting the way a catheter is manufactured, it is possible to tailor the stiffness of different sections of the catheter for particular applications. Many current catheters control transitions from stiffer materials to softer materials by changing the configuration of a braided member backbone (changing the braid PIC count or coil pitch), utilizing a custom machined metallic support frame backbone, and/or by changing the durometer hardness of the surrounding polymeric materials. Coils of the braided wires used to reinforce the catheter shaft are often a continuous metallic super-elastic or stainless steel of very fine size which can be prone to kink and difficult to manufacture with the consistency needed for a uniform product. These materials can also add considerable cost and complexity.


The easy delivery of auxiliary devices (such as guidewires, microcatheters, clot retrieval/stentriever devices, etc.) through the internal lumen without excessive friction from binding must be considered. Many contemporary devices attempt to utilize an internal low friction liner to greatly enhance the lubricity of the catheter lumen. Such devices can be complicated to manufacture, since the inner diameter of the braid or metallic support frame backbone must be roughly the same or slightly smaller than the outer diameter of the inner liner on a mandrel during construction. Current backbone designs do not allow for the radial expansion necessary to slide over the liner during assembly without excessive friction.


The present designs are aimed at providing an improved catheter support frames and manufacturing methods to address the above-stated deficiencies.


SUMMARY

The innovations of this disclosure involve controlling the axial and lateral stiffness along the length of a catheter shaft and allowing the underlying support tube of the shaft to be radially expandable for assembly over a liner on a mandrel during manufacture. The catheter shaft tube can, for example, be cut from a hypotube into an axial series of circumferentially discontinuous ribs. The ribs can form an interlocking structure to give the shaft good resistance to both tensile elongation and compressive shortening while maintaining excellent lateral flexibility. Alignment of the circumferential discontinuities of the ribs can form longitudinal seams which allow the frame of the shaft to be expanded for ease of assembly with a low friction inner liner. The designs can manage stiffness transitions along the length of the shaft to avoid kinking by changing the configuration the features cut into the support tube over different axial segments of the shaft.


The catheter can have a shaft comprising a support tube, a proximal end, and a distal end. The support tube can have an inner liner disposed around a longitudinal axis. The support tube can have an axial series of interlocking segments formed from a plurality of circumferentially discontinuous ribs. This structure can create a substantially tubular profile along the longitudinal axis and define a lumen through the inner liner extending therethrough. In some examples, a spine can connect each of the plurality of ribs, with the spine following a non-linear profile around and along the axis of the support tube due to the circumferential discontinuities in the ribs.


The circumferentially discontinuous ribs of the support tube can form one or more axial seams in the support tube due to the relative longitudinal alignment of the axial splits in the ribs of the interlocking segments. In this way the support tube can radially open along the seam similar to a clamshell. The support tube can have a nominal, unexpanded inner diameter equal to or slightly less than the outer diameter of the inner liner prior to assembly. When expanded, the support tube can have an expanded inner diameter that is slightly larger than the outer diameter of the inner liner.


The spacing between adjacent interlocking segments can also be varied to tailor the catheter stiffness in different axial sections of the support tube. In one example, a first segment pitch measured between a first pair of adjacent interlocking segments can be the same as a second segment pitch measured between a second pair of adjacent interlocking segments. In another example, a first segment pitch measured between a first pair of adjacent interlocking segments can be different than a second segment pitch measured between a second pair of adjacent interlocking segments.


The manner in which the interlocking segments fit together around the axial seam or seams can take multiple forms. In one example, each of the axial series of interlocking segments can have a top half which can have a pair of inset teeth extending from respective ribs. Opposing this, the interlocking segments can have a bottom half with a pair of outset teeth extending from respective ribs which can define and bound a reception space between them. In some cases, the inset and outset teeth of the interlocking segments can have a triangular, quadrilateral, or other polygonal shape. In other examples, the teeth can form substantially L-shaped projections.


The apposition between the reception spaces of the bottom half and the inset teeth of the top half can be configured so the halves are in complimentary engagement with one another. When the support tube is assembled, this engagement creates the aligned gap of the one or more axial seams. The gap can be defined by the perimeter of the interface between the reception spaces of the bottom half and the inset teeth of the top half so that the seam or seams are continuous down the long axis of the support tube. When the seam follows this perimeter around the projections of the teeth along the axis, it can have a circumferentially and axially non-linear profile. The spine can also follow a non-linear path alternating between the top half and the bottom half along the ribs.


The distal end of the support tube can be configured to have any of a number of different tips or mouths attached depending on the objectives of a given procedure. In one case, the distal end can feature a face approximately perpendicular to the longitudinal axis. The face can be the distalmost rib, or a more specific ringed bracket. Such a face can allow for the attachment of therapeutic tips, expandable mouths, or other similar devices.


In other cases, a flexible support tube for a catheter shaft body can have a laser cut framework of struts forming substantially circular ribs distributed along a longitudinal axis of the support tube. The ribs can have one or more circumferential discontinuities around the circumference of the support tube. To link individual ribs, a spine can extend the length of the long axis of the support tube, navigating around the circumference of the tube and the gaps created by the discontinuities in the ribs. The distal end of the support tube can have a face configured for connecting catheter tips or mouths for conducting intravascular procedures.


The circumferential discontinuities in the ribs can create gaps which can be aligned to form one or more axial seams. The continuity the one or more seams can give some radial expansion capability to the support tube. This expansion can allow the support tube to be sized with a nominal inner diameter smaller than the outer diameter of an inner low friction liner. The support tube can then be expanded to slide over the liner on a mandrel as the catheter is assembled during manufacture.


The ribs of the framework of struts can be grouped to form an axial series of interlocking segments having a substantially tubular profile along a longitudinal axis. The interlocking segments can each have a top half and a bottom half. In some examples, the halves can be divided by a plane passing through the longitudinal axis and at least a portion of one of the one or more seams that is parallel to the axis. In some examples, a pair of inset teeth can extend from respective ribs of an interlocking segment on the top half. In a similar way, the corresponding bottom half of the same interlocking segment can have a pair of outset teeth extending from respective ribs and bounding a reception space.


The interlocking segments can be aligned such that each pair of inset teeth of the top half and each pair of outset teeth of the bottom half are in apposition to one another but are circumferentially separated from one another by the one or more axial seams when the support tube is assembled. As a result, the teeth can fit together like a zipper but not be fixedly connected to each other. The inset teeth of the top half can reside in the reception space created by the outset teeth of the bottom half. This overlapping engagement of the inset teeth into the reception space of the outset teeth can also limit the axial expansion of the support tube if the teeth are shaped such that there is a physical stop to expansion.


The inset teeth of each top half and the outset teeth of each bottom half of the interlocking segments can have projections normal to the longitudinal axis of the support tube. In other examples, the teeth can have projections parallel to the longitudinal axis or projections both parallel and normal to the axis. These shapes, combined with the overlap of the teeth into the reception spaces, can mean the one or more axial seams are a continuous gap defined by the perimeter of the interface of the outset teeth of the bottom half with the inset teeth of the top half of the interlocking segments. This perimeter can give the one or more axial seams a circumferentially and axially non-linear profile. The seam allows the support tube to radially expand while limiting the total expansion due to the engagement of the teeth. The engagement of the teeth can also limit any axial expansion of the support tube.


Dimensions of the support tube structure can also be varied to change the stiffness profile in different portions of the catheter. For example, a first rib width of a rib can be the same or different than a second rib width of another rib. Similarly, a first segment pitch measured between a first pair of adjacent interlocking segments can be the same or different than a second segment pitch measured between a second pair of adjacent interlocking segments.


Other processing beyond dimensional aspects can also be used to tailor the stiffness and bending flexibility of the catheter. For example, a series of polymeric jackets can be reflowed over the support tube to bond the underlying structure and create the outer surface of the catheter body. These outer jackets can have varying durometer hardness to create a proximal portion with more column stiffness and transition into a distal portion with more lateral flexibility.


Also included can be a method for manufacturing a catheter. The method can include the step of positioning a low friction inner liner on a first application mandrel. The liner can be PTFE or a like polymer.


Another step can involve forming a support tube having an axial seam allowing radial expansion of the support tube. In some examples, the support tube can be machined from a hypotube of a shape memory superelastic alloy such as Nitinol (NiTi) to have an unexpanded inner diameter equal to or slightly smaller than the outer diameter of the inner liner on the application mandrel.


The support tube can be laser cut to have a plurality of circumferentially discontinuous ribs disposed along the longitudinal axis between the proximal end and the distal end. The seam can be formed through the alignment of the circumferential discontinuities of the ribs along the axis. The ribs can thus also form a spine following a circumferentially and axially non-linear profile, alternating between the top half and the bottom half, which links each of the ribs.


The axial seam can be stretched by expanding the support tube on a substantially tubular second oversized mandrel. The oversized mandrel can have an outer diameter slightly larger than the outer diameter of inner the liner on the application mandrel. The method can then have the step of chilling the laser cut support tube on the oversized mandrel to a temperature at least below the Austenite finish (Af) temperature of the alloy, and ideally at or below the Martensite finish (Mf) temperature. As an alternative, the support tube could be chilled to the desired temperature before expansion over the oversized mandrel. The second oversized mandrel can then be removed, and the radially expanded support tube positioned around the inner liner on the first application mandrel.


A plurality of outer polymer jackets can be reflowed or laminated to the support tube. The jackets can be in an axial series and have varying durometer hardness. In an alternate example, the jackets could be applied in a radial series or be a blend of materials. The reflow process can adhere the liner and support tube by flowing through the gaps between the ribs. The first application mandrel can then be removed once the structure has been bonded.


Other aspects and features of the present disclosure will become apparent to those of ordinary skill in the art, upon reviewing the following detailed description in conjunction with the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and further aspects of this invention are further discussed with reference to the following description in conjunction with the accompanying drawings. The drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. The figures depict one or more implementations of the inventive devices, by way of example only, not by way of limitation.



FIG. 1 is a view of an expandable catheter support tube on a mandrel according to aspects of the present invention;



FIG. 2 is a representation of a flat pattern of FIG. 1 showing the top and bottom halves of the interlocking segments according to aspects of the present invention;



FIG. 3 shows another example flat pattern for a support tube according to aspects of the present invention;



FIG. 4 is a view of an alternate expandable catheter support tube according to aspects of the present invention;



FIG. 5 shows a flexible catheter support tube having an outer polymer layer applied according to aspects of the present invention;



FIG. 6 illustrates a cross section from FIG. 5 showing an example outer polymer layer configuration according to aspects of the present invention;



FIG. 7 is a view of an alternative outer polymer layer configuration according to aspects of the present invention;



FIG. 8 is a view of an expandable catheter support tube having an attached expandable distal tip according to aspects of the present invention;



FIG. 9 shows another example of an expandable catheter support tube having an attached expandable distal tip according to aspects of the present invention;



FIGS. 10a-10e are illustrations of a possible manufacturing method for an expandable catheter support tube according to aspects of the present invention; and



FIG. 11 is a process flow chart for the manufacturing method shown in FIGS. 10a-10e according to aspects of the present invention.





DETAILED DESCRIPTION

The objectives for the designs presented herein can be for a variably flexible and kink-resistant elongated catheter for vascular applications. The designs are flexible enough to access remote vessel occlusions but also benefit from good compressive and tensile stiffness. The designs can have proximal and distal ends and a laser cut support tube frame extending there between. The support tube frame can have an interlocking structure of ribs with at least one continuous split seam to allow some radial expansion during the manufacturing process while maintaining longitudinal stiffness. A low friction inner liner can be disposed on the interior surface of frame section. An outer polymer layer or laminating jacket can coat or encapsulate the struts of the frame, preventing disengagement of the interlocking structure while the catheter is pushed through tortuous anatomy. A distal face can allow for connecting any of a number of catheter tips, such as expandable funnel mouths for aspiration and clot retrieval.


The catheter can also be compatible with relatively low-profile access sheaths and outer catheters, so that a puncture wound in the patient's groin (in the case of femoral access) can be easily and reliably closed. While the following description is in many cases in the context of mechanical thrombectomy clot retrieval or other treatments in the neurovascular bed, the devices and methods described may be easily adapted for other procedures and in other body passageways as well.


Specific examples of the present invention are now described in detail with reference to the Figures, where identical reference numbers indicate elements which are functionally similar or identical. Accessing the various vessels within the vascular, whether they are coronary, pulmonary, or cerebral, involves well-known procedural steps and the use of a number of conventional, commercially available accessory products. These products can involve angiographic materials, rotating hemostasis valves, luers, and guidewires as widely used in laboratory and medical procedures. Though they may not be mentioned specifically by name, when these or similar products are necessarily employed in conjunction with the devices and methods of this invention in the description below, their function and exact constitution are not described in detail.


Turning to the figures, in FIG. 1 there is illustrated a view of a catheter shaft support tube frame 100 for use in intravascular procedures in the vessels of a patient. The support tube is shown situated around a low friction inner liner 160 on a mandrel 10. The support tube 100 can generally be a tubular framework of struts between a proximal end 112 and a distal end 114 and have an inner lumen 119. A plurality of ribs 118 can form an extending axial series around the longitudinal axis 111. The struts can, for example, be laser cut from a hypotube. In another example, the support tube can be an injection molded polymer supporting structure. Features can also be incorporated into the strut framework which bias bending about certain planes or encourage twisting to reduce the imparted strains. In this way the catheter can maintain excellent lateral flexibility but will not tend to expand in tension or kink in compression.


The ribs 118 can be circumferentially discontinuous such that a longitudinal seam 116 splits the structure of the support tube 100 to allow for some radial expansion. Radial expansion can be beneficial, for example, during manufacturing when the laser cut support tube structure can be expanded to fit over the inner liner 160 or other layers on a supporting mandrel 10 as shown here. Without this ability to expand over the liner, there would be too much friction to effectively slide the frame over the liner/mandrel pair during assembly. Furthermore, if the support tube were sized larger than the diameter of the liner from the outset it would not sit concentrically on the liner and the wall thickness of the resulting catheter would be too large.


The support tube 100 can then have an expanded inner diameter 108 larger than the outer diameter 162 of the liner 160 on the mandrel. In this unrestrained state, the expanded ID 108 can be only slightly larger (0.001 inches, or up to 0.002-0.003 inches) than the OD if the liner.


Although the seam 116 can be continuous along the entire length of the support tube 100, a spine 126 can exist through the continuous running of the ribs 118 circumferentially on radially opposing sides of the seam. The spine 126 links the structure longitudinally but can allow for greater flexibility than would exist with, for example, a continuous and linear spine member running the length of the support tube 100 parallel to the longitudinal axis 111.


In some instances, the support tube 100 can be formed integrally with an expandable tip section 310 which can expand to a larger radial size when deployed from the distal end of a sheath or outer catheter. An enlarged tip can offer improved aspiration efficiency and can also allow for the gradual compression of a captured clot once it has been dislodged from the vessel and ingested.


An example of a flat cut pattern for the support tube 100 from FIG. 1 is shown in FIG. 2. The pattern of ribs 118 can form a series of interlocking segments 120, 130, 140. The interlocking segments can be axially symmetric with each other as shown, or the pattern can be cut so there is irregularity and the segments are not symmetric. The longitudinal axis 111 can divide the pattern of interlocking segments 120, 130, 140 into a top half 102 and a bottom half 104. Both halves can have features configured to interlock with the other half when the tube is assembled, creating the seam 116 while resisting axial expansion and improving backup support for the catheter. Axial rigidity can be aided by the spine 126 linking the ribs 118 and following a non-linear path alternating between the top half 102 and bottom half 104 of the support tube 100.


The top half 102 of the interlocking segments, for example, can have a pair of inset teeth 103 cut in a shape that is primarily square as shown. Similarly, the bottom half 104 of the segments can have a pair of outset teeth 105. The outset teeth can border a reception space 106 for each interlocking segment where the inset teeth 103 can engage. In other examples, the teeth can have a triangular, quadrilateral, or other polygonal shape which can interlock and also improve the torque response of the catheter.


It can be appreciated that the reception space 106 for coupling the inset teeth 103 of the top half 102 and the outset teeth 105 of the bottom half 104 can be sized differently for differing interlocking segments 120, 130, 140 so that the size of the gap created by the inset teeth and reception spaces can be varied depending on the design parameters for different sections of the support tube 100. When secured together, the interlocking segments can therefore influence flexibility and/or bias bending of the assembly along certain planes.


Bending stiffness of the support tube 100 can also be tailored either through a combination of varying the cut width and rib width. Where the cut width is kept constant (for instance, the width of a laser beam) the rib width can be varied to tailor bending stiffness. Where the cut width is varied, the rib width can be kept constant or varied and the laser can be used to remove material. It is appreciated that by using a cut width equal to that of the laser beam, no pieces of material are removed, and the cost of manufacture is greatly reduced. On the other hand, by using the laser to remove pieces of material, greater variation in shaft design can be achieved. It is also appreciated that combination of both approaches may be used so the shaft incorporates more cost-effective cutting/processing at the proximal end and more costly approaches are kept distally where more complicated cuts can be required to achieve the desired flexibility performance. For example, a proximal section of the shaft may be cut from SS and be joined to a distal section cut from a superelastic alloy such as NiTi. This construction can reduce overall cost while affording the benefits of NiTi to the distal end of the device, where it is required for enhanced resilience in tight bending curves and also to provide some expansion and recovery characteristics. For such a device, the SS and NiTi sections can be joined by welding directly, by welding to a more weldable intermediate metal such as a platinum marker band. As an alternative, laser cut interlocking features can hold both cut tube sections together in the longitudinal direction. An outer membrane cover or jacket can secure the tubes together in a radial direction.


In some examples, the small size of the axial and radial gaps between the teeth of the interlocking segments can provide resistance to elongation and/or compression of the support tube while maintaining lateral flexibility required to navigate through the vasculature. The support tube can be prevented from stretching when it is being withdrawn back into an outer catheter and maintain stability against bunching up when a stentriever or another device is being withdrawn through the lumen.



FIG. 3 shows an alternate flat pattern example. The shown pattern has inset teeth 103 and outset teeth 105 that are substantially L-shaped projections 121 or variations thereof, which can orient the interlocking teeth in both the circumferential and longitudinal direction. The discontinuity of the seam allows the catheter to have a much greater freedom to flex than would be the case if a continuous and rigid spine member were used to connect the ribs. As compared with the pattern shown in FIG. 2, this tooth orientation can help to prevent hinging of the teeth 103, 105 when the catheter is navigated through tight bends in body passageways, at the cost of limiting some of the radial expansion capability of the support tube 100. After lamination of the outer jackets (not shown), this structure can provide a high effective modulus in both tension and compression and good integrity when retrieved against resistance.


Various dimensional parameters of the laser cut frame of the support tube 100 can also be adjusted to tune the catheter shaft for the desired flexibility performance as seen in FIG. 4. The pitch between interlocking segments can be designed such that the support tube 100 structure is stiffer and denser in more proximal areas and more flexible in distal regions. One method for measuring interlocking segment pitch can be the measured longitudinal distance between the distalmost rib 124 of one interlocking segment 130 and the distalmost rib 134 of an adjacent interlocking segment 140. The pitch can thus change the intermediate length of the split seam 116 for a given interlocking segment without impacting the interlocking capability.


For instance, a first segment pitch 122 for an interlocking segment 130 can be narrowed or shortened to provide better trackability and torque response near the proximal end 112 of the support tube. Similarly, near the distal end 114 where lateral flexibility is more of a concern, the support tube 100 can transition to a second segment pitch 132 of an interlocking segment 140 greater than the first segment pitch 122 to better optimize those physical capabilities. The change in pitch also changes the spacing between the teeth extensions 117 interlocking in adjacent reception spaces 106.


The segment pitch 122, 132 can alternatively be continuously varied along the longitudinal length of the support tube 100. As a result, adjacent interlocking segments 120, 130, 140 of the tube can become progressively closer together or further apart by a small but incrementally constant percentage with each successive segment. A continuously varied pitch can result in a more gradual stiffness transition along the length of the support tube 100 and provide rigidity while preventing the formation of kink points which can otherwise form at transitions with a higher stiffness gradient. This configuration can also aid in delivering a balanced and consistent push or thrust force through the length of the support tube 100 and ensure the operator receives decent tactile feedback from manipulating the catheter during a procedure.


Another design variable which can be altered to optimize the stiffness and flexibility of the support tube 100 is the width or cross sectional shape of the struts forming the ribs 118. For example, a smaller rib cross section can allow the support tube to flex more easily by affording greater space between ribs. As illustrated in FIG. 4, the rib width 141 of a strut of a more proximal interlocking segment 120 can be greater than a second, more distal rib width 142 of another interlocking segment 140.


The cut support tube 100 can have an outer polymer layer 180 or jacket around the ribs 118 of the interlocking segments, as shown in FIG. 5. The outer polymer layer 180 or jacket can be made of various medical grade polymers, such as PTFE, polyether block amide (Pebax®), or Nylon. Materials can be chosen, for example, so that more proximal segments are generally harder and less flexible (by durometer hardness, flexure modulus, etc.) as the proximal end 112 is approached to add column strength and pushability to the catheter. Similarly, softer, more flexible material segments can be used distally.


In one example, an outer jacket 180 can be reflowed over a laser cut hypotube and into the spaces between the ribs 118. After such a process, there can sometimes be material radially protruding at the location of the laser cut ribs 118. In this situation, the assembly can be pulled through a sizing die to remove any excess material above the struts such that the overall outer diameter of the support tube 100 shaft is consistent for a desired delivery profile. Alternatively, an uneven or ribbed profile may be desired to reduce friction between the outer surface of the catheter and an outer sheath or blood vessel.


In another example, the outer polymer layer 180 can be injection molded into the spaces of the support tube 100 during manufacturing. In a further example, the layer or jacket 180 can be adhered to the struts 118 of the support tube 100 using an adhesive with a primer component for bonding.


A cross sectional view through the wall of the catheter body from FIG. 5 is illustrated in FIG. 6. An inner liner 160 such as PTFE can offer the advantage of reducing friction with ancillary devices that are being advanced through the lumen 119 of the catheter. As mentioned, the outer polymer layer or jacket 180 can be reflowed, injection molded or otherwise adhered to the laser cut support tube structure.


The use of interior and exterior polymeric coatings, which may extend into, interface with, or blend with each other through the spaces in the laser cut support tube 100 aid in allowing the teeth of the interlocking segments to flex and interlock without plastic deformation. The ribs 118 can therefore have some independent flexing capability while having a limited constraint imposed by the outer jacket or jackets.


The layout and construction of the inner liner 160 and outer jacket 180 can be varied. For example, the outer jacket 180 material can extend radially inward to or beyond an inner surface of the support tube 100 or to an intermediate position within the inner diameter and outer diameter of the support tube interstitial of the ribs 118. Alternately, the outer jacket 180 may only be bonded to the surface of the outer diameter of the support tube. Having a jacket 180 which is bonded only to the outer diameter will allow the ribs 118 of the support tube to bend more freely, since a jacket extending more radially inward relative to the wall thickness of the support tube can stiffen the catheter. The unfilled gaps between support tube ribs 118 leave the ribs free to move axially. Other variabilities in stiffness can be achieved by having an outer jacket 180 composed of a composite series of radial jackets 182 each having a different thickness and/or being of differing materials. It can also be appreciated that the radial series of jackets 182 could be arranged in different manners for various axial segments of the catheter.


As previously discussed, the outer polymer layer can also be a formed from an axial series of polymer jackets. Different jackets or sets of jackets 183, 184, 185 can be disposed around the ribs 118 at discrete lengths along the axis of the support tube 100 in order to give distinct pushability and flexibility characteristics to different sections of the tubular portion of the catheter as shown in FIG. 7. The orientation shown is by demonstration only and not in way of limitation. FIG. 7 demonstrates a section of a support tube 100 with three polymer outer jacket layers, 183, 184, and 185, respectively. Factors, such as wall thickness and the length of the individual layers can be varied to lend stiffness or flexibility to portions of the support tube 100. The dimensions must also be selected so that the catheter meets the critical bend criteria as determined for the application.


In many examples, materials can be selected so the jacket layers 183, 184, 185 decrease in durometer distally. By configuring the jackets in an axial series, and using polymers with differing durometer hardness, it is possible to transition the overall stiffness of the catheter from being stiff and pushable at the proximal end to extremely flexible at the distal end. General selections for the outer jacket layers can be PTFE and Pebax®, but much more specialized materials or blends can be incorporated into specific axial sections of the support tube 100. In more proximal sections of the catheter where axial stiffness and resistance to collapse are important, the jacket segments can be made from a suitable robust polymer such as polyimide, nylon, polypropylene, or other materials with a higher density. For more distal sections where flexibility is required, the jacket segments can be for instance a polyurethane, PVC, low density polyethylene (LDPE), or other polymers of suitable modulus and softness. Blends, co-extrusions, and/or mixtures of these and other materials can also be used to obtain the right material properties for a particular segment.


Transitions between jackets can also be tapered or slotted to give a more gradual stiffness transition between abutting jackets in longitudinal series. When the jackets are applied through a reflow or lamination process, they can bond the underlying structure together and provide a smooth exterior finish. Slots or other features can then be added through machining or forming dies.


At the distal end 114 of the support tube 100, following the distalmost interlocking segment, the laser cut structure can have a face 115 approximately perpendicular to the longitudinal axis 111. The face can be another circular rib, a collar, or other suitable anchoring structure. Such a face can allow for the attachment of therapeutic tips, expandable mouths, or other similar devices.



FIG. 8 shows an example where the flat face 115 appears as a final independent circular rib. The rib of the flat face can have a single connection to the distalmost interlocking segment. In another variant, multiple connecting points can be disposed at various clocking positions around the axis


The example expandable tip 310 shown in FIG. 8 is a framework of struts which can have four distal hoops 315 connected to four support arms 316. The support arms can each have a single attachment point to the distal face 115 at the distal end 114 of the support tube 100, or the connections can be shared. In one instance, a pair of hoops 315 can taper into a single support arm 316 so that there are two connections 180 degrees apart. The tip 310 can then hinge and bend along the plane created by these connections.


The tip 310 can be constructed from a shape memory allow and heat set so that it is capable of self-expanding when deployed from the distal end of an outer sheath or catheter. The support arms 316 can have enlarged cell openings 317 which can allow the arms to shorten and lengthen on opposing sides around the longitudinal axis 111 of the tip frame so that the device can track easily through an outer sheath or catheter in tortuous vessel paths. The branching of the support arm 316 struts can also allow the arms to torque and bend more freely than if a single strut without a cell 317 directly linked the distal hoops 315 with the distal face 115.


In many examples, the funnel shape formed by the tip 310 can be covered with another atraumatic polymer jacket or membrane (not shown). The enlarged mouth of the tip can improve aspiration efficiency, arrest unwanted flow, and lessen the risk of vessel trauma from snagging on vessel openings. When deployed, the tip 310 can match the vessel diameter and have sufficient radial force to seal with the vessel, or create enough of a flow restriction such that the majority of aspiration will be applied to blood and the clot distal of the mouth rather than fluid proximal of the tip.


In another example, the support tube 100 can have distal face 115 connected with an expandable mouth tip 410 which can have a radial array of struts or strands organized into a closed cell braid, as illustrated in FIG. 9. The braid can be connected to the flat face 115 of the support tube 100 and flare to a distal end 414, forming a substantially conical or funnel-like shape around the longitudinal axis 111 as shown when unconstrained and allowed to expand upon exiting an outer sheath or catheter.


The braid array can be made of wire or cut from a shape memory alloy such that the mouth can be heat set to self-expand from a collapsed delivery configuration to an enlarged deployed configuration. The mouth tip 410 can be adhered or otherwise bonded at the distal end 114 of the support tube 100. In one example, the braided tip 410 can be manufactured so as to have a single circumferential joint or ring collar for attaching the support tube 100. Alternatively, the individual strands of the braid can be bonded directly to the distal face 115 of the tube or embedded within a polymer jacket.


In another example, the expandable tip 410 can be a closed cell mesh array with a continuous polygonal pattern made of triangular or quadrilateral cell pores 415 which are interlocked through the vertices of the adjacent cells of the mesh. The pattern can be one of those commonly seen in stenting applications, where a minimally invasive mesh is used to support and hold open vessel passages. In one case, an elongated quadrilateral pattern forms cell pores 415 where local array peaks mark the shared vertices. The pattern can repeat in an axial and radial fashion and the distalmost array peaks of adjacent pores 415 can be joined by atraumatic curved distal hoops or crowns 412 to mark the distal end 414 of the expandable tip 410.


A method for manufacturing a catheter utilizing the disclosed expandable laser cut support tube 100 is graphically illustrated in FIGS. 10a-10e and further shown in the flow diagram in FIG. 11. FIG. 10a shows a low friction liner 160 positioned on a supporting mandrel 10. The mandrel can often be silver plated copper (SPC) as is commonly used for these applications. Alternatively, especially ductile materials (such as PEEK) can be used which stretch to neck down in diameter so that the mandrel can be removed after completion of the catheter assembly. Further mandrel materials can be nylon coated copper or nylon coated steel.


A laser cut support tube frame 100 is formed in FIG. 10b which has a continuous longitudinal split seam 116, allowing the frame of the support tube to expand radially in an elastic fashion. In some examples, the support tube frame 100 can be cut from NiTi or another shape memory superelastic alloy so that the solid state phase transformations can be designed to dictate the constrained and unconstrained diameters of the frame. This expansion allows the support tube 100 to have an inner diameter roughly the same size as the outer diameter 162 of the liner 160. Ribs 118 can be arranged and varied along the longitudinal axis 111 such that the support tube 100 has good pushability and column strength near the proximal end 112 and excellent lateral flexibility near the distal end 114. In some examples and expandable tip 310 can be formed or attached at the distal end 114 of the support tube 100.


In FIG. 10c the support tube frame 100 is radially expanded at the seam and slid over an oversized mandrel 20. The oversized mandrel 20 can be, for example, at least 0.005 inches greater than the outer diameter 162 of the inner liner 160 on the application mandrel 10. The support tube 100 can then be chilled to a lower temperature (ideally close to or below the Martensite Finish (Mf) temperature) to transform the support tube material to the martensitic phase. In another example, the support tube 100 can be chilled first and then expanded over the oversized mandrel 20. If kept chilled, the reversible solid state transformation to martensite can allow the support tube 100 to maintain its expanded shape when removed from the oversized mandrel 20.


Alternatively, the chilling steps can be eliminated by disposing a thin outer metal sleeve (not shown) around the oversized mandrel 20. The support tube 100 can be elastically expanded over the sleeve/oversized mandrel assembly and the oversized mandrel removed. The sleeve constrains the support tube radially so that it can then be slid over the inner liner 160 on the application mandrel 10. When the sleeve support is removed, the support frame 100 can contract down onto the inner liner 160.


The expanded support tube 100 can be slid over the inner liner 160 on the SPC application mandrel 10 as depicted in FIG. 10d. Without expanding the support tube, this step would generate too much friction to create a reliable and repeatable interface between the support tube and liner. Once in place and concentric with the liner 160, an outer polymer layer 180 can be applied over the support tube 100 (FIG. 10e). The layer 180 can be an axial series of separate polymer extrusions which can be reflowed or laminated in place as outer jackets 183, 184, 185. The applied heat can allow the outer polymer to fill the interstitial sites between the ribs of the support tube.


A similar process is outlined in the method flow diagram in FIG. 11. The method steps can be implemented by any of the example devices or suitable alternatives described herein and known to one of ordinary skill in the art. The method can have some or all of the steps described, and in many cases, steps can be performed in a different order than that disclosed below.


Referring to FIG. 11, the method 11000 can have the step 11010 of arranging an inner liner around a first application mandrel. The liner can be PTFE or a similar low friction material. The mandrel can be sized to be approximately equal to the desired inner diameter of the completed catheter. Step 11020 can then involve forming a laser cut support tube structure as described previously herein. The support tube can be cut from single continuous hypotube, which can be but is not limited to Nitinol or another shape memory superelastic alloy. The cuts can form a series of circumferentially discontinuous ribs, the discontinuities aligning to form one or more longitudinally continuous seams running the length of the support tube, as seen in FIG. 10a and step 11030. The ribs can be linked by a spine extending axially and following a circuitous route around the ribs of the support tube in a non-linear fashion on alternating sides of the seam. This structure can allow some radial expansion of the support tube while offering good axial resistance to both tensile and compressive loading. The inner diameter of the support tube can be equal to or slightly less than the outer diameter of the low friction inner liner, so the components sit concentrically when the catheter is assembled.


In step 11040, the support tube can be elastically expanded by stretching the axial seam so that the support tube can be placed on a second oversized mandrel. In some examples, the oversized mandrel can be sized so that the expanded inner diameter of the support tube frame is slightly larger than the outer diameter of the inner liner on the application mandrel. In some examples, the ID can be approximately 0.003-0.005 inches larger than the OD of the liner. Once the support tube is expanded on the oversized mandrel, it can be chilled to a temperature at least below the Af temperature, and ideally close to or below the Mf temperature of the material to induce a phase change to martensite. The martensitic phase is thermodynamically stable, so the support tube can be kept chilled and will retain its expanded state when the second oversized mandrel is removed in step 11060.


The expanded support tube can then be slid over and positioned around the inner liner on the first application mandrel in step 11070. A series of outer polymer jackets of varying durometer hardness can then be reflowed to the support tube (step 11080). The jackets can be in an axial series, a radial series, or some combination. The flow of the jacket materials can allow them to encapsulate the ribs struts of the support tube and bond with the inner liner. The first application mandrel can be removed in step 11090 once the assembly is completed.


The invention is not necessarily limited to the examples described, which can be varied in construction and detail. The terms “distal” and “proximal” are used throughout the preceding description and are meant to refer to a positions and directions relative to a treating physician. As such, “distal” or distally” refer to a position distant to or a direction away from the physician. Similarly, “proximal” or “proximally” refer to a position near or a direction towards the physician. Furthermore, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise.


As used herein, the terms “about” or “approximately” for any numerical values or ranges indicate a suitable dimensional tolerance that allows the part or collection of components to function for its intended purpose as described herein. More specifically, “about” or “approximately” may refer to the range of values±20% of the recited value, e.g. “about 90%” may refer to the range of values from 71% to 99%.


In describing example embodiments, terminology has been resorted to for the sake of clarity. As a result, not all possible combinations have been listed, and such variants are often apparent to those of skill in the art and are intended to be within the scope of the claims which follow. It is intended that each term contemplates its broadest meaning as understood by those skilled in the art and includes all technical equivalents that operate in a similar manner to accomplish a similar purpose without departing from the scope and spirit of the invention. It is also to be understood that the mention of one or more steps of a method does not preclude the presence of additional method steps or intervening method steps between those steps expressly identified. Similarly, some steps of a method can be performed in a different order than those described herein without departing from the scope of the disclosed technology.

Claims
  • 1. A flexible catheter comprising a support tube, a proximal end, and a distal end, the support tube comprising: an inner liner disposed around a longitudinal axis of the support tube;an axial series of interlocking segments forming a substantially tubular profile along the longitudinal axis, the interlocking segments comprising a plurality of circumferentially discontinuous ribs, each interlocking segment comprising: a top half comprising a pair of inset teeth extending from respective ribs of the plurality of circumferentially discontinuous ribs; anda bottom half comprising a pair of outset teeth extending from respective ribs of the plurality of circumferentially discontinuous ribs and bounding a reception space;one or more axial seams formed by alignment of the plurality of circumferentially discontinuous ribs of the interlocking segments; anda spine axially linking the interlocking segments and axially linking each of the ribs of the plurality of circumferentially discontinuous ribs by forming an inner face of the reception space,wherein each rib of the plurality of circumferentially discontinuous ribs is substantially circular,wherein the spine follows a non-linear path alternating between the top half and the bottom half of the support tube, andwherein the one or more axial seams allow the support tube to be radially expanded to an expanded inner diameter larger than an outer diameter of the inner liner.
  • 2. The catheter of claim 1, wherein reception spaces of the bottom half are configured to interface with the inset teeth of the top half such that the top half and bottom half are in apposition to one another and are radially separable from one another by the one or more axial seams when the support tube is assembled.
  • 3. The catheter of claim 1, wherein the one or more axial seams are a continuous gap defined by a perimeter of the interface between reception spaces of the bottom half with the inset teeth of the top half.
  • 4. The catheter of claim 1, wherein the inset teeth and outset teeth comprise a quadrilateral shape.
  • 5. The catheter of claim 1, wherein the inset teeth and outset teeth comprise L-shaped projections.
  • 6. The catheter of claim 1, wherein the inset teeth of the top half and the outset teeth of the bottom half comprise a projection parallel to the longitudinal axis of the support tube.
  • 7. The catheter of claim 1, wherein the distal end has a face approximately perpendicular to the longitudinal axis configured for connecting to a catheter mouth configured for conducting intravascular procedures.
  • 8. The catheter of claim 1, wherein a contour of the one or more axial seams follows a non-linear profile.
  • 9. The catheter of claim 1, wherein a first segment pitch measured between a first pair of adjacent interlocking segments is different than a second segment pitch measured between a second pair of adjacent interlocking segments.
US Referenced Citations (821)
Number Name Date Kind
4243040 Beecher Jan 1981 A
4324262 Hall Apr 1982 A
4351342 Wiita et al. Sep 1982 A
4575371 Nordqvist et al. Mar 1986 A
4592356 Gutierrez Jun 1986 A
4719924 Crittenden et al. Jan 1988 A
4738666 Fuqua Apr 1988 A
4767404 Renton Aug 1988 A
4793348 Palmaz Dec 1988 A
4873978 Ginsburg Oct 1989 A
5011488 Ginsburg Apr 1991 A
5092839 Kipperman Mar 1992 A
5102415 Guenther et al. Apr 1992 A
5122136 Guglielmi et al. Jun 1992 A
5123840 Nates Jun 1992 A
5171233 Amplatz Dec 1992 A
5234437 Sepetka Aug 1993 A
5256144 Kraus et al. Oct 1993 A
5261916 Engelson Nov 1993 A
5372124 Takayama et al. Dec 1994 A
5385562 Adams Jan 1995 A
5387219 Rappe Feb 1995 A
5387226 Miraki Feb 1995 A
5396902 Brennen et al. Mar 1995 A
5449372 Schmaltz Sep 1995 A
5520651 Sutcu May 1996 A
5538512 Zenzon et al. Jul 1996 A
5549626 Miller et al. Aug 1996 A
5558652 Henke Sep 1996 A
5601600 Ton Feb 1997 A
5609627 Goicoechea et al. Mar 1997 A
5624461 Mariant Apr 1997 A
5639277 Mariant Jun 1997 A
5645558 Horton Jul 1997 A
5658296 Bates Aug 1997 A
5662671 Barbut Sep 1997 A
5695519 Summers et al. Dec 1997 A
5709704 Nott et al. Jan 1998 A
5713853 Clark Feb 1998 A
5728078 Powers, Jr. Mar 1998 A
5769871 Mers Kelly Jun 1998 A
5779716 Cano Jul 1998 A
5810874 Lefebvre Sep 1998 A
5814064 Daniel et al. Sep 1998 A
5827304 Hart Oct 1998 A
5846251 Hart Dec 1998 A
5855598 Pinchuk Jan 1999 A
5893869 Barnhart et al. Apr 1999 A
5895398 Wensel Apr 1999 A
5897567 Ressemann Apr 1999 A
5904698 Thomas et al. May 1999 A
5911725 Boury Jun 1999 A
5935139 Bates Aug 1999 A
5938645 Gordon Aug 1999 A
5947995 Samuels Sep 1999 A
5968057 Taheri Oct 1999 A
5971938 Hart et al. Oct 1999 A
5997939 Moechnig et al. Dec 1999 A
6022343 Johnson et al. Feb 2000 A
6063113 Kavteladze May 2000 A
6066149 Samson et al. May 2000 A
6066158 Engelson May 2000 A
6093196 Okada Jul 2000 A
6093199 Brown et al. Jul 2000 A
6096053 Bates Aug 2000 A
6099534 Bates Aug 2000 A
6102932 Kurz Aug 2000 A
6106548 Roubin et al. Aug 2000 A
6129739 Khosravi Oct 2000 A
6142957 Diamond et al. Nov 2000 A
6146396 Kónya et al. Nov 2000 A
6146404 Kim Nov 2000 A
6165194 Denardo Dec 2000 A
6165199 Barbut Dec 2000 A
6168604 Cano Jan 2001 B1
6168622 Mazzocchi Jan 2001 B1
6174318 Bates et al. Jan 2001 B1
6179861 Khosravi Jan 2001 B1
6203561 Ramee Mar 2001 B1
6214026 Lepak Apr 2001 B1
6221006 Dubrul Apr 2001 B1
6238412 Dubrul May 2001 B1
6245087 Addis Jun 2001 B1
6251122 Tsukernik Jun 2001 B1
6254571 Hart Jul 2001 B1
6264663 Cano Jul 2001 B1
6306163 Fitz Oct 2001 B1
6309379 Willard Oct 2001 B1
6312407 Zando-Azizi et al. Nov 2001 B1
6312444 Barbut Nov 2001 B1
6315778 Gambale et al. Nov 2001 B1
6325819 Pavcnik et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6336934 Gilson et al. Jan 2002 B1
6346116 Brooks et al. Feb 2002 B1
6348056 Bates Feb 2002 B1
6350271 Kurz et al. Feb 2002 B1
6361545 Macoviak Mar 2002 B1
6371963 Nishtala et al. Apr 2002 B1
6375668 Gifford et al. Apr 2002 B1
6383205 Samson et al. May 2002 B1
6383206 Gillick May 2002 B1
6391037 Greenhalgh May 2002 B1
6402771 Palmer Jun 2002 B1
6409683 Fonseca et al. Jun 2002 B1
6416541 Denardo Jul 2002 B2
6425909 Dieck et al. Jul 2002 B1
6432122 Gilson et al. Aug 2002 B1
6436112 Wensel Aug 2002 B2
6458139 Palmer Oct 2002 B1
6485497 Wensel Nov 2002 B2
6485501 Green Nov 2002 B1
6485502 Don Michael Nov 2002 B2
6511492 Rosenbluth Jan 2003 B1
6517551 Driskill Feb 2003 B1
6520934 Lee et al. Feb 2003 B1
6520951 Carrillo, Jr. et al. Feb 2003 B1
6530935 Wensel Mar 2003 B2
6530939 Hopkins Mar 2003 B1
6540768 Diaz et al. Apr 2003 B1
6544279 Hopkins Apr 2003 B1
6551341 Boylan et al. Apr 2003 B2
6551342 Shen et al. Apr 2003 B1
6575997 Palmer et al. Jun 2003 B1
6582448 Boyle Jun 2003 B1
6585756 Strecker Jul 2003 B1
6589265 Palmer et al. Jul 2003 B1
6592607 Palmer et al. Jul 2003 B1
6592616 Stack Jul 2003 B1
6602271 Adams Aug 2003 B2
6602272 Boylan et al. Aug 2003 B2
6605102 Mazzocchi et al. Aug 2003 B1
6610077 Hancock et al. Aug 2003 B1
6616679 Khosravi Sep 2003 B1
6632241 Hancock et al. Oct 2003 B1
6638245 Miller Oct 2003 B2
6638293 Makower et al. Oct 2003 B1
6641590 Palmer et al. Nov 2003 B1
6652555 VanTassel et al. Nov 2003 B1
6656218 Denardo et al. Dec 2003 B1
6660021 Palmer et al. Dec 2003 B1
6663650 Sepetka Dec 2003 B2
6673089 Yassour et al. Jan 2004 B1
6685722 Rosenbluth Feb 2004 B1
6692504 Kurz et al. Feb 2004 B2
6692508 Wensel Feb 2004 B2
6692509 Wensel Feb 2004 B2
6702782 Miller Mar 2004 B2
6712834 Yassour et al. Mar 2004 B2
6726701 Gilson et al. Apr 2004 B2
6726703 Broome et al. Apr 2004 B2
6730104 Sepetka May 2004 B1
6824545 Sepetka Nov 2004 B2
6855155 Denardo et al. Feb 2005 B2
6878163 Denardo et al. Apr 2005 B2
6890340 Duane May 2005 B2
6913612 Palmer Jul 2005 B2
6913618 Denardo et al. Jul 2005 B2
6953472 Palmer et al. Oct 2005 B2
6989019 Mazzocchi Jan 2006 B2
6989021 Bosma et al. Jan 2006 B2
6994718 Groothuis et al. Feb 2006 B2
6997939 Linder Feb 2006 B2
7004954 Voss et al. Feb 2006 B1
7004955 Shen Feb 2006 B2
7004956 Palmer Feb 2006 B2
7008434 Kurz et al. Mar 2006 B2
7033376 Tsukernik Apr 2006 B2
7041116 Goto May 2006 B2
7048758 Boyle May 2006 B2
7058456 Pierce Jun 2006 B2
7063707 Bose Jun 2006 B2
7153320 Euteneuer et al. Dec 2006 B2
7175655 Malaei Feb 2007 B1
7179273 Palmer et al. Feb 2007 B1
7220269 Ansel May 2007 B1
7220271 Clubb May 2007 B2
7226464 Garner et al. Jun 2007 B2
7229472 DePalma et al. Jun 2007 B2
7232462 Schaeffer Jun 2007 B2
7288112 Denardo et al. Oct 2007 B2
7306618 Demond Dec 2007 B2
7316692 Huffmaster Jan 2008 B2
7323001 Cubb Jan 2008 B2
7331976 McGuckin, Jr. et al. Feb 2008 B2
7344550 Carrison et al. Mar 2008 B2
7399308 Borillo et al. Jul 2008 B2
7410491 Hopkins Aug 2008 B2
7452496 Brady et al. Nov 2008 B2
7491215 Vale et al. Feb 2009 B2
7491216 Brady Feb 2009 B2
7510565 Gilson et al. Mar 2009 B2
7534252 Sepetka May 2009 B2
7556636 Mazzocchi Jul 2009 B2
7582111 Krolik et al. Sep 2009 B2
7594926 Linder et al. Sep 2009 B2
7604649 McGuckin et al. Oct 2009 B2
7618434 Santra et al. Nov 2009 B2
7662165 Gilson et al. Feb 2010 B2
7670356 Mazzocchi Mar 2010 B2
7691121 Rosenbluth Apr 2010 B2
7691124 Balgobin Apr 2010 B2
7708770 Linder May 2010 B2
7736385 Agnew Jun 2010 B2
7766934 Pal Aug 2010 B2
7771452 Pal Aug 2010 B2
7780694 Palmer Aug 2010 B2
7780696 Daniel et al. Aug 2010 B2
7819893 Brady et al. Oct 2010 B2
7828815 Mazzocchi Nov 2010 B2
7846176 Mazzocchi Nov 2010 B2
7846175 Bonnette et al. Dec 2010 B2
7850708 Pal Dec 2010 B2
7887560 Kusleika Feb 2011 B2
7901426 Gilson et al. Mar 2011 B2
7914549 Morsi Mar 2011 B2
7922732 Mazzocchi Apr 2011 B2
7927349 Brady et al. Apr 2011 B2
7927784 Simpson Apr 2011 B2
7931659 Bose et al. Apr 2011 B2
7998165 Huffmaster Aug 2011 B2
8002822 Glocker et al. Aug 2011 B2
8021379 Thompson et al. Sep 2011 B2
8021380 Thompson et al. Sep 2011 B2
8043326 Hancock et al. Oct 2011 B2
8048151 O'Brien et al. Nov 2011 B2
8052640 Fiorella et al. Nov 2011 B2
8057497 Raju et al. Nov 2011 B1
8066757 Ferrera et al. Nov 2011 B2
8070791 Ferrera et al. Dec 2011 B2
8088140 Ferrera et al. Jan 2012 B2
8100935 Rosenbluth et al. Jan 2012 B2
8109941 Richardson Feb 2012 B2
8118829 Carrison et al. Feb 2012 B2
8123769 Osborne Feb 2012 B2
8137377 Palmer Mar 2012 B2
8142422 Makower et al. Mar 2012 B2
8142442 Palmer et al. Mar 2012 B2
8182508 Magnuson et al. May 2012 B2
8187298 Pal May 2012 B2
8246641 Osborne et al. Aug 2012 B2
8246672 Osborne Aug 2012 B2
8252017 Paul, Jr. et al. Aug 2012 B2
8252018 Valaie Aug 2012 B2
8357178 Grandfield et al. Jan 2013 B2
8357179 Grandfield et al. Jan 2013 B2
8357893 Xu et al. Jan 2013 B2
8361095 Osborne Jan 2013 B2
8366663 Fiorella et al. Feb 2013 B2
8372133 Douk et al. Feb 2013 B2
8382742 Hermann et al. Feb 2013 B2
8409215 Sepetka et al. Apr 2013 B2
8419748 Valaie Apr 2013 B2
8460312 Bose et al. Jun 2013 B2
8460313 Huffmaster Jun 2013 B2
8486104 Samson et al. Jul 2013 B2
8529596 Grandfield et al. Sep 2013 B2
8574262 Ferrera et al. Nov 2013 B2
8579915 French et al. Nov 2013 B2
8585643 Vo et al. Nov 2013 B2
8585713 Ferrera et al. Nov 2013 B2
8608761 Osbourne et al. Dec 2013 B2
8679142 Slee et al. Mar 2014 B2
8696622 Fiorella et al. Apr 2014 B2
8702652 Fiorella et al. Apr 2014 B2
8702724 Olsen et al. Apr 2014 B2
8784434 Rosenbluth et al. Jul 2014 B2
8784441 Rosenbluth et al. Jul 2014 B2
8795305 Grandfield et al. Aug 2014 B2
8795317 Grandfield et al. Aug 2014 B2
8795345 Grandfield et al. Aug 2014 B2
8814892 Galdonik et al. Aug 2014 B2
8814925 Hilaire et al. Aug 2014 B2
8900265 Ulm, III Dec 2014 B1
8939991 Krolick et al. Jan 2015 B2
8945143 Ferrera et al. Feb 2015 B2
8945172 Ferrera et al. Feb 2015 B2
8968330 Rosenbluth et al. Mar 2015 B2
9039749 Shrivastava et al. May 2015 B2
9072537 Grandfield et al. Jul 2015 B2
9113936 Palmer et al. Aug 2015 B2
9119656 Bose et al. Sep 2015 B2
9138307 Valaie Sep 2015 B2
9149609 Ansel et al. Oct 2015 B2
9155552 Ulm, III Oct 2015 B2
9161766 Slee et al. Oct 2015 B2
9173668 Ulm, III Nov 2015 B2
9186487 Dubrul et al. Nov 2015 B2
9198687 Fulkerson et al. Dec 2015 B2
9204887 Cully et al. Dec 2015 B2
9221132 Bowman Dec 2015 B2
9232992 Heidner Jan 2016 B2
9532792 Galdonik et al. Jan 2017 B2
9532873 Kelley Jan 2017 B2
9533344 Monetti et al. Jan 2017 B2
9539011 Chen et al. Jan 2017 B2
9539022 Bowman Jan 2017 B2
9539122 Burke et al. Jan 2017 B2
9539382 Nelson Jan 2017 B2
9549830 Bruszewski et al. Jan 2017 B2
9554805 Tompkins et al. Jan 2017 B2
9561125 Bowman et al. Feb 2017 B2
9572982 Burnes et al. Feb 2017 B2
9579484 Barnell Feb 2017 B2
9585642 Dinsmoor et al. Mar 2017 B2
9615832 Bose et al. Apr 2017 B2
9615951 Bennett et al. Apr 2017 B2
9622753 Cox Apr 2017 B2
9636115 Henry et al. May 2017 B2
9636439 Chu et al. May 2017 B2
9642635 Vale et al. May 2017 B2
9642675 Werneth et al. May 2017 B2
9655633 Leynov et al. May 2017 B2
9655645 Staunton May 2017 B2
9655989 Cruise et al. May 2017 B2
9662129 Galdonik et al. May 2017 B2
9662238 Dwork et al. May 2017 B2
9662425 Lilja et al. May 2017 B2
9668898 Wong Jun 2017 B2
9675477 Thompson Jun 2017 B2
9675782 Connolly Jun 2017 B2
9676022 Ensign et al. Jun 2017 B2
9692557 Murphy Jun 2017 B2
9693852 Lam et al. Jul 2017 B2
9700262 Janik et al. Jul 2017 B2
9700399 Acosta-Acevedo Jul 2017 B2
9717421 Griswold et al. Aug 2017 B2
9717500 Tieu et al. Aug 2017 B2
9717502 Teoh et al. Aug 2017 B2
9724103 Cruise et al. Aug 2017 B2
9724526 Strother et al. Aug 2017 B2
9750565 Bloom et al. Sep 2017 B2
9757260 Greenan Sep 2017 B2
9764111 Gulachenski Sep 2017 B2
9770251 Bowman et al. Sep 2017 B2
9770577 Li et al. Sep 2017 B2
9775621 Tompkins et al. Oct 2017 B2
9775706 Paterson et al. Oct 2017 B2
9775732 Khenansho Oct 2017 B2
9788800 Mayoras, Jr. Oct 2017 B2
9795391 Saatchi et al. Oct 2017 B2
9801980 Karino et al. Oct 2017 B2
9808599 Bowman et al. Nov 2017 B2
9833252 Sepetka et al. Dec 2017 B2
9833604 Lam et al. Dec 2017 B2
9833625 Waldhauser et al. Dec 2017 B2
10028759 Wallace et al. Jul 2018 B2
10149692 Turjman et al. Dec 2018 B2
10265086 Vale Apr 2019 B2
10610668 Burkholz et al. Apr 2020 B2
10716915 Ogle et al. Jul 2020 B2
10835271 Ma Nov 2020 B2
11076879 Yee et al. Aug 2021 B2
20010001315 Bates May 2001 A1
20010011182 Dubrul et al. Aug 2001 A1
20010016755 Addis Aug 2001 A1
20010041899 Foster Nov 2001 A1
20010044598 Parodi Nov 2001 A1
20010044634 Don Michael et al. Nov 2001 A1
20010051810 Dubrul Dec 2001 A1
20020002383 Sepetka et al. Jan 2002 A1
20020016609 Wensel Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020026211 Khosravi Feb 2002 A1
20020049468 Streeter Apr 2002 A1
20020052620 Barvut May 2002 A1
20020068954 Foster Jun 2002 A1
20020072764 Sepetka Jun 2002 A1
20020082558 Samson Jun 2002 A1
20020091407 Zadno-Azizi et al. Jul 2002 A1
20020095171 Belef Jul 2002 A1
20020123765 Sepetka Sep 2002 A1
20020143362 Macoviak et al. Oct 2002 A1
20020156455 Barbut Oct 2002 A1
20020161393 Demond Oct 2002 A1
20020165576 Boyle et al. Nov 2002 A1
20020173819 Leeflang et al. Nov 2002 A1
20020177800 Bagaoisan et al. Nov 2002 A1
20020188276 Evans Dec 2002 A1
20030004536 Boylan et al. Jan 2003 A1
20030004538 Secrest Jan 2003 A1
20030004542 Wensel Jan 2003 A1
20030009146 Muni Jan 2003 A1
20030009191 Wensel Jan 2003 A1
20030023204 Vo et al. Jan 2003 A1
20030040769 Kelley et al. Feb 2003 A1
20030040772 Hyodoh et al. Feb 2003 A1
20030050663 Khachin Mar 2003 A1
20030105484 Boyle et al. Jun 2003 A1
20030125798 Matrin Jul 2003 A1
20030130682 Broome et al. Jul 2003 A1
20030144687 Brady et al. Jul 2003 A1
20030144689 Brady et al. Jul 2003 A1
20030153940 Nohilly et al. Aug 2003 A1
20030153943 Michael et al. Aug 2003 A1
20030153944 Phung Aug 2003 A1
20030163064 Vrba Aug 2003 A1
20030163158 Wlite Aug 2003 A1
20030171769 Barbu Sep 2003 A1
20030176884 Berrada et al. Sep 2003 A1
20030187495 Cully et al. Oct 2003 A1
20030195537 Dubrul Oct 2003 A1
20030195554 Shen Oct 2003 A1
20030199917 Knudson Oct 2003 A1
20030204202 Palmer Oct 2003 A1
20030212430 Bose Nov 2003 A1
20030216611 Vu Nov 2003 A1
20030236533 Wilson Dec 2003 A1
20040010280 Adams et al. Jan 2004 A1
20040010282 Kusleika Jan 2004 A1
20040014002 Lundgren Jan 2004 A1
20040068288 Palmer et al. Apr 2004 A1
20040073243 Sepetka Apr 2004 A1
20040079429 Miller Apr 2004 A1
20040082962 Demarais et al. Apr 2004 A1
20040093065 Yachia et al. May 2004 A1
20040133231 Maitland Jul 2004 A1
20040138692 Phung Jul 2004 A1
20040153049 Hewitt et al. Aug 2004 A1
20040153118 Clubb Aug 2004 A1
20040193107 Pierpont et al. Sep 2004 A1
20040199202 Dubrul et al. Oct 2004 A1
20040260333 Dubrul et al. Dec 2004 A1
20050015047 Shah Jan 2005 A1
20050020974 Noriega Jan 2005 A1
20050033348 Sepetka Feb 2005 A1
20050038447 Huffmaster Feb 2005 A1
20050038468 Panetta et al. Feb 2005 A1
20050049619 Sepetka Mar 2005 A1
20050049669 Jones Mar 2005 A1
20050049670 Jones et al. Mar 2005 A1
20050055033 Leslie et al. Mar 2005 A1
20050055047 Greenhalgh Mar 2005 A1
20050059993 Ramzipoor et al. Mar 2005 A1
20050059995 Sepetka Mar 2005 A1
20050085849 Sepetka Apr 2005 A1
20050090857 Kusleika et al. Apr 2005 A1
20050119524 Sckine et al. Jun 2005 A1
20050119668 Teague et al. Jun 2005 A1
20050125024 Sepetka Jun 2005 A1
20050131449 Salahieh et al. Jun 2005 A1
20050149111 Kanazawa et al. Jul 2005 A1
20050171566 Kanamaru Aug 2005 A1
20050187570 Nguyen et al. Aug 2005 A1
20050267491 Kellett et al. Aug 2005 A1
20050216030 Sepetka Sep 2005 A1
20050216050 Sepetka Sep 2005 A1
20050288686 Sepetka Sep 2005 A1
20050228417 Teitelbaum et al. Oct 2005 A1
20060009785 Maitland et al. Jan 2006 A1
20060009799 Kleshinski et al. Jan 2006 A1
20060010636 Vacher Jan 2006 A1
20060030933 DeLeggge et al. Feb 2006 A1
20060036271 Schomer et al. Feb 2006 A1
20060058836 Bose Mar 2006 A1
20060058837 Bose Mar 2006 A1
20060058838 Bose Mar 2006 A1
20060064151 Guterman et al. Mar 2006 A1
20060149313 Arguello et al. Jul 2006 A1
20060155305 Freudenthal Jul 2006 A1
20060155322 Sater et al. Jul 2006 A1
20060161187 Levine et al. Jul 2006 A1
20060195137 Sepetka Aug 2006 A1
20060224177 Finitsis Oct 2006 A1
20060224179 Kucharczyk Oct 2006 A1
20060229638 Abrams et al. Oct 2006 A1
20060282111 Morsi Dec 2006 A1
20060287701 Pal Dec 2006 A1
20070088383 Pal et al. Apr 2007 A1
20070142858 Bates Jun 2007 A1
20070149996 Coughlin Jun 2007 A1
20070156170 Hancock Jul 2007 A1
20070165170 Fukuda Jul 2007 A1
20070179513 Deutsch Aug 2007 A1
20070191866 Palmer et al. Aug 2007 A1
20070198028 Miloslavski Aug 2007 A1
20070198051 Clubb et al. Aug 2007 A1
20070198075 Levy Aug 2007 A1
20070208367 Fiorella Sep 2007 A1
20070208371 French Sep 2007 A1
20070213765 Adams et al. Sep 2007 A1
20070225749 Martin Sep 2007 A1
20070239182 Glines et al. Oct 2007 A1
20070239254 Chia et al. Oct 2007 A1
20070244505 Gilson et al. Oct 2007 A1
20070270902 Slazas et al. Nov 2007 A1
20070288038 Bimbo Dec 2007 A1
20070293887 Okushi et al. Dec 2007 A1
20080045881 Teitelbaum et al. Feb 2008 A1
20080082107 Miller et al. Apr 2008 A1
20080086190 Ta Apr 2008 A1
20080091223 Pokorney Apr 2008 A1
20080097398 Mitelberg Apr 2008 A1
20080109031 Sepetka May 2008 A1
20080109032 Sepetka May 2008 A1
20080119886 Greenhalgh et al. May 2008 A1
20080177296 Sepetka Jul 2008 A1
20080183197 Sepetka Jul 2008 A1
20080183198 Sepetka Jul 2008 A1
20080183205 Sepetka Jul 2008 A1
20080188876 Sepetka Aug 2008 A1
20080188885 Sepetka Aug 2008 A1
20080188928 Salahieh Aug 2008 A1
20080200946 Braun Aug 2008 A1
20080215077 Sepetka Sep 2008 A1
20080221600 Dieck et al. Sep 2008 A1
20080228209 DeMello et al. Sep 2008 A1
20080234706 Sepetka Sep 2008 A1
20080243170 Jenson Oct 2008 A1
20080255596 Jenson Oct 2008 A1
20080262528 Martin Oct 2008 A1
20080262532 Martin Oct 2008 A1
20080269774 Garcia et al. Oct 2008 A1
20080275488 Fleming Nov 2008 A1
20080275493 Farmiga Nov 2008 A1
20080281350 Sepetka Nov 2008 A1
20080312681 Ansel Dec 2008 A1
20090024157 Anukhin Jan 2009 A1
20090054918 Henson Feb 2009 A1
20090069828 Martin Mar 2009 A1
20090076539 Valaie Mar 2009 A1
20090105722 Fulkerson Apr 2009 A1
20090105737 Fulkerson Apr 2009 A1
20090131908 McKay May 2009 A1
20090163846 Aklog et al. May 2009 A1
20090177206 Lozier et al. Jul 2009 A1
20090182336 Brenzel et al. Jul 2009 A1
20090221967 Thommen et al. Sep 2009 A1
20090270815 Stamp et al. Oct 2009 A1
20090281610 Parker Nov 2009 A1
20090292297 Ferrere Nov 2009 A1
20090292307 Razack Nov 2009 A1
20090299374 Tilson et al. Dec 2009 A1
20090299393 Martin Dec 2009 A1
20090306702 Miloslavski Dec 2009 A1
20100004607 Wilson et al. Jan 2010 A1
20100016957 Jager et al. Jan 2010 A1
20100030186 Stivland Feb 2010 A1
20100030256 Dubrul et al. Feb 2010 A1
20100036312 Krolik et al. Feb 2010 A1
20100087908 Hilaire Apr 2010 A1
20100114017 Lenker May 2010 A1
20100125326 Kalstad May 2010 A1
20100125327 Agnew May 2010 A1
20100191272 Keating Jul 2010 A1
20100211094 Sargent, Jr. Aug 2010 A1
20100249815 Jantzen et al. Sep 2010 A1
20100268264 Bonnett et al. Oct 2010 A1
20100268265 Krolik et al. Oct 2010 A1
20100292726 Olsen et al. Nov 2010 A1
20100305566 Rosenblatt et al. Dec 2010 A1
20100305604 Pah Dec 2010 A1
20100318178 Rapaport et al. Dec 2010 A1
20100324649 Mattsson Dec 2010 A1
20100331949 Habib Dec 2010 A1
20110009875 Grandfield et al. Jan 2011 A1
20110009940 Grandfield et al. Jan 2011 A1
20110009942 Gregorich Jan 2011 A1
20110022149 Cox et al. Jan 2011 A1
20110054514 Arcand Mar 2011 A1
20110054516 Keegan Mar 2011 A1
20110060359 Hannes Mar 2011 A1
20110071432 Carrillo, Jr. et al. Mar 2011 A1
20110077620 deBeer Mar 2011 A1
20110098683 Wiita et al. Apr 2011 A1
20110054504 Wolf et al. May 2011 A1
20110125181 Brady et al. May 2011 A1
20110130756 Everson, Jr. et al. Jun 2011 A1
20110152920 Eckhouse et al. Jun 2011 A1
20110160763 Ferrera et al. Jun 2011 A1
20110166586 Sepetka et al. Jul 2011 A1
20110196414 Porter et al. Aug 2011 A1
20110202088 Eckhouse et al. Aug 2011 A1
20110213290 Chin et al. Sep 2011 A1
20110213297 Aklog et al. Sep 2011 A1
20110213393 Aklog et al. Sep 2011 A1
20110213403 Aboytes Sep 2011 A1
20110218564 Drasler et al. Sep 2011 A1
20110224707 Miloslavaski et al. Sep 2011 A1
20110264132 Strauss et al. Oct 2011 A1
20110276120 Gilson et al. Nov 2011 A1
20110319917 Ferrera et al. Dec 2011 A1
20120041449 Eckhouse et al. Feb 2012 A1
20120041474 Eckhouse et al. Feb 2012 A1
20120059356 diPama et al. Mar 2012 A1
20120089216 Rapaport et al. Apr 2012 A1
20120101510 Lenker et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120116440 Eynov et al. May 2012 A1
20120143237 Cam et al. Jun 2012 A1
20120143239 Aklog et al. Jun 2012 A1
20120150147 Leynov et al. Jun 2012 A1
20120165858 Eckhouse et al. Jun 2012 A1
20120165859 Eckhouse et al. Jun 2012 A1
20120215250 Grandfield et al. Aug 2012 A1
20120277788 Cattaneo Nov 2012 A1
20120283768 Cox et al. Nov 2012 A1
20120296362 Cam et al. Nov 2012 A1
20120316600 Ferrera et al. Dec 2012 A1
20130006284 Aggerholm et al. Jan 2013 A1
20130030461 Marks et al. Jan 2013 A1
20130046330 McIntosh et al. Feb 2013 A1
20130046333 Jones et al. Feb 2013 A1
20130046334 Jones et al. Feb 2013 A1
20130116774 Strauss et al. May 2013 A1
20130131614 Hassan et al. May 2013 A1
20130144326 Brady et al. Jun 2013 A1
20130144328 Weber et al. Jun 2013 A1
20130158592 Porter Jun 2013 A1
20130184703 Shireman et al. Jul 2013 A1
20130184739 Brady et al. Jul 2013 A1
20130197567 Brady et al. Aug 2013 A1
20130226146 Tekulve Aug 2013 A1
20130268050 Wilson et al. Oct 2013 A1
20130281788 Garrison Oct 2013 A1
20130289697 Baker et al. Oct 2013 A1
20130325055 Eckhouse et al. Dec 2013 A1
20130325056 Eckhouse et al. Dec 2013 A1
20130345739 Brady et al. Dec 2013 A1
20140012281 Wang et al. Jan 2014 A1
20140046359 Bowman et al. Feb 2014 A1
20140052097 Petersen et al. Feb 2014 A1
20140081243 Zhou et al. Mar 2014 A1
20140121672 Folk May 2014 A1
20140128905 Molaei May 2014 A1
20140135812 Divino et al. May 2014 A1
20140180377 Bose et al. Jun 2014 A1
20140188127 Dubrul et al. Jul 2014 A1
20140194919 Losordo et al. Jul 2014 A1
20140200607 Sepetka et al. Jul 2014 A1
20140200608 Brady et al. Jul 2014 A1
20140236220 Inoue Aug 2014 A1
20140257018 Farnan Sep 2014 A1
20140257362 Eldenschink Sep 2014 A1
20140276922 McLain et al. Sep 2014 A1
20140277003 Hendrick Sep 2014 A1
20140277053 Wang et al. Sep 2014 A1
20140277079 Vale et al. Sep 2014 A1
20140309657 Ben-Ami Oct 2014 A1
20140309673 Dacuycuy et al. Oct 2014 A1
20140330302 Tekulve et al. Nov 2014 A1
20140343585 Ferrera et al. Nov 2014 A1
20140364896 Consigny Dec 2014 A1
20140371769 Vale et al. Dec 2014 A1
20140371777 Rudakov et al. Dec 2014 A1
20140371779 Vale et al. Dec 2014 A1
20140371780 Vale et al. Dec 2014 A1
20140379023 Brady et al. Dec 2014 A1
20150018859 Quick et al. Jan 2015 A1
20150018860 Quick et al. Jan 2015 A1
20150080937 Davidson Mar 2015 A1
20150081003 Wainwright et al. Mar 2015 A1
20150112376 Molaei et al. Apr 2015 A1
20150133990 Davidson May 2015 A1
20150142043 Furey May 2015 A1
20150164523 Brady et al. Jun 2015 A1
20150173782 Garrison et al. Jun 2015 A1
20150173783 Tah et al. Jun 2015 A1
20150238314 Börtlein et al. Aug 2015 A1
20150250497 Marks et al. Sep 2015 A1
20150257775 Gilvarry et al. Sep 2015 A1
20150258270 Kunis Sep 2015 A1
20150290437 Rudakov et al. Oct 2015 A1
20150297252 Miloslavski et al. Oct 2015 A1
20150306311 Pinchuk et al. Oct 2015 A1
20150313617 Grandfield et al. Nov 2015 A1
20150320431 Ulm, III Nov 2015 A1
20150351770 Fulton, III Dec 2015 A1
20150352325 Quick Dec 2015 A1
20150359547 Vale et al. Dec 2015 A1
20150374391 Quick et al. Dec 2015 A1
20150374393 Brady et al. Dec 2015 A1
20150374479 Vale Dec 2015 A1
20160015402 Brady et al. Jan 2016 A1
20160022296 Brady et al. Jan 2016 A1
20160066921 Brady et al. Mar 2016 A1
20160074067 Furnish et al. Mar 2016 A1
20160106448 Brady et al. Apr 2016 A1
20160106449 Brady et al. Apr 2016 A1
20160113663 Brady et al. Apr 2016 A1
20160113664 Brady et al. Apr 2016 A1
20160113665 Brady et al. Apr 2016 A1
20160120558 Brady et al. May 2016 A1
20160121080 Cottone May 2016 A1
20160135829 Holochwost et al. May 2016 A1
20160143653 Vale et al. May 2016 A1
20160151079 Aklog et al. Jun 2016 A1
20160192953 Brady et al. Jul 2016 A1
20160192954 Brady et al. Jul 2016 A1
20160192955 Brady et al. Jul 2016 A1
20160192956 Brady et al. Jul 2016 A1
20160228134 Martin et al. Aug 2016 A1
20160256180 Vale et al. Sep 2016 A1
20160262880 Li et al. Sep 2016 A1
20160317168 Brady et al. Nov 2016 A1
20160346002 Avneri et al. Dec 2016 A1
20170007264 Cruise et al. Jan 2017 A1
20170007265 Guo et al. Jan 2017 A1
20170020670 Murray et al. Jan 2017 A1
20170020700 Bienvenu et al. Jan 2017 A1
20170027640 Kunis et al. Feb 2017 A1
20170027692 Bonhoeffer et al. Feb 2017 A1
20170027725 Argentine Feb 2017 A1
20170035436 Morita Feb 2017 A1
20170035567 Duffy Feb 2017 A1
20170042548 Lam Feb 2017 A1
20170049596 Schabert Feb 2017 A1
20170065401 Fearnot et al. Mar 2017 A1
20170071614 Vale et al. Mar 2017 A1
20170071737 Kelley Mar 2017 A1
20170072452 Monetti et al. Mar 2017 A1
20170079671 Morero et al. Mar 2017 A1
20170079680 Bowman Mar 2017 A1
20170079766 Wang et al. Mar 2017 A1
20170079767 Leon-Yip Mar 2017 A1
20170079812 Lam et al. Mar 2017 A1
20170079817 Sepetka et al. Mar 2017 A1
20170079819 Pung et al. Mar 2017 A1
20170079820 Lam et al. Mar 2017 A1
20170086851 Wallace et al. Mar 2017 A1
20170086862 Vale et al. Mar 2017 A1
20170086863 Brady et al. Mar 2017 A1
20170086864 Greenhalgh et al. Mar 2017 A1
20170086996 Peterson et al. Mar 2017 A1
20170239447 Greenhalgh et al. Mar 2017 A1
20170095138 Nakade Apr 2017 A1
20170095259 Tompkins et al. Apr 2017 A1
20170100126 Bowman et al. Apr 2017 A1
20170100141 Morero et al. Apr 2017 A1
20170100143 Granfield Apr 2017 A1
20170100183 Iaizzo et al. Apr 2017 A1
20170105743 Vale et al. Apr 2017 A1
20170112515 Brady et al. Apr 2017 A1
20170113023 Steingisser et al. Apr 2017 A1
20170147765 Mehta May 2017 A1
20170151032 Loisel Jun 2017 A1
20170165062 Rothstein Jun 2017 A1
20170165065 Rothstein Jun 2017 A1
20170165454 Tuohy Jun 2017 A1
20170172554 Bortlein et al. Jun 2017 A1
20170172581 Bose et al. Jun 2017 A1
20170172766 Vong et al. Jun 2017 A1
20170172772 Khenansho Jun 2017 A1
20170189033 Sepetka et al. Jul 2017 A1
20170189035 Porter Jul 2017 A1
20170215902 Leynov et al. Aug 2017 A1
20170216484 Cruise et al. Aug 2017 A1
20170224350 Shimizu et al. Aug 2017 A1
20170224355 Bowman et al. Aug 2017 A1
20170224467 Piccagli et al. Aug 2017 A1
20170224511 Dwork et al. Aug 2017 A1
20170224953 Tran et al. Aug 2017 A1
20170231749 Perkins et al. Aug 2017 A1
20170238953 Yang et al. Aug 2017 A1
20170252043 Fuller et al. Sep 2017 A1
20170252064 Staunton Sep 2017 A1
20170259042 Nguyen et al. Sep 2017 A1
20170265983 Lam et al. Sep 2017 A1
20170281192 Tieu et al. Oct 2017 A1
20170281331 Perkins et al. Oct 2017 A1
20170281344 Costello Oct 2017 A1
20170281909 Northrop et al. Oct 2017 A1
20170281912 Melder et al. Oct 2017 A1
20170290593 Sethna Oct 2017 A1
20170290654 Sethna Oct 2017 A1
20170296324 Argentine Oct 2017 A1
20170296325 Marrocco et al. Oct 2017 A1
20170303939 Greenhalgh et al. Oct 2017 A1
20170303942 Greenhalgh et al. Oct 2017 A1
20170303947 Greenhalgh et al. Oct 2017 A1
20170303948 Wallace et al. Oct 2017 A1
20170304041 Argentine Oct 2017 A1
20170304097 Corwin et al. Oct 2017 A1
20170304595 Nagasrinivasa et al. Oct 2017 A1
20170312109 Le Nov 2017 A1
20170312484 Shipley et al. Nov 2017 A1
20170316561 Helm et al. Nov 2017 A1
20170319826 Bowman et al. Nov 2017 A1
20170333228 Orth et al. Nov 2017 A1
20170333236 Greenan Nov 2017 A1
20170333678 Bowman et al. Nov 2017 A1
20170340383 Bloom et al. Nov 2017 A1
20170348014 Wallace et al. Dec 2017 A1
20170348514 Guyon et al. Dec 2017 A1
20180008407 Maimon et al. Jan 2018 A1
20180042623 Batiste Feb 2018 A1
20180193050 Hawkins et al. Jul 2018 A1
20180193591 Jaroch et al. Jul 2018 A1
20180235743 Farago et al. Aug 2018 A1
20180256177 Cooper et al. Sep 2018 A1
20180303610 Anderson Oct 2018 A1
20190021755 Johnson et al. Jan 2019 A1
20190021759 Krolik et al. Jan 2019 A1
20190029820 Zhou et al. Jan 2019 A1
20190029825 Fitterer et al. Jan 2019 A1
20190046219 Marchand et al. Feb 2019 A1
20190192175 Chida et al. Jun 2019 A1
20190209206 Patel et al. Jul 2019 A1
20190216476 Barry et al. Jul 2019 A1
20190239907 Brady et al. Aug 2019 A1
20190247627 Korkuch et al. Aug 2019 A1
20190255290 Snyder et al. Aug 2019 A1
20190269491 Jalgaonkar et al. Sep 2019 A1
20190274810 Phouasalit et al. Sep 2019 A1
20190298396 Gamba et al. Oct 2019 A1
20190365411 Avneri et al. Dec 2019 A1
20190366049 Hannon et al. Dec 2019 A1
20200038628 Chou et al. Feb 2020 A1
20200214859 Sherburne Jul 2020 A1
20200281611 Kelly et al. Sep 2020 A1
20200353208 Merhi et al. Nov 2020 A1
20200383698 Miao et al. Dec 2020 A1
20210085935 Fahey et al. Mar 2021 A1
20210153883 Casey et al. May 2021 A1
20210153884 Casey et al. May 2021 A1
20210154433 Casey et al. May 2021 A1
20210219821 Appling et al. Jul 2021 A1
20220117614 Salmon et al. Apr 2022 A1
20220125450 Sirhan et al. Apr 2022 A1
20220313426 Gifford, III et al. Oct 2022 A1
20230054898 Gurovich Feb 2023 A1
Foreign Referenced Citations (104)
Number Date Country
1658920 Aug 2005 CN
1972728 May 2007 CN
103071195 May 2013 CN
104507380 Apr 2015 CN
104905873 Sep 2015 CN
105007973 Oct 2015 CN
105307582 Feb 2016 CN
105726163 Jul 2016 CN
106232059 Dec 2016 CN
113040865 Jun 2021 CN
202009001951 Apr 2010 DE
102009056450 Jun 2011 DE
102010010849 Sep 2011 DE
102010014778 Oct 2011 DE
102010024085 Dec 2011 DE
102011014586 Sep 2012 DE
20 2020 107013 Jan 2021 DE
2301450 Mar 2011 EP
2628455 Aug 2013 EP
3302312 Apr 2018 EP
3335647 Jun 2018 EP
3 420 978 Jan 2019 EP
4049704 Aug 2022 EP
2498349 Jul 2013 GB
9-19438 Jan 1997 JP
WO 9304722 Mar 1993 WO
WO 9424926 Nov 1994 WO
WO 9727808 Aug 1997 WO
WO 9738631 Oct 1997 WO
WO 9920335 Apr 1999 WO
WO 9956801 Nov 1999 WO
WO 9960933 Dec 1999 WO
WO 0121077 Mar 2001 WO
WO 0202162 Jan 2002 WO
WO 0211627 Feb 2002 WO
WO 0243616 Jun 2002 WO
WO 02070061 Sep 2002 WO
WO 02094111 Nov 2002 WO
WO 03002006 Jan 2003 WO
WO 03018085 Mar 2003 WO
WO 03030751 Apr 2003 WO
WO 03051448 Jun 2003 WO
WO 2004028571 Apr 2004 WO
WO 2004056275 Jul 2004 WO
WO 2005000130 Jan 2005 WO
WO 2005027751 Mar 2005 WO
WO 2005027779 Mar 2005 WO
WO 2006021407 Mar 2006 WO
WO 2006031410 Mar 2006 WO
WO 2006107641 Oct 2006 WO
WO 2006135823 Dec 2006 WO
WO 2007054307 May 2007 WO
WO 2007068424 Jun 2007 WO
WO 2008034615 Mar 2008 WO
WO 2008051431 May 2008 WO
WO 2008131116 Oct 2008 WO
WO 2009019664 Feb 2009 WO
WO 2009031338 Mar 2009 WO
WO 2009076482 Jun 2009 WO
WO 2009086482 Jul 2009 WO
WO 2009103125 Aug 2009 WO
WO 2009105710 Aug 2009 WO
WO 2010010545 Jan 2010 WO
WO 2010046897 Apr 2010 WO
WO 2010075565 Jul 2010 WO
WO 2010102307 Sep 2010 WO
WO 2010146581 Dec 2010 WO
WO 2011013556 Feb 2011 WO
WO 2011066961 Jun 2011 WO
WO 2011082319 Jul 2011 WO
WO 2011095352 Aug 2011 WO
WO 2011106426 Sep 2011 WO
WO 2011110316 Sep 2011 WO
WO 2012052982 Apr 2012 WO
WO 2012064726 May 2012 WO
WO 2012081020 Jun 2012 WO
WO 2012110619 Aug 2012 WO
WO 2012120490 Sep 2012 WO
WO 2012156924 Nov 2012 WO
WO 2013016435 Jan 2013 WO
WO 2013072777 May 2013 WO
WO 2013105099 Jul 2013 WO
WO 2013109756 Jul 2013 WO
WO 2014081892 May 2014 WO
WO 2014139845 Sep 2014 WO
WO 2014169266 Oct 2014 WO
WO 2014178198 Nov 2014 WO
WO 2014188300 Nov 2014 WO
WO 2015061365 Apr 2015 WO
WO 2015134625 Sep 2015 WO
WO 2015179324 Nov 2015 WO
WO 2015179377 Nov 2015 WO
WO 2015189354 Dec 2015 WO
WO 2016010995 Jan 2016 WO
WO 2017004234 Jan 2017 WO
WO 2017097616 Jun 2017 WO
WO 2018178979 Oct 2018 WO
WO 2018193603 Oct 2018 WO
WO 2019064306 Apr 2019 WO
WO 2019079296 Apr 2019 WO
WO 2020139979 Jul 2020 WO
WO 2021016213 Jan 2021 WO
WO 2021167653 Aug 2021 WO
WO 2022020366 Jan 2022 WO
Non-Patent Literature Citations (3)
Entry
US 6,348,062 B1, 02/2002, Hopkins (withdrawn)
Struffert, T., et al. “Intravenous flat detector CT angiography for non-invasive visualisation of intracranial flow diverter: technical feasibility” Eur Radiol 21:1797-1801 (2011).
Partial European Search Report dated Jul. 15, 2022 issued in European Application No. 22 15 8145.
Related Publications (1)
Number Date Country
20220265963 A1 Aug 2022 US