There are many applications for clothing that can change on demand. If modern fabrics were able to change color on demand, a consumer could dramatically reduce the number of articles of clothing that he or she purchased in a lifetime. It would no longer be necessary to have, for example, three different blouses of nearly identical cut but different color. The consumer could simply chose the color (or pattern) needed depending upon the event, season, etc. In this way, color changing fabrics could greatly reduce the environmental impact of clothing. It is estimated that Americans currently discard about 14 million tons of clothing per year into landfills. Additionally, replacing these clothes with each new fashion season is resource-intensive—regardless of the source of the fabric, e.g., cotton, wool, or petrochemicals. Other applications for color changing clothing include camouflage and sportswear. For example, a baseball team would no longer require two different uniforms, the color could be changed depending upon whether the team was home or away.
A variety of technologies have been identified for creating fabrics that are able to reversibly change colors. These technologies include thermochromic dyes, which change color when exposed to different temperatures, photochromic dyes, which change color when exposed to sunlight, integrated LEDs, which can be illuminated on demand by providing power to the diodes, and liquid crystal inks, which allow different colors to be shown (or not) with the presence of a supplied electric field. These technologies have been highlighted in various prototypes, but only the thermochromic dyes have been widely incorporated into clothing. See “Hypercolor” t-shirts sold by Generra Sportswear. However, because the thermochromic clothing is heat sensitive, the color patterns are variable. For example, the underarms of a t-shirt having thermochromic ink may be consistently a different shade, drawing attention to that area. Thus, there still remains a need for inexpensive and robust fabrics that can change color on demand.
The invention overcomes the shortcomings of the prior art by providing flexible fibers that can be switched between colors on demand. The fibers may be incorporated into fabrics by weaving, knitting, embroidering, thermoforming, or matting. The fibers can be incorporated into other materials to achieve strength, breathability, or stretch as demanded by the application. When a suitable electric field is provided, the color of the fiber will switch. Because the pigments are bistable, it is not necessary to provide constant power to maintain the color state. Rather, once the fabric is switched, it is stable for long periods of time, e.g., days or weeks.
Accordingly, the invention provides a flexible color-changing fiber including a hollow fiber comprising at least two electrically-isolated conductive wires that are integrated into the wall of the hollow fiber along with an electro-optic medium disposed within the fiber, wherein the electro-optic medium is capable of being switched by an electric field. The electro-optic medium includes a non-polar solvent and at least one set of charged pigment particles. In some embodiments, the electro-optic medium includes first and second sets of charged pigment particles that have a charge and color different from the first charged pigment particles. Additional sets of particles can be added to the electro-optic medium. The hollow fibers may be made of various polymers, for example polycarbonate. In some embodiments, the hollow fibers have a substantially rectangular cross section and include four electrically-isolated conductive wires. In embodiments having a substantially rectangular cross section and four electrically-isolated conductive wires, the wires may be located approximately ¼ the width of the larger inner dimension inward from the inner edge of the wall of the hollow fiber. The non-polar solvent is often a mixture of hydrocarbons, and the electro-optic medium may also include charge control agents.
The creation of fibers containing bistable electronic ink and the subsequent incorporation of the fibers into fabrics and apparel, etc., would enable switching of the fabrics and then disconnecting them from electronics because the display is stable with no power. Accordingly, the drive electronics would not have to integrated into the fabric unless mobile switching was desired. Thus, in some embodiments, a switching box, which could be battery powered, is a detachable accessory. The lack of driving electronics greatly simplifies laundering the fibers while also increasing durability. If it is desirable to have the device changing actively while worn, the switching electronics could be included in the garment, but would only have to be turned on for brief periods during the updates.
These and other aspects of the present invention will be apparent in view of the following description.
The drawing Figures depict one or more implementations in accord with the present concepts, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
The invention provides flexible color-changing fibers that can be incorporated into textiles and other materials. The ability to include electronic components into the fiber, i.e., wire electrodes, is useful for attaining a practical and economical fiber based display. Many previous attempts at making fiber-based displays or switching fabrics have required substantial amounts of dielectric structural materials between the electrodes and the functional electrophoretic material. The described invention makes such complicated structures unnecessary.
Each flexible fiber includes a cavity formed from a material capable of containing the electrophoretic liquid. In some embodiments, the fiber has a substantially rectangular cross-section and the inner internal cavity has a substantially rectangular cross-section as well. However, other cross sectional shapes are also possible, such as ovoid or circular. The rectangular cross section may have sharp edges or they may be slightly rounded edges 17, as shown in
After an electric field is applied across the cavity of the fiber in
When applying the fibers according to the various embodiments of the present invention to a finished fabric, such as an embroidery method, the aspect ratio is also important for controlling the orientation of the fiber. For example, a fiber with a rectangular cross-section that is bent may twist. This may be undesired, if it is preferred that the viewing surface of the color-changing fiber remain relatively parallel with the underlying fabric. In this case, it is beneficial for fibers to have a close to square cross-section or a rectangular cross-section where the fiber is deeper than wide when viewed from the normal viewing side to reduce the likelihood of any undesired twisting of the fiber in the fabric.
Each flexible fiber includes at least two conductive wire electrodes running lengthwise along the fiber as close to the cavity as possible without compromising the ability of the wall to mechanically restrain the wire electrodes. The wire electrodes may be formed from tungsten, silver, copper, or other conductive material with good ductility. The electrode cross-section shape may be round, rectangular or other shape that will optimize the uniformity of the electric field across the electro-optic medium. One wire, or set of wires, is on the viewing side of the cavity and the other wire, or set of wires, is located on the opposite side of the cavity. When the ends of the wires are connected to an electrical supply, an electric potential can be created across the cavity to cause a change in optical state of the electronic ink. The wires should be as small as is possible while maintaining enough mechanical strength to survive the fiber making process. In the embodiments of this invention, the tungsten wires may be 100 μm or less in diameter and preferably 50 μm or less in diameter and more preferably 25 μm or less in diameter. The optical benefit of the smaller diameter fibers can be substantial since for a 400 micron wide cavity two 50 micron wires would obscure 25% of the switching area in view and 25 micron wires would only obscure 12.5% of the switching area. In addition, the fibers of smaller diameter are more mechanically flexible which allows for thinner mechanical materials in the fiber to contain the wires and greatly increases the flexibility possible in making the fibers. The fibers can be indefinitely long, for example, 1 meter or longer, e.g., 10 meters or longer, e.g., 100 meters or longer.
In one embodiment of the present invention, a color changing fiber may comprise four conductive electrode wires arranged in two sets of two wires. This structure is exemplified in
As mentioned above, the electrodes of the fiber according to the various embodiments of the invention may comprise copper. Copper has a lower modulus compared to tungsten, for example, so copper wires will be more flexible than tungsten wires of equivalent diameter. This flexibility has the secondary effect of requiring less polymeric material to mechanically retain the wires resulting in relatively thinner wires. Copper wires with lower modulus exert less force on the surrounding polymer fiber materials when the fiber is flexed which leads to better mechanical robustness of the fiber when bent. More mechanical robustness is preferred because if the wires break through the polymeric materials of the fiber during flexing, there is a high probability of the wire spanning the cavity of the fiber and creating an electrical contact to another electrode wire in the device. Contact between electrodes spanning the cavity would create an electrical short circuit which causes the fiber to lose switching performance and in many instances lose the ability to switch completely.
In another embodiment of the invention shown in
The visual impact of the color changing fiber is proportional to the optical fill factor—the fraction of fiber area or width where the color changing medium is actually visible when the fiber is viewed from outside. Ideally, this optical fill factor would be 100% to maximize the visual impact. The optical fill factor is lowered by the presence of non-transparent materials (e.g. wires) on top of the color change medium and by the non-active wall materials that are needed to contain the color change medium. To increase the optical fill factor, fibers according to some embodiments of the present invention may include features that provide lensing effects. As used herein throughout the specification and the claims, the term “lensing effects” means a feature capable of bending light to obscure the non-active areas and maximize the appearance of active areas of a color-changing fiber.
Lensing effects may be achieved by light refraction at the interface between two different transparent materials. In order to bend the rays of light two conditions are needed: (1) the two materials need to have different refractive indices and (2) the angle between the viewing direction and the plane of the interface needs to be different from 90°. An example of a simple fiber geometry that provides a lensing effect is provided in
A fiber structure according to another embodiment of the present invention with a more complex lensing effect is shown in
In a preferred embodiment of the invention, a color changing fiber 100 may comprise CPC material 102a spanning the width of the non-viewing side of the cavity containing the electrophoretic media 104, as illustrated in
The incorporation of chamfered edges is one feature that is able to provide a lensing effect. Alternatively, lensing can be achieved by coating a light transmissive refracting material over the fiber to cause the refraction of light at the interface between the underlying fiber and the coating. The coating and the fiber should have a difference in refractive indices and the angle between the plane of the interface and the viewing direction between the two materials should be less than 90°.
In some applications, such as textiles for apparel, it is possible that a fiber is subjected to high mechanical stresses, such as being bent excessively, kinked or crushed. It is desireable for a whole length of continuous fiber to remain functional even if the fiber is damaged locally. To prevent such damage, a fiber made according to an embodiment of the present invention may include barrier layers to reduce the likelihood of an electrical short between the top and bottom electrodes. For example in
The process of making the color-changing fibers is depicted in
The terms “bistable” and “bistability” are used herein in their conventional meaning in the art to refer to displays comprising display elements having first and second display states differing in at least one optical property, and such that after any given element has been driven, by means of an addressing pulse of finite duration, to assume either its first or second display state, after the addressing pulse has terminated, that state will persist for at least several times, for example at least four times, the minimum duration of the addressing pulse required to change the state of the display element. It is shown in U.S. Pat. No. 7,170,670 that some particle-based electrophoretic displays capable of gray scale are stable not only in their extreme black and white states but also in their intermediate gray states, and the same is true of some other types of electro-optic displays. This type of display is properly called “multi-stable” rather than bistable, although for convenience the term “bistable” may be used herein to cover both bistable and multi-stable displays.
Numerous patents and applications assigned to or in the names of the Massachusetts Institute of Technology (MIT) and E Ink Corporation describe various technologies used in encapsulated electrophoretic and other electro-optic media. Such encapsulated media comprise numerous small capsules, each of which itself comprises an internal phase containing electrophoretically-mobile particles in a fluid medium, and a capsule wall surrounding the internal phase. Some of the materials and techniques described in the patents and applications listed below are relevant to fabricating variable transmission devices described herein, including:
The electro-optic medium includes charged pigment particles in a suspending fluid. The fluids used in the variable transmission media of the present invention will typically be of low dielectric constant (preferably less than 10 and desirably less than 3). Especially preferred solvents include aliphatic hydrocarbons such as heptane, octane, and petroleum distillates such as Isopar® (Exxon Mobil) or Isane® (Total).
Charged pigment particles may be of a variety of colors and compositions. Additionally, the charged pigment particles may be functionalized with surface polymers to improve state stability. Such pigments are described in U.S. Patent Publication No. 2016/0085132, which is incorporated by reference in its entirety. For example, if the charged particles are of a white color, they may be formed from an inorganic pigment such as TiO2, ZrO2, ZnO, Al2O3, Sb2O3, BaSO4, PbSO4 or the like. They may also be polymer particles with a high refractive index (>1.5) and of a certain size (>100 nm) to exhibit a white color, or composite particles engineered to have a desired index of refraction. Black charged particles, they may be formed from CI pigment black 26 or 28 or the like (e.g., manganese ferrite black spinel or copper chromite black spinel) or carbon black. Other colors (non-white and non-black) may be formed from organic pigments such as CI pigment PR 254, PR122, PR149, PG36, PG58, PG7, PB28, PB15:3, PY83, PY138, PY150, PY155 or PY20. Other examples include Clariant Hostaperm Red D3G 70-EDS, Hostaperm Pink E-EDS, PV fast red D3G, Hostaperm red D3G 70, Hostaperm Blue B2G-EDS, Hostaperm Yellow H4G-EDS, Novoperm Yellow HR-70-EDS, Hostaperm Green GNX, BASF Irgazine red L 3630, Cinquasia Red L 4100 HD, and Irgazin Red L 3660 HD; Sun Chemical phthalocyanine blue, phthalocyanine green, diarylide yellow or diarylide AAOT yellow. Color particles can also be formed from inorganic pigments, such as CI pigment blue 28, CI pigment green 50, CI pigment yellow 227, and the like. The surface of the charged particles may be modified by known techniques based on the charge polarity and charge level of the particles required, as described in U.S. Pat. Nos. 6,822,782, 7,002,728, 9,366,935, and 9,372,380 as well as US Publication No. 2014-0011913, the contents of all of which are incorporated herein by reference in their entirety.
The particles may exhibit a native charge, or may be charged explicitly using a charge control agent, or may acquire a charge when suspended in a solvent or solvent mixture. Suitable charge control agents are well known in the art; they may be polymeric or non-polymeric in nature or may be ionic or non-ionic. Examples of charge control agent may include, but are not limited to, Solsperse 17000 (active polymeric dispersant), Solsperse 9000 (active polymeric dispersant), OLOA 11000 (succinimide ashless dispersant), Unithox 750 (ethoxylates), Span 85 (sorbitan trioleate), Petronate L (sodium sulfonate), Alcolec LV30 (soy lecithin), Petrostep B100 (petroleum sulfonate) or B70 (barium sulfonate), Aerosol OT, polyisobutylene derivatives or poly(ethylene co-butylene) derivatives, and the like. In addition to the suspending fluid and charged pigment particles, internal phases may include stabilizers, surfactants and charge control agents. A stabilizing material may be adsorbed on the charged pigment particles when they are dispersed in the solvent. This stabilizing material keeps the particles separated from one another so that the variable transmission medium is substantially non-transmissive when the particles are in their dispersed state. As is known in the art, dispersing charged particles (typically a carbon black, as described above) in a solvent of low dielectric constant may be assisted by the use of a surfactant. Such a surfactant typically comprises a polar “head group” and a non-polar “tail group” that is compatible with or soluble in the solvent. In the present invention, it is preferred that the non-polar tail group be a saturated or unsaturated hydrocarbon moiety, or another group that is soluble in hydrocarbon solvents, such as for example a poly(dialkylsiloxane). The polar group may be any polar organic functionality, including ionic materials such as ammonium, sulfonate or phosphonate salts, or acidic or basic groups. Particularly preferred head groups are carboxylic acid or carboxylate groups. Stabilizers suitable for use with the invention include polyisobutylene and polystyrene. In some embodiments, dispersants, such as polyisobutylene succinimide and/or sorbitan trioleate, and/or 2-hexyldecanoic acid are added.
A polycarbonate fiber having four internal tungsten wire electrodes and a rectangular cross section was filled with an electro-optic medium comprising Isopar® and functionalized titania and black spinel particles. The fiber was approximately 0.8 mm×0.5 mm (exterior) with an internal cavity approximately 0.4 mm×0.2 mm. Two of the wire electrodes on one side were coupled to a voltage supply, while the other two wire electrodes were connected to ground. By providing +/− voltage signals between 100-500V to the wire electrodes, the fiber can be switched between white and black. (In general, the particles will switch at voltages +/−100 V, however the switching is markedly faster at higher voltages.)
From the foregoing, it will be seen that the present invention can provide color-changing fibers that can be integrated into textiles and other materials. It will be apparent to those skilled in the art that numerous changes and modifications can be made in the specific embodiments of the invention described above without departing from the scope of the invention. Accordingly, the whole of the foregoing description is to be interpreted in an illustrative and not in a limitative sense.
This application claims the benefit of and priority to U.S. Provisional Application having Ser. No. 62/520,932, filed on Jun. 16, 2017, the content of which is incorporated by reference herein in its entirety. The contents of all co-pending and published patent applications and issued patents mentioned below are also incorporated by reference herein in their entireties.
This invention was made with U.S. Government support under Agreement No. W15QKN-16-3-0001 awarded by the ACC-NJ. The U.S. Government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
3852401 | Suzuki et al. | Dec 1974 | A |
4659619 | Tate | Apr 1987 | A |
4756958 | Bryant et al. | Jul 1988 | A |
4815355 | Cavaness | Mar 1989 | A |
4917920 | Ono et al. | Apr 1990 | A |
5760761 | Sheridon | Jun 1998 | A |
5777782 | Sheridon | Jul 1998 | A |
5808783 | Crowley | Sep 1998 | A |
5961804 | Jacobson | Oct 1999 | A |
6017584 | Albert | Jan 2000 | A |
6054071 | Mikkelsen, Jr. | Apr 2000 | A |
6055091 | Sheridon | Apr 2000 | A |
6072619 | Kiryuschev et al. | Jun 2000 | A |
6097531 | Sheridon | Aug 2000 | A |
6120588 | Jacobson | Sep 2000 | A |
6120839 | Comiskey | Sep 2000 | A |
6128124 | Silverman | Oct 2000 | A |
6137467 | Sheridon | Oct 2000 | A |
6147791 | Sheridon | Nov 2000 | A |
6241921 | Jacobson | Jun 2001 | B1 |
6262706 | Albert | Jul 2001 | B1 |
6262833 | Loxley | Jul 2001 | B1 |
6300932 | Albert | Oct 2001 | B1 |
6301038 | Fitzmaurice | Oct 2001 | B1 |
6323989 | Jacobson | Nov 2001 | B1 |
6377387 | Duthaler | Apr 2002 | B1 |
6515649 | Albert | Feb 2003 | B1 |
6538801 | Jacobson | Mar 2003 | B2 |
6542284 | Ogawa | Apr 2003 | B2 |
6580545 | Morrison | Jun 2003 | B2 |
6652075 | Jacobson | Nov 2003 | B2 |
6693620 | Herb | Feb 2004 | B1 |
6721083 | Jacobson | Apr 2004 | B2 |
6727881 | Albert | Apr 2004 | B1 |
6756120 | Smith et al. | Jun 2004 | B2 |
6822782 | Pratt | Nov 2004 | B2 |
6866760 | Paolini, Jr. | Mar 2005 | B2 |
6870657 | Fitzmaurice | Mar 2005 | B1 |
6870661 | Pullen | Mar 2005 | B2 |
6922276 | Zhang | Jul 2005 | B2 |
6950220 | Abramson et al. | Sep 2005 | B2 |
6982178 | LeCain et al. | Jan 2006 | B2 |
7002728 | Pullen | Feb 2006 | B2 |
7006063 | Maeda | Feb 2006 | B2 |
7012600 | Zehner | Mar 2006 | B2 |
7012735 | Honeyman | Mar 2006 | B2 |
7038655 | Herb | May 2006 | B2 |
7075502 | Drzaic | Jul 2006 | B1 |
7116318 | Amundson | Oct 2006 | B2 |
7170670 | Webber | Jan 2007 | B2 |
7173752 | Doshi | Feb 2007 | B2 |
7180649 | Morrison | Feb 2007 | B2 |
7230750 | Whitesides | Jun 2007 | B2 |
7230751 | Whitesides | Jun 2007 | B2 |
7236290 | Zhang | Jun 2007 | B1 |
7236291 | Kaga et al. | Jun 2007 | B2 |
7247379 | Pullen | Jul 2007 | B2 |
7312784 | Baucom | Dec 2007 | B2 |
7312916 | Pullen | Dec 2007 | B2 |
7321459 | Masuda | Jan 2008 | B2 |
7339715 | Webber | Mar 2008 | B2 |
7375875 | Whitesides | May 2008 | B2 |
7411719 | Paolini, Jr. | Aug 2008 | B2 |
7411720 | Honeyman et al. | Aug 2008 | B2 |
7420549 | Jacobson | Sep 2008 | B2 |
7453445 | Amundson | Nov 2008 | B2 |
7531235 | Den Toonder et al. | May 2009 | B2 |
7532388 | Whitesides et al. | May 2009 | B2 |
7535624 | Amundson et al. | May 2009 | B2 |
7579078 | Hartmann et al. | Aug 2009 | B2 |
7679814 | Paolini, Jr. | Mar 2010 | B2 |
7746544 | Comiskey | Jun 2010 | B2 |
7839564 | Whitesides et al. | Nov 2010 | B2 |
7848006 | Wilcox | Dec 2010 | B2 |
7903319 | Honeyman | Mar 2011 | B2 |
8009348 | Zehner | Aug 2011 | B2 |
8018640 | Whitesides | Sep 2011 | B2 |
8107153 | Sotzing | Jan 2012 | B2 |
8115729 | Danner | Feb 2012 | B2 |
8199395 | Whitesides | Jun 2012 | B2 |
8207511 | Bortz | Jun 2012 | B2 |
8270064 | Feick | Sep 2012 | B2 |
8305341 | Arango | Nov 2012 | B2 |
8319759 | Jacobson | Nov 2012 | B2 |
8390918 | Wilcox | Mar 2013 | B2 |
8582196 | Walls | Nov 2013 | B2 |
8593718 | Comiskey | Nov 2013 | B2 |
8769836 | Donovan | Jul 2014 | B2 |
9366935 | Du | Jun 2016 | B2 |
9372380 | Du | Jun 2016 | B2 |
9633579 | McLeod | Apr 2017 | B2 |
9733541 | Shuto et al. | Aug 2017 | B2 |
9777201 | Widger | Oct 2017 | B2 |
9863920 | Gaynor | Jan 2018 | B2 |
20010009352 | Moore | Jul 2001 | A1 |
20030194578 | Tam et al. | Oct 2003 | A1 |
20050012980 | Wilcox | Jan 2005 | A1 |
20070195546 | Den Toonder | Aug 2007 | A1 |
20070197115 | Eves et al. | Aug 2007 | A1 |
20080316580 | Gillies et al. | Dec 2008 | A1 |
20090009852 | Honeyman | Jan 2009 | A1 |
20090206499 | Whitesides | Aug 2009 | A1 |
20090225398 | Duthaler | Sep 2009 | A1 |
20100148385 | Balko | Jun 2010 | A1 |
20120274616 | Scribner | Nov 2012 | A1 |
20120293858 | Telfer, Jr. | Nov 2012 | A1 |
20140011913 | Du | Jan 2014 | A1 |
20150036207 | Zhou | Feb 2015 | A1 |
20150210873 | Zhou | Jul 2015 | A1 |
20150227017 | Shuto | Aug 2015 | A1 |
20160085132 | Telfer et al. | Mar 2016 | A1 |
20170088758 | Bzowej et al. | Mar 2017 | A1 |
20180271180 | Kim et al. | Sep 2018 | A1 |
20180363173 | Keating et al. | Dec 2018 | A1 |
20190146299 | Kaino | May 2019 | A1 |
Number | Date | Country |
---|---|---|
1807707 | Jul 2006 | CN |
2004070206 | Mar 2004 | JP |
20180013007 | Jul 2018 | KR |
Entry |
---|
Korean Intellectual Property Office, PCT/US2018/037693, International Search Report and Written Opinion, dated Mar. 6, 2019. |
Wood, D., “An Electrochromic Renaissance?” Information Display, 18(3), Mar. 24, 2002. |
Hayes, R.A. et al., “Video-Speed Electronic Paper Based on Electrowetting”, Nature, vol. 425, No. 25, pp. 383-385 (Sep. 2003). |
O'Regan, B. et al., “A Low Cost, High-efficiency Solar Cell Based on Dye-sensitized colloidal TiO2 Films”, Nature, vol. 353, pp. 737-740 (Oct. 24, 1991). |
Bach, Udo. et al., “Nanomaterials-Based Electrochromics for Paper-Quality Displays”, Adv. Mater, vol. 14, No. 11, pp. 345-348, (Jun. 5, 2002). |
Kitamura, T. et al., “Electrical toner movement for electronic paper-like display”, Asia Display/IDW '01, pp. 1517-1520, Paper HCS1-1 (2001). |
Yamaguchi, Y. et al., “Toner display using insulative particles charged triboelectrically”, Asia Display/IDW '01, pp. 1729-1730, Paper AMD4-4 (2001). |
Number | Date | Country | |
---|---|---|---|
20180364518 A1 | Dec 2018 | US |
Number | Date | Country | |
---|---|---|---|
62520932 | Jun 2017 | US |