Flexible catheter system

Information

  • Patent Grant
  • 9138562
  • Patent Number
    9,138,562
  • Date Filed
    Friday, April 18, 2008
    16 years ago
  • Date Issued
    Tuesday, September 22, 2015
    9 years ago
Abstract
A percutaneous delivery system with a high degree of flexibility is provided. In one embodiment, the system includes a catheter having a portion comprising multiple segments, linked in series by at least one connecting wire. Joints between the multiple segments provide a high degree of flexibility. In some embodiments, only a distal portion is made up of segments. In other embodiments, the whole length of the catheter is made up of segments. Manipulation of the at least one connecting wire enables manipulation of the segments to flex a portion of the catheter. In one aspect, the invention provides a delivery system that reduces the impact of the delivery system on the final release position of the implant delivered. The delivery system can be used to deploy and/or retrieve implantable medical devices, for example, patent foramen ovale (PFO) occluder.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates to catheter systems for delivery and/or retrieval of medical devices.


2. Description of Related Art


In many minimally invasive medical procedures, an introducer sheath or catheter is inserted in a blood vessel to gain access to a site within a patient's body for a diagnostic or therapeutic procedure, and used to deliver medical devices, including medical implants. Medical technology has produced a number of medical devices which are designed to be compressed into a first configuration, such as through a small diameter tube or catheter, in order to facilitate introduction through the vascular system, and to subsequently expand into an expanded configuration at a desired site in the body. For example, such devices can be intended to occlude defects or holes in the heart, such as intracardiac occluders, or to contact the walls of a passageway or blood vessel, in the case of vena cava filter or stents.


Among these devices, intracardiac occluders present special challenges for a delivery system. First, the occluder must be very carefully and precisely deployed at the treatment site to assure proper closure. Second, the tortuous anatomy of the cardiovascular system necessitates a delivery system capable of traversing the small radii of curvature of the vasculature and the confines of the heart chamber for delivery of the occluder to the deployment site.


Numerous systems for percutaneous catheter delivery of medical devices have been devised over the years in order to assist physicians in delivering and positioning medical devices within the human body in a minimally invasive manner. A common problem with many of these percutaneous delivery systems is that they can often adversely and unpredictably affect the position of the device upon deployment. For example, the released position of a medical implant may be different from its final position while still attached to the delivery system. In such case, the physician is forced to estimate the effect of this difference, compensate for this effect in positioning the implant, and take such effect into consideration when assessing final implant position prior to its release. Additionally, the movement of the implant that occurs following release from its delivery system can be unpredictable. Thus, the resulting improper positioning of such an implant can lead to unfavorable outcomes, such as a residual leak in the case of intracardiac occluders, or, in some extreme case, embolization of the implant.


BRIEF SUMMARY OF THE INVENTION

In one embodiment, the invention provides a conduit for insertion into a living body includes a plurality of adjacent segments. Each of the plurality of segments have a front face, a back face, and a central axis. The front faces of the segments are adjacent to the back faces of adjacent segments and form a flexible joint between the adjacent segments and enable the segments to be deflected from a configuration wherein the central axes of the segments are aligned. The conduit also includes a main lumen defined by the plurality of adjacent segments. The main lumen passes through the front and back faces of the segments. The conduit further includes a first side lumen defined by the plurality of adjacent segments. The first side lumen is disposed within the segments at a location radially distant from the central axes of the segments. The conduit includes a first wire disposed in the first side lumen. The first wire is joined to a most distal segment of the plurality of segments. The first wire is for selectively applying a force to the most distal segment to cause the plurality of segments to be deflected from a configuration wherein the central axes of the segments are aligned.


In some embodiments, the conduit includes a second side lumen defined by the plurality of adjacent segments. The second side lumen is disposed within the segments at a location radially distant from the central axes of the segments. The first wire can be disposed in the second side lumen. The first side lumen can be disposed across the central axis from the second side lumen.


In certain embodiments, the conduit includes a second wire disposed in the second side lumen. The second wire is joined to the most distal segment of the plurality of segments. The second wire is for selectively applying a force to the most distal segment to cause the plurality of segments to be deflected from a configuration wherein the central axes of the segments are aligned.


In various embodiments, the conduit includes a relatively rigid catheter section attached to the most proximal segment of the plurality of segments.


In some embodiments, the conduit can include one or more snare lumens defined by the plurality of adjacent segments. The snare lumens are disposed within the segments at a location radially distant from the central axes of the segments. One or more snare wires can be disposed in snare lumens. The snare wires are for releasably attaching to an implant device.


In other embodiments, a method includes introducing a conduit, as described herein, into a vasculature of a living body, and selectively applying a force to at least one wire disposed in a side lumen of the conduit to direct a distal end of the conduit to a desired site within the vasculature of the living body.


In various embodiments, the method above can also include withdrawing a deployed implant device into an inner lumen of a sheath through which the conduit passes, and withdrawing the conduit from the vasculature of a living body.


In certain embodiments, a method includes forming a conduit for insertion into a vasculature of a living body. The conduit includes a plurality of adjacent segments. Each of the plurality of segments has a front face, a back face, and a central axis. The front faces of the segments are adjacent to the back faces of adjacent segments and form a flexible joint between the adjacent segments and enable the segments to be deflected from a configuration wherein the central axes of the segments are aligned. The conduit also includes a main lumen defined by the plurality of adjacent segments. The main lumen passes through the front and back faces of the segments. The conduit further includes a first side lumen defined by the plurality of adjacent segments. The first side lumen is disposed within the segments at a location radially distant from the central axes of the segments. The method also includes disposing a first wire in the first side lumen. The first wire is joined to a most distal segment of the plurality of segments. The first wire is for selectively applying a force to the most distal segment to cause the plurality of segments to be deflected from a configuration wherein the central axes of the segments are aligned.


The forgoing and other features and advantages will become apparent from the following drawings, detailed description, and claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic illustration of a delivery system according to an embodiment of the invention;



FIG. 2 is a detail view of a distal portion of a delivery system according to an embodiment of the invention;



FIG. 3A is a detail view of a front side of a disk element of a distal portion of a delivery system when viewed from the direction 105 of FIG. 1 according to an embodiment of the invention;



FIG. 3B is a detail view of a back side of a disk element of a distal portion of a delivery system when viewed from the direction 105 of FIG. 1 according to an embodiment of the invention;



FIG. 4 is a detail view of disk elements of a distal portion of a delivery system according to an embodiment of the invention;



FIG. 5A is a detail view of a distal portion of a delivery system according to an embodiment of the invention;



FIG. 5B is an end view of a distal portion of a delivery system according to an embodiment of the invention;



FIG. 5C is a detail view of a distal portion of a delivery system attached to an implant according to an embodiment of the invention.



FIG. 5D is a detail view of a distal portion of a delivery system attached to an implant according to an additional embodiment of the invention.



FIG. 5E is a detail view of a distal portion of a delivery system during the release of an implant according to an embodiment of the invention.





DETAILED DESCRIPTION

Embodiments of the invention are directed to aspects of a catheter system for delivering, and optionally, retrieving, medical devices within the body through the vasculature (e.g., medical implants, drug release devices, diagnostic devices, etc.). Embodiments of the invention have particular utility for delivering, or retrieving, medical implants in the heart. Embodiments of the invention may be used, for example, to deliver septal occluders used to occlude anatomical apertures, such as atrial septal defects (ASD), ventricular septal defects (VSD) or patent foramen ovale (PFO). In this application, “distal” refers to the direction away from a sheath insertion location and “proximal” refers to the direction nearer the insertion location.


Referring to the drawings, wherein like reference numerals designate identical or corresponding parts throughout several views, and specifically to FIG. 1, a delivery system 100 is illustrated, including a sheath 116, having a lumen extending from one end to the other, and a catheter 118 slidably disposed within the lumen of the sheath 116. The sheath 116 has been retracted proximally to reveal a portion of the catheter 118. The catheter 118 has a proximal portion 120 and a distal portion 130. The catheter 118 includes a central lumen extending from one end to the other. The catheter 118 includes a main catheter portion 122 and a flexible portion 200 connected to the main catheter portion 122. The flexible portion 200 is relatively flexible as compared to the main catheter portion 122 which is relatively rigid. In the embodiments described herein, the sheath 116 may also be described as a catheter, thus, the terms can be used interchangeably. Similarly, the terms “delivery system” and “catheter system” can be used interchangeably.


The delivery system 100 further includes a hub portion 112 and a side port 114. A medical instrument or implantable device to be inserted into a patient is placed through a proximal end 140 of the delivery system 100 and exits the sheath 116 at a distal end 160 of the sheath. In certain embodiments, the delivery system 100 further includes a delivery wire 110 slidably disposed within the lumen of the catheter 118. As described in more detail below, the delivery wire 110 can be attached to a portion of a medical device, such as a medical implant, and can be used to deploy the medical implant to a desired location within the body. However, the delivery wire 110 is not required, and is omitted in certain other embodiments.



FIG. 2 shows the flexible portion 200 of the catheter 118. As shown in FIG. 2, flexible portion 200 is made up of a plurality of segments. In the embodiment shown, the segments are in the form of disk elements, such as disk elements 202a, 202b, 202c, and 202d, collectively referred to as “disk elements 202”, linked in series. Although the disk elements 202 are separate, the disk elements 202 are connected by one or more connecting wires 204, described in greater detail below. Because the multiple disk elements 202 are separate from each other, the flexible portion 200 exhibits a lower degree of stiffness than if it were constructed of a solid piece of material. Thus, as explained in greater detail below, certain undesirable forces that might otherwise be imparted by a relative stiff catheter portion can be avoided during the deployment of a medical device.


Although only the distal portion 130 of the catheter includes the flexible portion 200 in the illustrated embodiment, in various embodiments, a longer or shorter flexible portion 200 with disk elements 202 can be incorporated in the catheter 118. In some embodiments, main catheter portion 122 may accordingly be relatively short while the flexible portion 200 is relatively long. In other embodiments, the entire length of the catheter 118 is comprised of flexible portion 200, which includes disk elements 202. The flexible portion 200 of the catheter 118 that includes disk elements 202 will exhibit a relatively high degree of flexibility, specifically compared with any portions that are formed by main catheter portion 122. In one embodiment, the sheath 116 covers the entire length of the catheter 118 including its distal portion 130 and its proximal portion 120, or main catheter portion 122 and the flexible portion 200. In another embodiment, as the sheath 116 is retracted proximally, the distal portion 130 of the catheter 118 is exposed, including a portion of or the entirety of flexible portion 200 of the catheter 118.



FIGS. 3A and 3B illustrate detailed views of two sides of a single disk element 202a. Disk element 202a has a circular outer perimeter. Disk element 202a has a front face 210, a side wall 212 and a back face 214. The front face 210 has a ball-shape, i.e., is convex, and the back face 214 has a socket shape, i.e., is concave. The front face 210 and the back face 214 are designed to fit one within the other so that identical disk elements 202 can be fitted together end-to-end with a ball of one disk element 202 fitting into a socket of another, thereby forming a joint. Optionally, the front and back faces of adjacent disk elements 202 are connected. This connection can be a mechanical connection, for example, a flexible member joining the disk elements 202. The connection can also be a magnetic connection. Other types of connections can exist between the disk elements 202, so long as the flexibility of the flexible portion 200 is maintained. In other words, the front face 210 of one disk element 202 and back face 214 of another disk element 202 cooperate to enable the disks elements to change their alignment relative to each other.


In some embodiments, the front face 210 of one disk element 202 has a profile that fits flush against the back face 214 of another disk element. In such an embodiment, no gap is maintained between the nesting surfaces of the front and back faces of the adjacent disk elements 202. Although a gap is shown between disk elements 202 in FIGS. 1, 2, 4, 5A, and 5C-5E, it is understood that this is for the purpose of illustrating that disk elements 202 are separate. It is understood that a gap may or may not exist between disk elements 202. Therefore, in other embodiments, a gap is maintained between a portion of the nesting surfaces of the front and back faces of the adjacent disk elements 202. For example, the radius of curvature of the front face 210 can be smaller than that of the back face 214 of adjacent disk elements 202.


The disk element 202a further includes a central lumen 216, that extends along a longitudinal axis, from the front face 210 to the back face 214. The central lumen 216 is of sufficient size to allow the delivery wire 110, to be slidably disposed therein. During delivery of a medical device, such as a medical implant, the delivery wire 110 is attached to a portion of the medical implant and is used to deploy the implant. In such embodiments, the delivery wire enters the back face 214 of each of the disk elements 202 and exits the front face 210 of each of the disk elements 202. Thus, the delivery wire 110 passes into the proximal end 140 of the delivery system and eventually through the flexible portion 200 of the catheter 118 for attachment to the implant. The central lumen 216 may also be sized sufficiently to allow other mechanisms to facilitate delivery of a medical device to be slidably disposed therein.


The disk element 202a further includes two secondary lumens 218a and 218b, that extend from the front face 210 to the back face 214, and parallel to, but offset from, the center longitudinal axis and from central lumen 216. The secondary lumens 218a and 218b are preferably evenly distributed around the periphery of disk element 202a and at an equal radial distance from the axis. The secondary lumens 218a and 218b allow connecting wire(s) 204 to be slidably disposed therethrough. The inner diameter of the secondary lumens 218a and 218b is selected to provide sufficient space to allow connecting wire(s) 204 to slide within the lumens.


The disk element 202 is constructed of material with sufficient strength to maintain open central lumen 216 and secondary lumens 218a and 218b. The material is also sufficiently lubricious, or is treated to be sufficient lubricious, to allow the nested surfaces of disk elements 202 to move relative to each other. Likewise, the material provides for low friction between the inside surface of secondary lumens 218a and 218b and connecting wire(s) 204 disposed therethrough. Non-limiting examples of suitable materials include moldable plastics and metals.


The connecting wire 204 can be a wire-like or thread-like element and can be made of any suitable material and, in some embodiments, is a suture. In various embodiments, the wires can be made of a variety of materials and the term “wire” encompasses filaments, threads, sutures, single or multiple-strand wires, etc. An illustrative example includes suture wire with a diameter of 0.005 inches. The even distribution of secondary lumens 218a and 218b allows for a balanced application of forces to control the direction of the distal portion 130 of the catheter 118.


Although two secondary lumens 218a and 218b are shown in FIGS. 3A and 3B, some embodiments include additional or fewer secondary lumens. For example, some embodiments include three, four, five or more secondary lumens. In some embodiments, all secondary lumens run parallel to the central lumen 216 and are evenly distributed around the central lumen 216. In other embodiments, the secondary lumens are not evenly distributed around the central lumen 216. The function of the secondary lumens 218a and 218b and the connecting wire(s) 204 is described below.


As discussed with respect to FIG. 2, and also illustrated in FIG. 4, multiple disk elements 202 similar to disk element 202a are connected end-to-end to form the flexible portion 200 of the catheter 118. The front face 210 of a first disk element 202a is disposed at the distal end 150 of the catheter 118. The back face 214 of the first disk element 202a is positioned adjacent to a front face 210 of a second disk element 202b. The front face 210 of disk element 202b fits within the back face 214 of the first disk element 202a in a ball-and-socket configuration.


The central lumens 216 of disk element 202a and 202b are adjoining, forming an extended central lumen, i.e., the central lumen of catheter 118. Similarly, the secondary lumens 218a and 218b are also adjoining, forming extended secondary lumens. The disk elements 202 are interconnected by connecting wire(s) 204, such as suture(s), which extend through secondary lumens 218a and 218b from one end of the flexible portion 200, comprising the disk elements 202, to the other end.


According to some embodiments, the distal end of the connecting wire(s) 204 is connected to the most distal of the disk elements 202, e.g., disk element 202a of FIG. 2. Meanwhile, the proximal end of the connecting wire(s) 204 can be manipulated by a clinician through a control mechanism at the central hub 112. As described above, some embodiments of delivery system 100 have both the flexible portion 200 and the relatively rigid main catheter portion 122. In such embodiments, lumens that correspond to secondary lumens 218a and 218b are provided through the relatively rigid main catheter portion 122. Thus, the connecting wire(s) 204 pass from the central hub 112 through the corresponding lumens in the relatively rigid catheter portion 122 to the secondary lumens 218a and 218b. In preferred embodiments, a single continuous connecting wire extends from the central hub 112, through one secondary lumen to the distal end 150, and returns to the central hub 112 through the other secondary lumen.


As all connecting wires 204 are tightened, i.e. pulled proximally, the joints between the disk elements 202 are tightened, and the catheter 118 exhibits a great degree of stiffness at its flexible portion 200. As all connecting wires 204 are loosened, the joints between the disk elements 202 are loosened, and the catheter 118 presents a great degree of flexibility at its flexible portion 200. In addition, connecting wires 204 can also be selectively loosened and tightened individually. When one connecting wire 204 is tightened and others remain loose, the adjoining ball-and-socket faces 210 and 214 of the connecting elements 202 are able to move with respect to each other. As a result, the distal portion 130 of the catheter 118 bends in the direction of the tightened connecting wire 204. Similarly, as two or more connecting wires 204 are tightened and others remain loose, the catheter 118 responds accordingly. Further still, some connecting wires 204 can be selectively loosened to cause the flexible portion 200 to deflect in the direction opposite to the loosened connecting wire(s) 204. One advantage of the embodiments of the flexible portion 200 is that the flexibility allows the implant to assume its natural deployment position while remaining attached to the delivery system 100.


Operation of the delivery system 100 and, specifically catheter 118, will now be described. For implant delivery, a medical implant can be secured at the distal end of the catheter 118. During delivery, as the catheter 118 travels through the lumen of the sheath 116, the direction of the catheter 118 can be manipulated by tightening one or more connecting wires 204, e.g., by pulling the connecting wire(s) 204 proximally.


In yet further embodiments, flexible portion 200 has a single secondary lumen 218a, through which a single connecting wire 204 passes. In such an embodiment, as the connecting wire 204 is tightened, the disk elements 202 of flexible portion are deflected away from a straight configuration.


As described above, the secondary lumens 218a and 218b (and other secondary lumens, if provided) are of sufficient inner diameter to allow connecting wires 204 to slide within the lumen and steer the disk elements 202. An illustrative example of flexible portion 200 includes disk elements 202 having secondary lumens with an inner diameter of 0.020 inches for use with 0.005 inch diameter suture wire serving as connecting wire(s) 204. In some embodiments, the secondary lumens have a circular cross-section. However, secondary lumens 218a and 218b can have any cross-sectional shape, e.g., square, rectangular, or oval, as long as connecting wires 204 are permitted to slide within the secondary lumens 218a and 218b.


In certain embodiments, during delivery, a medical device is secured to the distal end 150 of catheter 118. Various medical devices require various attachment mechanisms between the device and the catheter, depending on the structure of the device, the technique required for delivering and deploying the device, and combinations thereof. In particular, some devices can be connected with a double attachment system, i.e., two connections between the device and the delivery system. For example, a single attachment can be provided between the device and the flexible portion 200 of catheter 118 to secure the device to the flexible portion. In addition, a second attachment is made between the device and the delivery wire 110, which is slidably disposed within the central lumen of the catheter 118. This enables the delivery wire 110 to manipulate portions of the medical device as it remains attached to the distal end 150 of the catheter 118. Although not required, in certain delivery procedures, the delivery wire 110 is manipulated to deploy the medical device; the delivery wire 110 is disconnected from the medical device and withdrawn proximally; and then the medical device is released from the delivery system 100.


For a medical implant with a dual-attachment requirement, the distal end 150 of the catheter 118 is modified to attach to the implant. Such modifications have been disclosed in U.S. patent application Ser. No. 11/110,975, entitled Delivery Systems and Methods for PFO Closure Device with Two Anchors, filed Apr. 20, 2005; U.S. patent application Ser. No. 11/070,027, entitled Delivery/Recovery System for Clover Leaf Septal Occluder, filed Mar. 2, 2005; U.S. patent application Ser. No. 11/235,661, entitled Occluder Device Double Securement System for Delivery/Recovery of Such Occluder Device, filed Sep. 26, 2005; U.S. patent application Ser. No. 11/849,015, entitled Implant-Catheter Attachment Mechanism Using Snare and Method of Use, filed Sep. 28, 2006; U.S. patent application Ser. No. 11/904,545, entitled Implant-Catheter Attachment Mechanism Using Snare and Method of Use, filed Sep. 27, 2007; U.S. patent application Ser. No. 11/516,305, entitled Delivery Device for Implant with Dual Attachment Sites, filed Sep. 6, 2006; all incorporated by reference herein.



FIGS. 5A-5C show an embodiment of the catheter described above incorporating a snare attachment disclosed in U.S. patent application Ser. No. 11/849,015 and U.S. patent application Ser. No. 11/904,545. As shown in those figures, the catheter 118 can be provided with a flexible catheter portion 500, similar to flexible portion 200. Catheter portion 500 is comprised of disk elements 502a, 502b and 502c, collectively referred to as disk elements 502, which are similar to disk elements 202. In addition to the central lumen 216 and secondary lumens 218a and 218b, additional snare lumens 504a and 504b are also provided as illustrated in FIGS. 5A and 5B. The snare lumens 504a and 504b permit a snare attachment mechanism between the device and the distal end of the catheter 118. In various embodiments, the snare attachment device can have different constructions, for example, with one or two loops.



FIG. 5C shows an embodiment with two looped snare wires 510a and 510b extending from secondary lumens 504a and 504b, respectively. This illustrative embodiment corresponds to the embodiment of the snare attachment mechanism shown in FIGS. 44A-44C of U.S. patent application Ser. No. 11/904,545. The looped ends of snare wires 510a and 510b provide snare attachment mechanisms between a medical implant 520 and the distal end of the catheter 118. The loop of snare wire 510a fits around a first projection 522a, which extends from a proximal end of the medical implant 520. Likewise, snare wire 510b fits around a second projection 522b.


As tension is maintained on snare wires 510a and 510b, the loops of the snare wires are constricted and engage their corresponding projections. Thus, the medical implant 520 is held snuggly against the front face of the disk element 502a. As tension is released from snare wires 510a and 510b, as shown in FIG. 5C, the looped ends of snare wires 510a and 510b open and release from projections 522a and 522b. In some embodiments, the snare wires 510a and 510b are biased so that upon being released from projections 522a and 522b, the snare wires deflect away from the projections to facilitate release of the medical implant 520. In such a case, the secondary lumens 504a and 504b can have a rectangular cross section with the longest side of the rectangle oriented radially away from the central axis of the catheter 118. In this way, the secondary lumens 504a and 504b permit the snare wires 510a and 510b to deflect away from the projections 522a and 522b.


Although not shown, in others embodiments, a single snare wire extends from secondary lumen 504a, curves around the first and second projections and reenters through lumen 504b, thereby forming a coil of wire around the proximal end of the medical implant 520. This wire can be extended and retracted at the distal end of the catheter 118. By extending the single wire, the coil of wire expands, thereby releasing the medical implant 520 (e.g., such as described in connection with the embodiment shown in FIG. 43 of U.S. patent application Ser. No. 11/904,545).



FIGS. 5D-5E shows another embodiment of the delivery system for use with the embodiment of the snare attachment mechanism shown in FIG. 45A of U.S. patent application Ser. No. 11/904,545. In this embodiment, the looped end of the first snare wire 510a extends from the first secondary lumen 504a and the second snare wire 510b extends from the second secondary lumen 504b. The loops of the snare wires 510a and 510b criss-cross over the proximal end of the medical implant 520 and are held in place by a flange 524. The first snare wire 510a passes through the first secondary lumen 504a, which is oriented at the top of the front face of disk element 502a, and the loop of the first snare wire 510a crosses over to snare the opposite side of the medical implant 520. The second snare wire 510b passes through the second secondary lumen 504b, which is oriented at the bottom of the front face of disk element 502a, and the loop of the second snare wire 510b crosses over to snare the opposite side of the medical implant 520. Thus, as tension is held on snare wires 510a and 510b, the loops in the snare wires are constricted, and the medical implant 520 is held in place against the distal end of flexible portion 500.


To release implant 520, snare wires 510a and 510b are pushed distally (or the catheter 118 is pulled proximally), to allow the loops in the snare wires 510a and 510b to expand and release from the proximal end of the medical implant 520. Various optional features to facilitate releasing the snare wires 510a and 510b from the medical implant 520 are described in U.S. patent application Ser. No. 11/904,545, and can be implemented in the embodiments described herein. Likewise, the other embodiments of the snare attachment mechanism disclosed in that application, and the other applications incorporated by reference, can be used with embodiments of the present invention. For example, the various single snare loop mechanisms illustrated in FIGS. 41-43 can be used with embodiments of the delivery system 100.


In the dual-snare wire embodiments described above, the snare wires can be released in sequence. Thus, one of the snare wires can be loosened while the other snare wire remains constricted. In such a case, the medical implant 520 remains at least partial secured to the distal end 150 of the catheter 118 (of the delivery system 100 shown in FIG. 1). Should the medical practitioner determine during the deployment of the medical implant 520 that the implant is not correctly positioned, the snare wire that remains constricted can be used to keep the medical implant 520 held snuggly against the distal end 150 of the catheter. Thus, the medical practitioner may withdraw the catheter 118 proximally into the sheath 116 with the medical implant 520 still attached. In some cases, this can enable the medical implant to collapse back into a reduced-profile configuration. In this way, the delivery system 100 may also be used to retrieve a medical device during the deployment procedure.


As mentioned above, the snare attachments described herein are illustrative examples of optional features of the distal end of flexible portion 500. Any of the modifications disclosed in the incorporated applications may be used with the embodiments described above. Similarly, other modifications are possible to allow for cooperation between the distal end of flexible portion 500 and a device to be implanted into a body. For example, a portion of the device to be implanted may have a concave surface that mates with the convex surface of the distal end of flexible portion 500. Likewise, the front face of the distal-most disk element 502a of flexible portion 500 can be modified to cooperate with the geometry of the device to be implanted.


The flexible delivery system 100 described herein has a wide variety of applications, and could be used to deliver, and optionally retrieve, various devices or implants to desired locations within the body.


The embodiments described herein have been provided by way of example and illustration only, and variations can be made therefrom without departing from the spirit and scope of the inventions described herein. For example, the embodiments described above have a central lumen extending through the center of the disk elements. However, it is within the scope of the invention to include two or more main lumens running in a side-by-side arrangement through the center of the catheter. Thus, while neither of the two or more main lumens is disposed in the true center of the disk elements or the catheter as a whole, it is understood that either or any of these main lumens can fulfill the role of and be described as a central lumen. Similarly, the embodiments described above have segments in the form of disk elements having circular cross-sections. The segments of the flexible portion of the catheter may have other cross-sectional geometries, such as oval, and remain within the scope of the invention.

Claims
  • 1. A conduit for insertion into a living body, the conduit comprising: a hub portion at a proximal end of the conduit;a plurality of adjacent segments, each of the plurality of segments having a front face, a back face, and a central axis, the front faces of the segments being adjacent to the back faces of adjacent segments for forming a flexible joint between the adjacent segments and for enabling the segments to be deflected from a configuration wherein the central axes of the segments are aligned;a main lumen defined by the plurality of adjacent segments, the main lumen passing through the front and back faces of the segments;a first side lumen defined by the plurality of adjacent segments, the first side lumen disposed within the segments at a location radially distant from the central axes of the segments;a first wire disposed in the first side lumen, the first wire being joined to a most distal segment of the plurality of segments, the first wire having a proximal end that can be manipulated through a control mechanism at the hub portion to selectively tighten the first wire and cause the most distal segment to bend in the direction of the tightened first wire;a first snare lumen defined by the plurality of adjacent segments, the first snare lumen disposed within the segments at a location radially distant from the central axes of the segments and a first snare wire disposed in the first snare lumen, the first snare wire having a looped end that extends from a distal end of the conduit for releasably attaching to an implant device, wherein the first snare wire is resiliently biased such that it automatically deflects the looped end away from the central axis of the most distal segment upon uncoupling of the looped end from the implant device; anda main catheter section attached to a most proximal segment of the plurality of segments.
  • 2. The conduit of claim 1, further comprising a second side lumen defined by the plurality of adjacent segments, the second side lumen disposed within the segments at a location radially distant from the central axes of the segments.
  • 3. The conduit of claim 2, the first wire further disposed in the second side lumen.
  • 4. The conduit of claim 2, wherein the first side lumen is disposed across the central axis from the second side lumen.
  • 5. The conduit of claim 2, further comprising a second wire disposed in the second side lumen, the second wire being joined to the most distal segment of the plurality of segments, the second wire having a proximal end that can be manipulated through the control mechanism to selectively tighten the second wire and cause the most distal segment to bend in the direction of the tightened second wire.
  • 6. The conduit of claim 5, further comprising a third side lumen defined by the plurality of adjacent segments, the third side lumen disposed within the segments at a location radially distant from the central axes of the segments and a third wire disposed in the third side lumen, the third wire being joined at a first end of the third wire to the most distal segment of the plurality of segments, the third wire having a proximal end that can be manipulated through the control mechanism to selectively tighten the third wire and cause the most distal segment to bend in the direction of the tightened third wire.
  • 7. The conduit of claim 6, wherein the side lumens are equally spaced from each other about the central axis.
  • 8. The conduit of claim 1, wherein the segments are disk-shaped and the front face of at least some of the segments is convex and the back face of at least some of the segments is concave.
  • 9. The conduit of claim 1, wherein the main lumen is disposed in the center of the plurality of segments.
  • 10. The conduit of claim 1, further comprising a second snare lumen defined by the plurality of adjacent segments, the second snare lumen disposed within the segments at a location radially distant from the central axes of the segments and a second snare wire disposed in the second snare lumen, the second snare wire having a looped end that extends from a distal end of the conduit for releasably attaching to the implant device.
  • 11. The conduit of claim 1, further comprising a distal-most segment, wherein a front face of the distal-most segment is shaped to facilitate attachment of the implant device to the distal-most segment.
  • 12. A method comprising: a) forming a conduit for insertion into a vasculature of a living body, the conduit comprising: a hub portion at a proximal end of the conduit;a plurality of adjacent segments, each of the plurality of segments having a front face, a back face, and a central axis, the front faces of the segments being adjacent to the back faces of adjacent segments for forming a flexible joint between the adjacent segments and for enabling the segments to be deflected from a configuration wherein the central axes of the segments are aligned;a main lumen defined by the plurality of adjacent segments, the main lumen passing through the front and back faces of the segments;a first side lumen defined by the plurality of adjacent segments, the first side lumen disposed within the segments at a location radially distant from the central axes of the segments;a first snare lumen defined by the plurality of adjacent segments, the first snare lumen disposed within the segments at a location radially distant from the central axes of the segments and a first snare wire disposed in the first snare lumen, the first snare wire having a looped end that extends from a distal end of the conduit for releasably attaching to an implant device, wherein the first snare wire is resiliently biased such that it automatically deflects the looped end away from the central axis of the segments upon uncoupling of the looped end from the implant device; anda main catheter section attached to a most proximal segment of the plurality of segments; andb) disposing a first wire in the first side lumen, the first wire being joined to a most distal segment of the plurality of segments, the first wire having a proximal end that can be manipulated through a control mechanism at the hub portion to selectively tighten the first wire and cause the most distal segment to bend in the direction of the tightened first wire.
  • 13. The method of claim 12, wherein the segments are disk-shaped and the front face of at least some of the segments is convex and the back face of at least some of the segments is concave.
  • 14. The method of claim 12, further comprising forming a relatively rigid catheter section joined to the most proximal segment of the plurality of segments.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims under 35 U.S.C. §119(e) priority to and the benefit from U.S. Provisional Patent Application No. 60/923,985, filed on Apr. 18, 2007, entitled “Flexible Catheter System”, the disclosure of which is incorporated in its entirety by reference herein.

US Referenced Citations (328)
Number Name Date Kind
3824631 Burstein et al. Jul 1974 A
3874388 King et al. Apr 1975 A
3875648 Bone Apr 1975 A
3924631 Mancusi Dec 1975 A
4006747 Kronenthal et al. Feb 1977 A
4007743 Blake Feb 1977 A
4149327 Hammer et al. Apr 1979 A
4425908 Simon Jan 1984 A
4610674 Suzuki et al. Sep 1986 A
4626245 Weinstein Dec 1986 A
4693249 Schenck et al. Sep 1987 A
4696300 Anderson Sep 1987 A
4710181 Fuqua Dec 1987 A
4710192 Liotta et al. Dec 1987 A
4738666 Fuqua Apr 1988 A
4836204 Landymore et al. Jun 1989 A
4840623 Quackenbush Jun 1989 A
4902508 Badylak et al. Feb 1990 A
4915107 Rebuffat et al. Apr 1990 A
4917089 Sideris Apr 1990 A
4921479 Grayzel May 1990 A
4956178 Badylak et al. Sep 1990 A
5021059 Kensey et al. Jun 1991 A
5037433 Wilk et al. Aug 1991 A
5041129 Hayhurst et al. Aug 1991 A
5049131 Deuss Sep 1991 A
5078736 Behl Jan 1992 A
5106913 Yamaguchi et al. Apr 1992 A
5108420 Marks Apr 1992 A
5149327 Oshiyama et al. Sep 1992 A
5163131 Row et al. Nov 1992 A
5167363 Adkinson et al. Dec 1992 A
5167637 Okada et al. Dec 1992 A
5171259 Inoue et al. Dec 1992 A
5176659 Mancini Jan 1993 A
5192301 Kamiya et al. Mar 1993 A
5222974 Kensey et al. Jun 1993 A
5226879 Ensminger et al. Jul 1993 A
5236440 Hlavacek Aug 1993 A
5245023 Peoples et al. Sep 1993 A
5245080 Aubard et al. Sep 1993 A
5250430 Peoples et al. Oct 1993 A
5257637 El Gazayerli Nov 1993 A
5275826 Badylak et al. Jan 1994 A
5282827 Kensey et al. Feb 1994 A
5284488 Sideris Feb 1994 A
5304184 Hathaway et al. Apr 1994 A
5312341 Turi May 1994 A
5312435 Nash et al. May 1994 A
5316262 Koebler May 1994 A
5320611 Bonutti et al. Jun 1994 A
5334217 Das Aug 1994 A
5350363 Goode et al. Sep 1994 A
5354308 Simon et al. Oct 1994 A
5364356 Hofling Nov 1994 A
5411481 Allen et al. May 1995 A
5413584 Schulze et al. May 1995 A
5417699 Klein et al. May 1995 A
5425744 Fagan et al. Jun 1995 A
5433727 Sideris Jul 1995 A
5451235 Lock et al. Sep 1995 A
5453099 Lee et al. Sep 1995 A
5478353 Yoon Dec 1995 A
5480353 Garza, Jr. Jan 1996 A
5480424 Cox Jan 1996 A
5486193 Bourne et al. Jan 1996 A
5507811 Koike et al. Apr 1996 A
5522788 Kuzmak Jun 1996 A
5534432 Peoples et al. Jul 1996 A
5540712 Kleshinski et al. Jul 1996 A
5562632 Davila et al. Oct 1996 A
5577299 Thompson et al. Nov 1996 A
5601571 Moss Feb 1997 A
5603703 Elsberry et al. Feb 1997 A
5618311 Gryskiewicz Apr 1997 A
5620461 Muijs Van De Moer et al. Apr 1997 A
5626599 Bourne et al. May 1997 A
5634936 Linden et al. Jun 1997 A
5649950 Bourne et al. Jul 1997 A
5649959 Hannam et al. Jul 1997 A
5663063 Peoples et al. Sep 1997 A
5683411 Kavteladze et al. Nov 1997 A
5690674 Diaz Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5702421 Schneidt et al. Dec 1997 A
5709707 Lock et al. Jan 1998 A
5713864 Verkaart Feb 1998 A
5717259 Schexnayder Feb 1998 A
5720754 Middleman et al. Feb 1998 A
5725552 Kotula et al. Mar 1998 A
5733294 Forber et al. Mar 1998 A
5733337 Carr, Jr. et al. Mar 1998 A
5741297 Simon Apr 1998 A
5772641 Wilson Jun 1998 A
5776162 Kleshinski Jul 1998 A
5776183 Kanesaka et al. Jul 1998 A
5797960 Stevens et al. Aug 1998 A
5800516 Fine et al. Sep 1998 A
5810884 Kim Sep 1998 A
5820594 Fontirroche et al. Oct 1998 A
5823956 Roth et al. Oct 1998 A
5829447 Stevens et al. Nov 1998 A
5853420 Chevillon et al. Dec 1998 A
5853422 Huebsch et al. Dec 1998 A
5855614 Stevens et al. Jan 1999 A
5861003 Latson et al. Jan 1999 A
5865791 Whayne et al. Feb 1999 A
5879366 Shaw et al. Mar 1999 A
5893856 Jacob et al. Apr 1999 A
5902287 Martin May 1999 A
5902319 Daley May 1999 A
5904703 Gilson May 1999 A
5919200 Stambaugh et al. Jul 1999 A
5924424 Stevens et al. Jul 1999 A
5928250 Koike et al. Jul 1999 A
5944691 Querns et al. Aug 1999 A
5944738 Amplatz et al. Aug 1999 A
5955110 Patel et al. Sep 1999 A
5976174 Ruiz Nov 1999 A
5980505 Wilson Nov 1999 A
5989268 Pugsley, Jr. et al. Nov 1999 A
5993475 Lin et al. Nov 1999 A
5993844 Abraham et al. Nov 1999 A
5997575 Whitson et al. Dec 1999 A
6010517 Baccaro Jan 2000 A
6019753 Pagan Feb 2000 A
6024756 Huebsch et al. Feb 2000 A
6027509 Schatz et al. Feb 2000 A
6027519 Stanford Feb 2000 A
6030007 Bassily et al. Feb 2000 A
6056760 Koike et al. May 2000 A
6071998 Muller et al. Jun 2000 A
6077291 Das Jun 2000 A
6077880 Castillo et al. Jun 2000 A
6079414 Roth Jun 2000 A
6080182 Shaw et al. Jun 2000 A
6096347 Geddes et al. Aug 2000 A
6106913 Scardino et al. Aug 2000 A
6113609 Adams Sep 2000 A
6117159 Huebsch et al. Sep 2000 A
6126686 Badylak et al. Oct 2000 A
6132438 Fleischman et al. Oct 2000 A
6143037 Goldstein et al. Nov 2000 A
6152144 Lesh et al. Nov 2000 A
6165183 Kuehn et al. Dec 2000 A
6165204 Levinson et al. Dec 2000 A
6168588 Wilson Jan 2001 B1
6171329 Shaw et al. Jan 2001 B1
6174322 Schneidt et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6183443 Kratoska et al. Feb 2001 B1
6187039 Hiles et al. Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190357 Ferrari et al. Feb 2001 B1
6197016 Fourkas et al. Mar 2001 B1
6199262 Martin Mar 2001 B1
6206895 Levinson Mar 2001 B1
6206907 Marino et al. Mar 2001 B1
6214029 Thill et al. Apr 2001 B1
6217590 Levinson Apr 2001 B1
6221092 Koike et al. Apr 2001 B1
6227139 Nguyen et al. May 2001 B1
6228097 Levinson et al. May 2001 B1
6231561 Frazier et al. May 2001 B1
6245080 Levinson Jun 2001 B1
6245537 Williams et al. Jun 2001 B1
6261309 Urbanski Jul 2001 B1
6265333 Dzenis et al. Jul 2001 B1
6270515 Linden et al. Aug 2001 B1
6277138 Levinson et al. Aug 2001 B1
6277139 Levinson et al. Aug 2001 B1
6287317 Makower et al. Sep 2001 B1
6290674 Roue et al. Sep 2001 B1
6299635 Frantzen Oct 2001 B1
6306150 Levinson Oct 2001 B1
6306424 Vyakarnam et al. Oct 2001 B1
6312443 Stone Nov 2001 B1
6312446 Huebsch et al. Nov 2001 B1
6315791 Gingras et al. Nov 2001 B1
6316262 Huisman et al. Nov 2001 B1
6319263 Levinson Nov 2001 B1
6322548 Payne et al. Nov 2001 B1
6328727 Frazier et al. Dec 2001 B1
6334872 Termin et al. Jan 2002 B1
6342064 Koike et al. Jan 2002 B1
6344048 Chin et al. Feb 2002 B1
6344049 Levinson et al. Feb 2002 B1
6346074 Roth Feb 2002 B1
6348041 Klint et al. Feb 2002 B1
6352552 Levinson et al. Mar 2002 B1
6355052 Neuss et al. Mar 2002 B1
6356782 Sirimanne et al. Mar 2002 B1
6358238 Sherry Mar 2002 B1
6364853 French et al. Apr 2002 B1
6371904 Sirimanne et al. Apr 2002 B1
6375625 French et al. Apr 2002 B1
6375671 Kobayashi et al. Apr 2002 B1
6379342 Levinson Apr 2002 B1
6379368 Corcoran et al. Apr 2002 B1
6387104 Pugsley, Jr. et al. May 2002 B1
6398796 Levinson Jun 2002 B2
6402772 Amplatz et al. Jun 2002 B1
6419669 Frazier et al. Jul 2002 B1
6426145 Moroni Jul 2002 B1
6436088 Frazier et al. Aug 2002 B2
6440152 Gainor et al. Aug 2002 B1
6450987 Kramer Sep 2002 B1
6460749 Levinson et al. Oct 2002 B1
6482224 Michler et al. Nov 2002 B1
6488706 Solymar et al. Dec 2002 B1
6494846 Margolis Dec 2002 B1
6494888 Laufer et al. Dec 2002 B1
6508828 Akerfeldt et al. Jan 2003 B1
6514515 Williams Feb 2003 B1
6548569 Williams et al. Apr 2003 B1
6551303 Van Tassel et al. Apr 2003 B1
6551344 Thill Apr 2003 B2
6554842 Heuser et al. Apr 2003 B2
6585719 Wang Jul 2003 B2
6585755 Jackson et al. Jul 2003 B2
6596013 Yang et al. Jul 2003 B2
6599448 Ehrhard, Jr. et al. Jul 2003 B1
6610764 Martin et al. Aug 2003 B1
6623508 Shaw et al. Sep 2003 B2
6623518 Thompson et al. Sep 2003 B2
6626936 Stinson Sep 2003 B2
6629901 Huang Oct 2003 B2
6666861 Grabek Dec 2003 B1
6669722 Chen et al. Dec 2003 B2
6689589 Huisman et al. Feb 2004 B2
6712804 Roue et al. Mar 2004 B2
6712836 Berg et al. Mar 2004 B1
6726696 Houser et al. Apr 2004 B1
6790173 Saadat et al. Sep 2004 B2
6828357 Martin et al. Dec 2004 B1
6838493 Williams et al. Jan 2005 B2
6867247 Williams et al. Mar 2005 B2
6867248 Martin et al. Mar 2005 B1
6867249 Lee et al. Mar 2005 B2
6921410 Porter Jul 2005 B2
6936058 Forde et al. Aug 2005 B2
6984203 Tartaglia et al. Jan 2006 B2
7022102 Paskar Apr 2006 B2
7469722 Berland Dec 2008 B2
20010010481 Blanc et al. Aug 2001 A1
20010014800 Frazier et al. Aug 2001 A1
20010025132 Alferness et al. Sep 2001 A1
20010034537 Shaw et al. Oct 2001 A1
20010034567 Allen et al. Oct 2001 A1
20010037129 Thill Nov 2001 A1
20010039435 Roue et al. Nov 2001 A1
20010039436 Frazier et al. Nov 2001 A1
20010041914 Frazier et al. Nov 2001 A1
20010041915 Roue et al. Nov 2001 A1
20010044639 Levinson Nov 2001 A1
20010049492 Frazier et al. Dec 2001 A1
20020010481 Jayaraman Jan 2002 A1
20020019648 Akerfeldt et al. Feb 2002 A1
20020022859 Hogendijk Feb 2002 A1
20020022860 Borillo et al. Feb 2002 A1
20020026208 Roe et al. Feb 2002 A1
20020029048 Miller Mar 2002 A1
20020032459 Horzewski et al. Mar 2002 A1
20020032462 Houser et al. Mar 2002 A1
20020034259 Tada Mar 2002 A1
20020035374 Borillo et al. Mar 2002 A1
20020043307 Ishida et al. Apr 2002 A1
20020049457 Kaplan et al. Apr 2002 A1
20020052572 Franco et al. May 2002 A1
20020058989 Chen et al. May 2002 A1
20020077555 Schwartz Jun 2002 A1
20020095174 Tsugita et al. Jul 2002 A1
20020096183 Stevens et al. Jul 2002 A1
20020099389 Michler et al. Jul 2002 A1
20020099390 Kaplan et al. Jul 2002 A1
20020103492 Kaplan et al. Aug 2002 A1
20020107531 Schreck et al. Aug 2002 A1
20020111537 Taylor et al. Aug 2002 A1
20020111637 Kaplan et al. Aug 2002 A1
20020111647 Khairkhahan et al. Aug 2002 A1
20020120323 Thompson et al. Aug 2002 A1
20020128680 Pavlovic Sep 2002 A1
20020129819 Feldman et al. Sep 2002 A1
20020164729 Skraly et al. Nov 2002 A1
20020169377 Khairkhahan et al. Nov 2002 A1
20020183786 Girton Dec 2002 A1
20020183787 Wahr et al. Dec 2002 A1
20020183823 Pappu Dec 2002 A1
20020198563 Gainor et al. Dec 2002 A1
20030004533 Dieck et al. Jan 2003 A1
20030023266 Welch et al. Jan 2003 A1
20030028213 Thill et al. Feb 2003 A1
20030045893 Ginn Mar 2003 A1
20030050665 Ginn Mar 2003 A1
20030055455 Yang et al. Mar 2003 A1
20030057156 Peterson et al. Mar 2003 A1
20030059640 Marton et al. Mar 2003 A1
20030065379 Babbs et al. Apr 2003 A1
20030100920 Akin et al. May 2003 A1
20030120337 Van Tassel et al. Jun 2003 A1
20030139819 Beer et al. Jul 2003 A1
20030171774 Freudenthal et al. Sep 2003 A1
20030191495 Ryan et al. Oct 2003 A1
20030195530 Thill Oct 2003 A1
20030204203 Khairkhahan et al. Oct 2003 A1
20040044361 Frazier et al. Mar 2004 A1
20040073242 Chanduszko Apr 2004 A1
20040087968 Core May 2004 A1
20040122360 Waldhauser et al. Jun 2004 A1
20040133236 Chanduszko Jul 2004 A1
20040158124 Okada Aug 2004 A1
20040176799 Chanduszko et al. Sep 2004 A1
20040210301 Obermiller Oct 2004 A1
20040234567 Dawson Nov 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20050025809 Hasirci et al. Feb 2005 A1
20050043759 Chanduszko Feb 2005 A1
20050080430 Wright et al. Apr 2005 A1
20050113868 Devellian May 2005 A1
20050131341 McGuckin et al. Jun 2005 A1
20050267523 Devellian et al. Dec 2005 A1
20050273135 Chanduszko et al. Dec 2005 A1
20050288786 Chanduszko Dec 2005 A1
20060122647 Callaghan et al. Jun 2006 A1
20060265004 Callaghan et al. Nov 2006 A1
20060271089 Alejandro et al. Nov 2006 A1
20070010851 Chanduszko et al. Jan 2007 A1
20070167981 Opolski Jul 2007 A1
Foreign Referenced Citations (56)
Number Date Country
9413645 Oct 1994 DE
0362113 Apr 1990 EP
0474887 Mar 1992 EP
0 839 549 May 1998 EP
0 861 632 Sep 1998 EP
1013227 Jun 2000 EP
1046375 Oct 2000 EP
1222897 Jul 2002 EP
WO-9625179 Aug 1996 WO
WO-9631157 Oct 1996 WO
WO-9807375 Feb 1998 WO
WO-9808462 Mar 1998 WO
WO-9816174 Apr 1998 WO
WO-9829026 Jul 1998 WO
WO-9851812 Nov 1998 WO
WO-9905977 Feb 1999 WO
WO-9818864 Apr 1999 WO
WO-9918862 Apr 1999 WO
WO-9918864 Apr 1999 WO
WO-9918870 Apr 1999 WO
WO-9918871 Apr 1999 WO
WO-9930640 Jun 1999 WO
WO-9966846 Dec 1999 WO
WO-0027292 May 2000 WO
WO-0044428 Aug 2000 WO
WO-0108600 Feb 2001 WO
WO-0119256 Mar 2001 WO
WO-0121247 Mar 2001 WO
WO-0128432 Apr 2001 WO
WO-0130268 May 2001 WO
WO-0149185 Jul 2001 WO
WO-0178596 Oct 2001 WO
WO-0193783 Dec 2001 WO
WO-0217809 Mar 2002 WO
WO-0224106 Mar 2002 WO
WO-03024337 Mar 2003 WO
WO-03053493 Jul 2003 WO
WO-03059152 Jul 2003 WO
WO 03063732 Aug 2003 WO
WO-03077733 Sep 2003 WO
WO-03082076 Oct 2003 WO
WO-03103476 Dec 2003 WO
WO-2004032993 Apr 2004 WO
WO-2004037333 May 2004 WO
WO-2004043266 May 2004 WO
WO-2004043508 May 2004 WO
WO-2004052213 Jun 2004 WO
WO-2005006990 Jan 2005 WO
WO-2005018728 Mar 2005 WO
WO-2005027752 Mar 2005 WO
WO-2005074813 Aug 2005 WO
WO-2005092203 Oct 2005 WO
WO-2005110240 Nov 2005 WO
WO-2005112779 Dec 2005 WO
WO-2006036837 Apr 2006 WO
WO-2006102213 Sep 2006 WO
Non-Patent Literature Citations (50)
Entry
Athanasiou, T., “Coronary Artery Bypass with the Use of a Magnetic Distal Anastomotic Device: Surgical Technique and Preliminary Experience,” The Heart Surgery Forum #2004-1024, 2004, 4 pgs.
Bachthaler, M. et al., “Corrosion of Tungsten Coils After Peripheral Vascular Embolization Theraphy: Influence on Outcome and Tungsten Load”, Catherization and Cardiovascular Interventions, vol. 62, pp. 380-384, 2004.
European Examination Report, European Application No. 03729663.9, mailed Jul. 16, 2008 (5 Pages).
European Examination Report, European Application No. 03731562.9, mailed Jul. 18, 2008 (3 Pages).
European Examination Report, European Application No. 03779297.5, mailed arch 15, 2007 (6 Pages).
European Examination Report, European Application No. 04781644.2, mailed Aug. 23, 2007 (3 Pages).
European Search Report, European Application No. 03729663.9, mailed Feb. 20, 2008 (3 Pages).
Falk, V., “Facilitated Endoscopic Beating Heart Coronary Artery Bypass Grafting Using a Magentic Coupling Device,” Journal of Thoracic and Cardiovascular Surgery, vol. 126,(5), pp. 1575-1579.
Filsoufi, F., et al., “Automated Distal Coronary Bypass with a Novel Magnetic Coupler (MVP system),” J. Thoracic and Cardiovascular Surgery, vol. 127(1), pp. 185-192.
International Search Report and Written Opinion, International Patent Application No. PCT/US06/41255, mailed Jun. 13, 2008 (6 pgs).
Meier, MD, Bernhard, et al., “Contemporary Management of Patent Foramen Ovale,” American Heart Association, Inc., Circulation, 2003, vol. 107, pp. 5-9.
Parviainen, M. et al., “A New Biodegradable Stent for the Pancreaticojejunal Anastomosis After Pancreaticoduodenal Resection: In Vitro Examination and Pilot Experiences in Humans”, Pancreas, vol. 21, No. 1, pp. 14-21, 2000.
Ramanathan, G., et. al., “Experimental and Computational Methods for Shape Memory Alloys,” 15th ASCE Engineering Mechanics Conference, Jun. 2-5, 2002.
Ruddy, A.C. et al., “Rheological, Mechanical and Thermal Behaviour of Radipaque Filled Polymers”, Polymer Processing Research Centre, School of Chemical Engineering, Queen's University of Belfast , 5 pages.
Ruiz, et al., “The Puncture Technique: A New Method for Transcatheter Closure of Patent Foramen Ovale,” Catheterization and Cardiovascular Interventions, 2001, vol. 53, pp. 369-372.
Shabalovskaya, S., “Surface Corrosion and Biocompatibility Aspects of Nitinol as and Implant Material,” Bio-Medical Materials and Engineering, 2002, vol. 12, pp. 69-109.
SMST-2000, “Proceedings of the International Conference on Shape Memory and Superelastic Technologies,” Apr. 30-May 4, 2000, Asilomar Conference Center.
Stockel, “Nitinol Medical Devices and Implants,” SMST-2000 Conference Proceedings, 2001, pp. 531-541.
Uchil, J., “Shape Memory Alloys—Characterization Techniques,” Pramana—Journal of Physics, 2002 vol. 58 (5)(6), pp. 1131-1139.
Vaajanen, A. et al., “Expansion and Fixation Properties of a New Braided Biodegradable Urethral Stent: An Experimental Study in the Rabbit”, The Journal of Urology, vol. 169, pp. 1771-1174, Mar. 2003.
International Search Report and Written Opinion, International Patent Application No. PCT/US08/59429, mailed Sep. 5, 2008 (9 pgs).
International Search Report and Written Opinion, International Patent Application No. PCT/US08/59448, mailed Sep. 5, 2008 (8 pages).
International Search Report and Written Opinion, International Patent Application No. PCT/US08/60738, mailed Sep. 3, 2008 (10 pages).
International Search Report for International Patent Application No. PCT/AU03/00759, filed Jun. 19, 2003.
International Search Report, International Application No. PCT/US02/40850 mailed Jun. 19, 2003 (4 pgs).
International Search Report, International Application No. PCT/US03/01050, mailed Jul. 8, 2003 (1 pg).
International Search Report, International Application No. PCT/US03/09051, mailed Sep. 29, 2003 (2 pgs).
International Search Report, International Application No. PCT/US03/17390 mailed Oct. 6, 2003 (4 pgs).
International Search Report, International Application No. PCT/US03/17715, mailed Mar. 24, 2004 (2 pgs).
International Search Report, International Application No. PCT/US03/32133, mailed Apr. 22, 2004 (1 pg).
International Search Report, International Application No. PCT/US03/34003 mailed Oct. 3, 2004 (4 pgs).
International Search Report, International Application No. PCT/US03/35479, mailed Apr. 14, 2004 (2 pages).
International Search Report, International Application No. PCT/US03/35998 mailed Jun. 16, 2004 (5 pgs).
International Search Report, International Application No. PCT/US03/39253, mailed Apr. 19, 2004 (4 pgs).
International Search Report, International Application No. PCT/US04/022643, mailed Mar. 31, 2005 (2 pgs).
International Search Report, International Application No. PCT/US04/026998, mailed Apr. 22, 2005 (5 pgs).
International Search Report, International Application No. PCT/US04/029978, mailed Jan. 26, 2005 (3 pgs).
International Search Report, International Application No. PCT/US05/006703, mailed Jul. 25, 2005 (3 pgs).
International Search Report, International Application No. PCT/US05/013705 mailed Aug. 4, 2005 (4 pgs).
International Search Report, International Application No. PCT/US05/015382, mailed Oct. 6, 2005 (4 pgs).
International Search Report, International Application No. PCT/US05/34276, mailed Oct. 9, 2007.
International Search Report, International Application No. PCT/US06/009978, mailed Jul. 13, 2006 (2 pgs).
International Search Report, International Application No. PCT/US07/065546, mailed Oct. 29, 2007. 4 pages.
International Search Report, International Application No. PCT/US2007/065526, mailed Aug. 8, 2007 (5 pgs).
International Search Report, International Application No. PCT/US2007/065541, mailed Aug. 7, 2007 (4 pgs).
International Search Report, International Application No. PCT/US97/14822, mailed Feb. 20, 1998 (2 pgs).
International Search Report, International Application No. PCT/US97/17927, mailed Feb. 10, 1998 (1 pg).
Isotalo, T. et al., “Biocompatibility Testing of a New Bioabsorbable X-Ray Positive SR-PLA 96/4 Urethral Stent”, The Journal of Urology, vol. 163, pp. 1764-1767, Nov. 1999.
Kimura, A., et al., “Effects of Neutron Irradiation on the Transformation Behavior in Ti-Ni Alloys,” Abstract, Proceedings of the Int'l Conf. on Marienstic Transformations, 1992, pp. 935-940.
Klima, U., “Magnetic Vascular Port in Minimally Invasive Direct Coronary Artery Bypass Grafting,” Circulation, 2004, II-55-II-60.
Related Publications (1)
Number Date Country
20080262422 A1 Oct 2008 US
Provisional Applications (1)
Number Date Country
60923985 Apr 2007 US