Flexible command and control in content centric networks

Information

  • Patent Grant
  • 10075402
  • Patent Number
    10,075,402
  • Date Filed
    Wednesday, June 24, 2015
    9 years ago
  • Date Issued
    Tuesday, September 11, 2018
    6 years ago
Abstract
One embodiment provides a transport-framework system that facilitates command messages to be communicated in a layer-agnostic manner. During operation, the system generates, by a component of a stack of communication modules, a first command message for a target entity. The first command message includes a name unique to the target entity, and the stack does not require a respective communication module to communicate only with a layer above or below thereof. The component sends the first command message to the target entity by inserting the first command message into a queue corresponding to the component. The component can also receive a second command message from a sending entity via a queue corresponding to the sending entity, and the second command message includes a name unique to the component. This facilitates command messages to be communicated in a layer-agnostic manner.
Description
RELATED APPLICATIONS

The subject matter of this application is related to the subject matter in the following applications:

    • U.S. patent application Ser. No. 13/847,814, entitled “ORDERED-ELEMENT NAMING FOR NAME-BASED PACKET FORWARDING,” by inventor Ignacio Solis, filed 20 Mar. 2013 (hereinafter “U.S. patent application Ser. No. 13/847,814”);
    • U.S. patent application Ser. No. 12/338,175, entitled “CONTROLLING THE SPREAD OF INTERESTS AND CONTENT IN A CONTENT CENTRIC NETWORK,” by inventors Van L. Jacobson and Diana K. Smetters, filed 18 Dec. 2008 (hereinafter “U.S. patent application Ser. No. 12/338,175”);
    • U.S. patent application Ser. No. 14/595,060, entitled “AUTO-CONFIGURABLE TRANSPORT STACK,” by inventors Ignacio Solis and Glenn C. Scott, filed 12 Jan. 2015 (hereinafter “U.S. patent application Ser. No. 14/595,060”); and
    • U.S. patent application Ser. No. 14/746,490, entitled “TRANSPORT STACK NAME SCHEME AND IDENTITY MANAGEMENT,” by inventors Christopher Wood and Glenn C. Scott, filed 22 Jun. 2015 (hereinafter “U.S. patent application Ser. No. 14/746,490”);
    • the disclosures of which are herein incorporated by reference in their entirety.


BACKGROUND

Field


This disclosure is generally related to a transport framework. More specifically, this disclosure is related to a method and system for facilitating command messages to be communicated in a layer-agnostic manner between components of the same or different stacks.


Related Art


The ubiquitous nature of mobile computing devices and the Internet is making it possible for people to experience digital content from anywhere. People can use applications in their mobile computing devices to consume or interact with content from service providers across the Internet, such as to stream movies or music or to play games with others. These advances in mobile computing are also increasing the quality of content that can be reproduced by these mobile devices and greatly increases the number of devices that can generate and capture digital content and share with others over the Internet. Nowadays, even small mobile devices such as smartphones can produce full high-definition video with high-quality color reproduction, and high-speed cellular and broadband networks make it possible for users to share this content with others over various Internet services, such as the YouTube (from Google, Inc.) and Facebook (from Facebook, Inc.) content-sharing services.


Many computer applications leverage these computer networks and Internet services to provide social features to its users, which greatly enhances the user experience. When an application wants to use the network, it does so by using one or more Application Programming Interfaces (APIs) that run on the computing device's operating system. These APIs provide a way for applications to send, receive, store, configure data or otherwise communicate with other computers across the network.


For example, an application instantiates a protocol stack that implements a network API before the application can use the API to send or receive data over the network. In a traditional protocol stack based on, e.g., the Open Systems Interconnection (OSI) model, each layer can only communicate with the layer above or below it. In a model based on a content-centric network (CCN), a protocol stack can be dynamically created to suit the needs of APIs used by various applications. While the creation of these application-driven protocol stacks can increase the flexibility of a system, the lack of standardization presents challenges in addressing specific components within such a stack. Furthermore, some messages may be associated with a specific direction of flow within a stack, which can result in decreased flexibility.


SUMMARY

One embodiment provides a transport-framework system that facilitates command messages to be communicated in a layer-agnostic manner. During operation, the system generates, by a component of a stack of communication modules, a first command message for a target entity. The first command message includes a name unique to the target entity, and the stack does not require a respective communication module to communicate only with a layer above or below thereof. The component sends the first command message to the target entity by inserting the first command message into a queue corresponding to the component. The component can also receive a second command message from a sending entity via a queue corresponding to the sending entity. The second command message includes a name unique to the component. This facilitates command messages to be communicated in a layer-agnostic manner.


In some embodiments, the target entity and the sending entity are one or more of: another component of the stack; a component of another stack; an API instance associated with an application corresponding to the stack; an API instance associated with an application corresponding to another stack; a forwarder associated with the stack; and a forwarder associated with another stack.


In some embodiments, sending the first command message further comprises sending the first command message via a message delivery system to the target entity.


In some embodiments, responsive to determining that the target entity is another component of the stack, a component of another stack, an API instance associated with an application corresponding to another stack, or a forwarder associated with another stack, the system sets an upward or downward output queue for the component as the queue corresponding to the component. Responsive to determining that the target entity is an API instance associated with an application corresponding to the stack, the system sets the upward output queue for the component as the queue corresponding to the component. Responsive to determining that the target entity is a forwarder associated with the stack, the system sets the downward output queue for the component as the queue corresponding to the component.


In some embodiments, receiving the second command message further comprises receiving the second command message via a message delivery system from the sending entity.


In some embodiments, the second command message is received via an upward or downward input queue associated with the sending entity.


In some embodiments, the name for the first or second command message includes one or more of: a name for the stack; a name for a forwarder associated with a corresponding portal instance; a name for a component of the stack; and a command associated with a component of the stack.


In some embodiments, a name for a component of the stack is based on one or more of: a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name components ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the stack; a flat name that does not indicate any hierarchy; a role of the component of the stack; and a unique identifier which is specific to the component of the stack.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 illustrates an exemplary environment which facilitates command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention.



FIG. 2A illustrates an exemplary transport framework, in accordance with an embodiment of the present invention.



FIG. 2B illustrates a conventional exemplary communication between a component of a stack and an application associated with the same stack.



FIG. 2C illustrates an exemplary communication between a component of a stack and an application associated with the same stack, in accordance with an embodiment of the present invention.



FIG. 2D illustrates an exemplary communication between a component of a stack and an application associated with the same stack, in accordance with an embodiment of the present invention.



FIG. 2E illustrates an exemplary communication between components of different stacks, in accordance with an embodiment of the present invention.



FIG. 2F illustrates an exemplary communication between components of different stacks, in accordance with an embodiment of the present invention.



FIG. 3 illustrates an exemplary transport framework, including a message delivery system, in accordance with an embodiment of the present invention.



FIG. 4A presents a flow chart illustrating a method for facilitating command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention.



FIG. 4B presents a flow chart illustrating a method for facilitating command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention.



FIG. 5 illustrates an exemplary apparatus that facilitates command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention.



FIG. 6 illustrates an exemplary computer system that facilitates command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention.





In the figures, like reference numerals refer to the same figure elements.


DETAILED DESCRIPTION

The following description is presented to enable any person skilled in the art to make and use the embodiments, and is provided in the context of a particular application and its requirements. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other embodiments and applications without departing from the spirit and scope of the present disclosure. Thus, the present invention is not limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.


Overview


Embodiments of the present invention provide a message passing scheme for a transport framework which solves the problem of imposing a fixed direction to messages originated by a component in a layered protocol stack or an application by allowing layer-agnostic command messages to be sent between applications, forwarders, and individual components of the same stack or different stacks. In CCN, the transport framework enables high-level APIs to instantiate a transport stack within the framework. The transport stack can include multiple components or communication modules, and does not adhere to a traditional layered model (e.g., OSI) where each component communicates only with the layer below or above it. The transport stack can be created dynamically and configured at runtime, where each of the components within the transport stack performs a specific function. For example, one component of the transport stack can be a flow controller which is responsible for implementing a Transmission Control Protocol (TCP) congestion avoidance algorithm (e.g., TCP Vegas) for a high-level message stream API.


Typically, to configure a stack component, an API can generate a “control” message directed to the stack component. The control message is similar to an interest or content object in that it is identified by a CCN name and includes a payload. The control message flows down the stack through the stack components in sequence by layer until it reaches the intended recipient, which generates and sends a response (e.g., in the form of an ACK or NACK with accompanying metadata such as an error code or success message). Conversely, an individual stack component can issue a “notification” message directed to an upper-level component or API. Similar to the control message, the notification message is identified by a CCN name, flows up the stack in sequence by layer until it reaches the intended recipient, and triggers a response.


The rigidity imposed by the flow of these separate types of messages (e.g., control messages from API to stack component, and notification messages from stack component to API) can result in decreased flexibility in the overall transport framework. Embodiments of the present invention provide a system in which uniform, layer-agnostic command messages (including both control messages and notification messages) can be sent from an application/API, stack component, or a forwarder to any other application/API, stack component, or forwarder associated with the same or a different stack, on the same or a different device. The command messages can flow up or down the stack based on the direction specified by the originator and a unique naming scheme. A transport stack name scheme and identity management is described in U.S. patent application Ser. No. 14/746,490, which is herein incorporated by reference. Providing uniform command messages based on the naming scheme removes the directional dependence of standard “downward” flowing control messages and “upward” flowing notification messages. Thus, in a dynamically configured and non-standard layered CCN transport stack, the system facilitates the construction and communication of command messages in a layer-agnostic manner.


In some embodiments, the transport framework operates under the CCN architecture. In CCN, each piece of content is individually named, and each piece of data is bound to a unique name that distinguishes the data from any other piece of data, such as other versions of the same data or data from other sources. This unique name allows a network device to request the data by disseminating a request or an interest that indicates the unique name, and can obtain the data independent from the data's storage location, network location, application, and means of transportation. The following terms are used to describe the CCN architecture:


Content Object (or “Content Object”):


A single piece of named data, which is bound to a unique name. Content Objects are “persistent,” which means that a Content Object can move around within a computing device, or across different computing devices, but does not change. If any component of the Content Object changes, the entity that made the change creates a new Content Object that includes the updated content, and binds the new Content Object to a new unique name.


Unique Names:


A name in a CCN is typically location independent and uniquely identifies a Content Object. A data-forwarding device can use the name or name prefix to forward a packet toward a network node that generates or stores the Content Object, regardless of a network address or physical location for the Content Object. In some embodiments, the name may be a hierarchically structured variable-length identifier (HSVLI). The HSVLI can be divided into several hierarchical components, which can be structured in various ways. For example, the individual name components parc, home, ccn, and test.txt can be structured in a left-oriented prefix-major fashion to form the name “/parc/home/ccn/test.txt.” Thus, the name “/parc/home/ccn” can be a “parent” or “prefix” of “/parc/home/ccn/test.txt.” Additional components can be used to distinguish between different versions of the content item, such as a collaborative document.


In some embodiments, the name can include an identifier, such as a hash value that is derived from the Content Object's data (e.g., a checksum value) and/or from elements of the Content Object's name. A description of a hash-based name is described in U.S. patent application Ser. No. 13/847,814, which is herein incorporated by reference. A name can also be a flat label. Hereinafter, “name” is used to refer to any name for a piece of data in a name-data network, such as a hierarchical name or name prefix, a flat name, a fixed-length name, an arbitrary-length name, or a label (e.g., a Multiprotocol Label Switching (MPLS) label).


Interest (or “Interest”):


A packet that indicates a request for a piece of data, and includes a name (or a name prefix) for the piece of data. A data consumer can disseminate a request or Interest across an information-centric network, which CCN/NDN routers can propagate toward a storage device (e.g., a cache server) or a data producer that can provide the requested data to satisfy the request or Interest.


In addition, “lci” refers to labeled content information and is a Universal Resource Indicator (URI) compliant identifier in which name segments carry a label. Network protocols such as CCN can use labeled content information by applying specific labels to each name segment of a URI. In a hierarchically structured name, a labeled content name assigns a semantic type or label to each segment. For example, a type of name segment can include a name segment which is a generic name segment that includes arbitrary octets, which allows a CCN to use a binary on-the-wire representation for messages.


The methods disclosed herein are not limited to CCN networks and are applicable to other architectures as well. A description of a CCN architecture is described in U.S. patent application Ser. No. 12/338,175, which is herein incorporated by reference.


Exemplary Network and Communication



FIG. 1 illustrates an exemplary environment 100 which facilitates command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention. Computing environment 100 can include a computer network 102, such as a CCN. Environment 100 can also include a user 106 associated with a local computing device 104, and a remote computing device 108. Devices 104 and 108 can have internal transport stacks (e.g., associated with transport frameworks 130 and 170, respectively) that exchange network packets with each other over network 102.


In a traditional IP architecture, a forwarder is an IP-based forwarder that looks at the header of a packet to determine the source and the destination for the packet, and forwards the packet to the destination. The stack performs TCP/UDP, and an application interacts with the stack via a socket. In contrast, device 104 of the present invention does not use a conventional “stack.” Rather, device 104 via application 110 can request a portal API instance corresponding to a portal 120 which corresponds to transport framework 130. Similarly, device 108 via application 150 can request a portal API instance corresponding to a portal 160 which corresponds to transport framework 170. Applications 110 and 150 can generate requests to retrieve or create the portal API instances associated with portals 120 and 160, respectively. Alternatively, a root user associated with device 104 or device 108 can create the respective portal instances, as described in U.S. patent application Ser. No. 14/746,490, which is herein incorporated by reference. Applications 110 and 150 can reside on different devices (as shown in FIG. 1) or on the same device (not shown in FIG. 1).


Device 104 can include any computing device coupled to network 102, such as a smartphone 104.1, a tablet computer 104.2, and/or a server or personal computer 104.m. Specifically, device 104 can include application 110 which communicates via portal 120 with transport framework 130. Transport framework 130 can include stack components 134.1-134.n. Device 104 can also include forwarder 140 (e.g., a network interface card, or a router in a local area network) which can transfer packets between a stack (and individual stack components) of transport framework 130 and network 102. Similarly, device 108 can include any computing device coupled to network 102, such as a server or an end host device. Device 108 can include application 150 which communicates via portal 160 with transport framework 170. Transport framework 170 can include stack components 174.1-174.p. Device 108 can also include a forwarder 180 which can transfer packets between a stack (and individual stack components) of transport framework 170 and network 102. Forwarders 140 and 180 can also facilitate the transfer of packets directly between individual stack components 134.1-134.n and 174.1-174.p, respectively.



FIG. 2A illustrates an exemplary transport framework, in accordance with an embodiment of the present invention. Applications 210 and 250 can reside on the same device, or on different devices which communicate via a network 202. Application 210 can use APIs 212, 214, and 216 to communicate over network 202, and APIs 212-216 can interact via a portal 220 with a transport framework 230. Transport framework 230 can include one or more transport stacks which each include multiple stack components or communication modules. In FIG. 2A, transport framework 230 depicts one transport stack (e.g., a transport stack 231) which includes stack components 232-238. An API adapter 232 can communicate between an API and a specific transport stack and transport framework 230. A flow controller 234 can shape and manage traffic, pipeline and transmit interests, and order content objects. A verifier/signer 236 can encode and sign content objects destined for a network element, decode and verify content objects destined for an associated application, encode interests destined for a network element, and decode interests destined for an associated application. A forwarder/adapter 238 can communicate with a forwarder 240. Forwarder 240 can communicate with other forwarders over network 202. Other stack components (not shown) can include functionality related to security (e.g., encryption, decryption, authentication, data signing, signature verification, trust assessment, and filtering), data-processing (e.g., encoding, decoding, encapsulating, decapsulating, transcoding, compression, extraction, and decompression), and storage (e.g., data storage, data retrieval from storage, deduplication, segmentation, and versioning).


Similarly, application 250 can use APIs 252, 254, and 256 to communicate over network 202, and APIs 252-256 can interact via a portal 260 with a transport framework 270. Transport framework 270 can include one or more transport stacks which each include multiple stack components or communication modules. In FIG. 2A, transport framework 270 depicts one transport stack (e.g., a transport stack 271) which includes the following stack components: an API adapter 272; a flow controller 274; a verifier/signer 276; and a forwarder/adapter 278 which can communicate with a forwarder 280. Forwarder 240 can communicate with forwarder 280 over network 202.


The system (via a request from an application or a root user operation or a runtime executable) can create a portal API instance associated with each CCN transport stack. Upon creation of the portal instance, an application or any individual stack component can send a message directly to any other individual component of the same or another stack, as described in U.S. patent application Ser. No. 14/746,490, which is herein incorporated by reference. For example, application 210 can request a portal API instance associated with transport stack 231, which includes components 232-238. By using the naming scheme (e.g., the unique names or identifiers obtained upon creating or retrieving the portal API instance), application 210 or any component of transport stack 231 can send a command message directly to any other component of stack 231 or stack 271. Similar to applications 210 and 250, transport stacks 231 and 271 can reside on the same device, or on different devices which communicate via network 202. In addition, applications 210 and 250 can communicate via an inter-process communication (IPC) protocol 290.


Exemplary Communication Between Stack Components, Applications, and Forwarders Associated with the Same Stack (Intra-Stack Communication)



FIG. 2B illustrates a conventional exemplary communication between a component of a stack and an application associated with the same stack. Verifier/signer 236 can issue a “notification” message to application 210 via, e.g., API 214. In a traditional layered protocol stack, verifier signer 236 creates an interest with a name, and the interest travels down through the stack components until it reaches forwarder 240 (flow 291a), which determines that application 210 via API 214 is the target entity for the interest. Forwarder 240 sends the interest to application 210, and the interest travels back up through the stack components by layer until it reaches application 210 (flow 291b). Upon receiving the interest, application 210 generates a content object or similar response (such as an ACK or NACK) in response to the interest, and sends the response back down the stack through the stack components by layer until it reaches forwarder 240 (flow 291c). Forwarder 240 receives the response, determines that it is destined for verifier/signer 236, and forwards the response to verifier/signer 236 by sending the response back up the stack through the stack components until it reaches verifier/signer 236 (flow 291d). The conventional flow of the notification message in this stack relies on the forwarder to properly route the notification message to the application via the associated API.



FIG. 2C illustrates an exemplary communication between a component of a stack and an application associated with the same stack, in accordance with an embodiment of the present invention. Messages that travel within a single stack can be referred to as “intra-stack messages.” During operation, verifier/signer 236 can generate an event or a notification command message (with a name that follows the unique naming scheme and a payload that carries the relevant command or message). For example, the name for the message can be based on a unique identifier of the API instance:

lci:/API_name=“API 214 Instance”  (1)

Verifier/signer 236 can propagate the message upwards to application 210 (flow 292a) via a message delivery system that dynamically dispatches or routes the command message to the destined entity. The message delivery system is described below in relation to FIG. 3. Application 210 generates a response or a content object in response to the message, and sends the response back to verifier/signer 236 (flow 292b). Thus, as shown in FIG. 2C, the transport framework of the present invention does not rely solely on the forwarder to properly route messages from an individual stack component to an application via an associated API.



FIG. 2D illustrates an exemplary communication between a component of a stack and an application associated with the same stack, in accordance with an embodiment of the present invention. During operation, application 210 can issue a control command message requesting verification of a content object. Application 210 can create the command message destined for verifier/signer 236 based on a unique name that specifically identifies verifier/signer 236. For example, the name for the message can be:

lci:/stack_name=“Portal 220 Stack”/component_name=“Verifier/Signer 236”/command=“VERIFY_CONT_OBJ”  (2)

Application 210 can propagate the message downwards to verifier/signer 236 (flow 293a) via the message delivery system, as described below in relation to FIG. 3. Verifier/signer 236 receives the message, performs the requested action (e.g., verifies the content object), and sends a response (e.g., of a successful verification) back to application 210 (flow 293b). Similar to the communication depicted in FIG. 2B, the communication shown in FIG. 2C does not rely solely upon the forwarder to properly route command messages from an application to an individual stack component.


Exemplary Communication Between Stack Components, Applications, and Forwarders Associated with Different Stacks (Inter-Stack Communication)


An individual component of a stack can send a message to a component of another stack, based on the unique naming scheme and the message passing scheme described herein. Messages that pass between two different stacks can be referred to as “inter-stack messages.” The different stacks can reside on the same device or on different devices. Note that the direction of the flow of these inter-stack messages is neither fixed nor relevant because both the high-level API instances and the low-level forwarders are capable of routing inter-stack messages to the destined entity in either direction (e.g., through the forwarders, as described below in relation to FIG. 2E, and through the applications, as described below in relation to FIG. 2F).



FIG. 2E illustrates an exemplary communication between components of different stacks, in accordance with an embodiment of the present invention. During operation, verifier/signer 236 of transport stack 231 can send a command message to flow controller 274 of transport stack 271. The message can be travel through the forwarders (e.g., forwarders 240 and 280) associated with the respective transport stacks. Verifier/signer 236 generates the message and propagates the message downwards to forwarder 240 via a message delivery system for transport framework 230 (“first message delivery system”) (flow 294a). The message includes a name which uniquely identifies the target entity (e.g., flow controller 274), and can also include a command (e.g., to turn off flow controller 274). For example, the name for the message can be:

lci:/stack_name=“Portal 260 Stack”/component_name=“Flow Controller 274”/command=“TURN_OFF”  (3)

Upon receiving the message, forwarder 240 transmits the message to forwarder 280 over network 202 (flow 294b). Forwarder 280 receives the message, determines that the message is destined for flow controller 274, and propagates the message up to flow controller 274 via a message delivery system for transport framework 270 (“second message delivery system”) (flow 294c). Flow controller 274 receives the message, generates a response, and sends the response back to forwarder 280 via the second message delivery system (flow 294d). Upon receiving the response, forwarder 280 transmits the response back to forwarder 240 (again, over network 202) (flow 294e). Finally, forwarder 240 receives and routes the response to verifier signer 236 via the first message delivery system (flow 294f).



FIG. 2F illustrates an exemplary communication between components of different stacks, in accordance with an embodiment of the present invention. During operation, verifier/signer 236 of transport stack 231 can send a command message to flow controller 274 of transport stack 271. The message can travel through the applications and APIs associated with the respective transport stacks. Verifier/signer 236 generates an event or a command message that propagates upwards to application 210 via the first message delivery system (flow 295a). Similar to the communication depicted in FIG. 2E, the message includes a name which uniquely identifies the target entity and can also include a command, as in Name (3). Application 210 transmits the message to application 250 via IPC protocol 290 (flow 295b). Upon receiving the message, application 250 sends the message (e.g., by generating an interest) to flow controller 274 via the second message delivery system (flow 295c). Upon receiving the interest (which includes in its payload a command to turn off the target entity), flow controller 274 turns itself off, generates a response (e.g., an ACK), and sends the response back to application 250 via the second message delivery system (flow 295d). Application 250 sends the response back to application 210 via IPC protocol 290 (flow 295e), and application 210 sends the response to verifier/signer 236 via the first message delivery system (flow 295f).


Exemplary Transport Framework With Message Delivery System



FIG. 3 illustrates an exemplary transport framework, including a message delivery system, in accordance with an embodiment of the present invention. An application 310 can use APIs 312, 314, and 316 to communicate over a network 302, and APIs 312-316 can interact via a portal 320 with a transport stack which can include the following stack components: an API adapter 332; a flow controller 334; a verifier/signer 336; and a forwarder/adapter 338 which can communicate with a forwarder 340. The transport framework can include a message delivery system 350 which dynamically dispatches or routes a message to a target entity. Message delivery system 350 can include a single thread which retrieves values (e.g., commands) from queues associated with each stack component and performs scheduling operations to process the commands associated with each queue. Each stack component can be associated with multiple queues. For example, API adapter 332 can be associated with a downward input queue 352, an upward input queue 354, a downward output queue 356, and an upward output queue 358. In some embodiments, message delivery system 350 can include a data structure based on a name and value pair, where the name is the name of an individual stack component, and the value is the content of each queue associated with the individual stack component.


Examples of message flow via a message delivery system and queues associated with stack components are described in relation to FIGS. 2C-2F. Corresponding to FIG. 2C, verifier/signer 236 can insert the notification command message into its upward output queue, allowing the message delivery system (e.g., the single thread) to retrieve and propagate the message upwards towards the API. Corresponding to FIG. 2D, application 210 can insert the control command message into the downward input queue of API adapter 232 (as shown by queue 352 of FIG. 3). Corresponding to FIG. 2E, verifier/signer 236 can insert the command message into its downward output queue (to enable flow 294a), forwarder 280 can insert the command message into the upward input queue of forwarder/adapter 278 (to enable flow 294c), flow controller 274 can insert the command message into its downward output queue (to enable flow 294d), and forwarder 240 can insert the command message into the upward input queue of forwarder/adapter 238 (to enable flow 294f). Corresponding to FIG. 2F, verifier/signer 236 can insert the command message into its upward output queue (to enable flow 295a), application 250 can insert the command message into the downward input queue of API adapter 272 (to enable flow 295c), flow controller 274 can insert the command message into its upward output queue (to enable flow 295d), and application 210 can insert the command message into the downward input queue of API adapter 232 (to enable flow 295f).


Method for Communicating Command Messages



FIG. 4A presents a flow chart 400 illustrating a method for facilitating command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention. During operation, the system generates, by a component of a stack of communication modules, a first command message for a target entity, where the first command message includes a name unique to the target entity (operation 402). The stack does not require a respective communication module to communicate only with a layer above or below thereof. The stack component sends the first command message to the target entity by inserting the first command message into a queue corresponding to the component (operation 404). The system determines the target entity (decision 406). If the system determines that the target entity is another component of the stack, a component of another stack, an API associated with another stack, or a forwarder associated with another stack (operation 408), the system sets an upward or downward output queue for the component as the queue corresponding to the component (operation 410). If the system determines that the target entity is an API associated with the stack (operation 412), the system sets an upward output queue for the component as the queue corresponding to the component (operation 414). If the system determines that the target entity is a forwarder associated with the stack (operation 416), the system sets a downward output queue for the component as the queue corresponding to the component (operation 418). Subsequently, the stack component sends the first command message to the target entity via a message delivery system (operation 420).



FIG. 4B presents a flow chart 450 illustrating a method for facilitating command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention. During operation, the system receives, by a component of a stack of communication modules, a second command message from a sending entity, where the second command message includes a name unique to the component (operation 452). The stack component receives the second command message from the sending entity via an upward or downward input queue associated with the sending entity (operation 454). A queue can be associated with an entity when the queue corresponds to a stack component that plays a role in communicating between an entity and another stack component. For example, corresponding to FIG. 2D, verifier/signer 236 (e.g., the stack component) receives the command message from application 210 (e.g., the sending entity) via a downward input queue of API adapter 232 (e.g., the queue associated with the sending entity). In another example corresponding to FIG. 2E, flow controller 274 (e.g., the stack component) receives the command message from forwarder 280 (e.g., the sending entity) via an upward input queue of forwarder/adapter 278 (e.g., the queue associated with the sending entity). Subsequently, the stack component receives the second command message from the sending entity via the message delivery system (operation 456).


Exemplary Apparatus and Computer System



FIG. 5 illustrates an exemplary apparatus 500 that facilitates command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention. Apparatus 500 can comprise a plurality of modules which may communicate with one another via a wired or wireless communication channel. Apparatus 500 may be realized using one or more integrated circuits, and may include fewer or more modules than those shown in FIG. 5. Further, apparatus 500 may be integrated in a computer system, or realized as a separate device which is capable of communicating with other computer systems and/or devices. Specifically, apparatus 500 can comprise a communication module 502, a message-generating module 504, a message-delivering module 506, a queue-determining module 508, and an entity-determining module 510.


In some embodiments, communication module 502 can send and/or receive data packets to/from other network nodes across a computer network, such as a content centric network. Message-generating module 504 can generate a first command message for a target entity. Message-delivering module 506 can send the first command message to the target entity by inserting the first command message into a queue corresponding to a component, and can further send the first command message via a message delivery system to the target entity. Communication module 502 can also receive a second command message from a sending entity via a queue corresponding to the sending entity, and can further receive the second command message via a message delivery system from the sending entity.


Entity-determining module 510 can determine that the target entity is another component of the stack, a component of another stack, an API instance associated with an application corresponding to another stack, a forwarder associated with another stack, an API instance associated with an application corresponding to the stack, or a forwarder associated with the stack. Responsive to determining that the target entity is another component of the stack, a component of another stack, an API instance associated with an application corresponding to another stack, or a forwarder associated with another stack, queue-determining module 508 can set an upward or downward output queue for the component as the queue corresponding to the component. Responsive to determining that the target entity is an API instance associated with an application corresponding to the stack, queue-determining module 508 can set the upward output queue for the component as the queue corresponding to the component. Responsive to determining that the target entity is a forwarder associated with the stack, queue-determining module 508 can set the downward output queue for the component as the queue corresponding to the component.



FIG. 6 illustrates an exemplary computer system 602 that facilitates command messages to be communicated in a layer-agnostic manner, in accordance with an embodiment of the present invention. Computer system 602 includes a processor 604, a memory 606, and a storage device 608. Memory 606 can include a volatile memory (e.g., RAM) that serves as a managed memory, and can be used to store one or more memory pools. Furthermore, computer system 602 can be coupled to a display device 610, a keyboard 612, and a pointing device 614. Storage device 608 can store an operating system 616, a transport system 618, and data 632.


Transport system 618 can include instructions, which when executed by computer system 602 or processor 604, can cause computer system 602 or processor 604 to perform methods and/or processes described in this disclosure. Specifically, transport system 618 may include instructions for sending and/or receiving data packets to/from other network nodes across a computer network, such as a content centric network (communication module 620). Transport system 618 can also include instructions for generating a first command message for a target entity (message-generating module 622). Transport system 618 can include instructions for sending the first command message to the target entity by inserting the first command message into a queue corresponding to a component, and for sending the first command message via a message delivery system to the target entity (message-delivering module 624). Transport system 618 can include instructions for receiving a second command message from a sending entity via a queue corresponding to the sending entity, and for receiving the second command message via a message delivery system from the sending entity (communication module 620).


Furthermore, transport system 618 can include instructions for determining that the target entity is another component of the stack, a component of another stack, an API instance associated with an application corresponding to another stack, a forwarder associated with another stack, an API instance associated with an application corresponding to the stack, or a forwarder associated with the stack (entity-determining module 626). Transport system 618 can also include instructions for, responsive to determining that the target entity is another component of the stack, a component of another stack, an API instance associated with an application corresponding to another stack, or a forwarder associated with another stack, setting an upward or downward output queue for the component as the queue corresponding to the component (queue-determining module 628). Transport system 618 can also include instructions for, responsive to determining that the target entity is an API instance associated with an application corresponding to the stack, setting the upward output queue for the component as the queue corresponding to the component (queue-determining module 628). Transport system 618 can further include instructions for, responsive to determining that the target entity is a forwarder associated with the stack, setting the downward output queue for the component as the queue corresponding to the component (queue-determining module 628).


Data 632 can include any data that is required as input or that is generated as output by the methods and/or processes described in this disclosure. Specifically, data 632 can store at least: a first command message for a target entity, where the first command message includes a name unique to the target entity; a second command message from a sending entity, where the second command includes a name unique to the component; a data packet that corresponds to an event, a command, a notification, a control message, an interest, or a content object; a transport framework; a protocol or transport stack; one or more components of a transport or protocol stack; a portal or portal API instance associated with a transport or protocol stack; and a forwarder associated with a transport or protocol stack.


The data structures and code described in this detailed description are typically stored on a computer-readable storage medium, which may be any device or medium that can store code and/or data for use by a computer system. The computer-readable storage medium includes, but is not limited to, volatile memory, non-volatile memory, magnetic and optical storage devices such as disk drives, magnetic tape, CDs (compact discs), DVDs (digital versatile discs or digital video discs), or other media capable of storing computer-readable media now known or later developed.


The methods and processes described in the detailed description section can be embodied as code and/or data, which can be stored in a computer-readable storage medium as described above. When a computer system reads and executes the code and/or data stored on the computer-readable storage medium, the computer system performs the methods and processes embodied as data structures and code and stored within the computer-readable storage medium.


Furthermore, the methods and processes described above can be included in hardware modules. For example, the hardware modules can include, but are not limited to, application-specific integrated circuit (ASIC) chips, field-programmable gate arrays (FPGAs), and other programmable-logic devices now known or later developed. When the hardware modules are activated, the hardware modules perform the methods and processes included within the hardware modules.


The foregoing descriptions of embodiments of the present invention have been presented for purposes of illustration and description only. They are not intended to be exhaustive or to limit the present invention to the forms disclosed. Accordingly, many modifications and variations will be apparent to practitioners skilled in the art. Additionally, the above disclosure is not intended to limit the present invention. The scope of the present invention is defined by the appended claims.

Claims
  • 1. A method, comprising: generating, by a module of a network stack of communication modules, a first command message for a target entity, the first command message including a name unique to the target entity, wherein the network stack enables a respective communication module to communicate with a layer that is not directly above or directly below the respective communication module;sending the first command message, via a message delivery system, to the target entity by inserting the first command message into a queue corresponding to the module, wherein the message delivery system uses the name unique to the target entity and a value that represents content of the queue corresponding to the module; andreceiving a second command message from a sending entity via a queue corresponding to the sending entity, the second command message including a name unique to the component module.
  • 2. The method of claim 1, wherein the target entity and the sending entity are one or more of: another module of the network stack;a module of another network stack;an API instance associated with an application corresponding to the network stack;an API instance associated with an application corresponding to another network stack;a forwarder associated with the network stack; anda forwarder associated with another network stack.
  • 3. The method of claim 1, wherein sending the first command message further comprises: sending the first command message via a message delivery system to the target entity.
  • 4. The method of claim 1, wherein the method further comprises: responsive to determining that the target entity is another module of the network stack, a module of another network stack, an API instance associated with an application corresponding to another network stack, or a forwarder associated with another network stack, setting an upward or downward output queue for the module as the queue corresponding to the module;responsive to determining that the target entity is an API instance associated with an application corresponding to the network stack, setting the upward output queue for the module as the queue corresponding to the module; andresponsive to determining that the target entity is a forwarder associated with the network stack, setting the downward output queue for the module as the queue corresponding to the module.
  • 5. The method of claim 1, wherein receiving the second command message further comprises: receiving the second command message via a message delivery system from the sending entity.
  • 6. The method of claim 1, wherein the second command message is received via an upward or downward input queue associated with the sending entity.
  • 7. The method of claim 1, wherein the name for the first or second command message includes one or more of: a name for the network stack;a name for a forwarder associated with a corresponding portal instance;a name for a module of the network stack; anda command associated with a module of the network stack.
  • 8. The method of claim 1, wherein a name for a module of the network stack is based on one or more of: a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name module ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the network stack;a flat name that does not indicate any hierarchy;a role of the module of the network stack; anda unique identifier which is specific to the module of the network stack.
  • 9. A non-transitory computer-readable storage medium storing instructions that when executed by a computer cause the computer to perform a method, the method comprising: generating, by a module of a network stack of communication modules, a first command message for a target entity, the first command message including a name unique to the target entity, wherein the network stack enables a respective communication module to communicate with a layer that is not directly above or directly below the respective communication module;sending the first command message, via a message delivery system, to the target entity by inserting the first command message into a queue corresponding to the module, wherein the message delivery system uses the name unique to the target entity and a value that represents content of the queue corresponding to the module; andreceiving a second command message from a sending entity via a queue corresponding to the sending entity, the second command message including a name unique to the module.
  • 10. The storage medium of claim 9, wherein the target entity and the sending entity are one or more of: another module of the network stack;a module of another network stack;an API instance associated with an application corresponding to the network stack;an API instance associated with an application corresponding to another network stack;a forwarder associated with the network stack; anda forwarder associated with another network stack.
  • 11. The storage medium of claim 9, wherein sending the first command message further comprises: sending the first command message via a message delivery system to the target entity.
  • 12. The storage medium of claim 9, wherein the method further comprises: responsive to determining that the target entity is another module of the network stack, a module of another network stack, an API instance associated with an application corresponding to another network stack, or a forwarder associated with another network stack, setting an upward or downward output queue for the module as the queue corresponding to the module;responsive to determining that the target entity is an API instance associated with an application corresponding to the network stack, setting the upward output queue for the module as the queue corresponding to the module; andresponsive to determining that the target entity is a forwarder associated with the network stack, setting the downward output queue for the module as the queue corresponding to the module.
  • 13. The storage medium of claim 9, wherein receiving the second command message further comprises: receiving the second command message via a message delivery system from the sending entity.
  • 14. The storage medium of claim 9, wherein the second command message is received via an upward or downward input queue associated with the sending entity.
  • 15. The storage medium of claim 9, wherein the name for the first or second command message includes one or more of: a name for the network stack;a name for a forwarder associated with a corresponding portal instance;a name for a module of the network stack; anda command associated with a module of the network stack.
  • 16. The storage medium of claim 1, wherein a name for a module of the network stack is based on one or more of: a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name modules ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the network stack;a flat name that does not indicate any hierarchy;a role of the module of the network stack; anda unique identifier which is specific to the module of the network stack.
  • 17. A computer system for facilitating forwarding of packets, the system comprising: a processor; anda storage device storing instructions that when executed by the processor cause the processor to perform a method, the method comprising:generating, by a module of a network stack of communication modules, a first command message for a target entity, the first command message including a name unique to the target entity, wherein the network stack enables a respective communication module to communicate with a layer that is not directly above or directly below the respective communication module;sending the first command, via a message delivery system, message to the target entity by inserting the first command message into a queue corresponding to the module, wherein the message delivery system uses the name unique to the target entity and a value that represents content of the queue corresponding to the module; andreceiving a second command message from a sending entity via a queue corresponding to the sending entity, the second command message including a name unique to the module.
  • 18. The computer system of claim 17, wherein the target entity and the sending entity are one or more of: another module of the network stack;a module of another network stack;an API instance associated with an application corresponding to the network stack;an API instance associated with an application corresponding to another network stack;a forwarder associated with the network stack; anda forwarder associated with another network stack.
  • 19. The computer system of claim 17, wherein sending the first command message further comprises: sending the first command message via a message delivery system to the target entity.
  • 20. The computer system of claim 17, wherein the method further comprises: responsive to determining that the target entity is another module of the network stack, a module of another network stack, an API instance associated with an application corresponding to another network stack, or a forwarder associated with another network stack, setting an upward or downward output queue for the module as the queue corresponding to the module;responsive to determining that the target entity is an API instance associated with an application corresponding to the network stack, setting the upward output queue for the module as the queue corresponding to the module; andresponsive to determining that the target entity is a forwarder associated with the network stack, setting the downward output queue for the module as the queue corresponding to the module.
  • 21. The computer system of claim 17, wherein receiving the second command message further comprises: receiving the second command message via a message delivery system from the sending entity.
  • 22. The computer system of claim 17, wherein the second command message is received via an upward or downward input queue associated with the sending entity.
  • 23. The computer system of claim 17, wherein the name for the first or second command message includes one or more of: a name for the network stack;a name for a forwarder associated with a corresponding portal instance;a name for a module of the network stack; anda command associated with a module of the network stack.
  • 24. The computer system of claim 17, wherein a name for a module of the network stack is based on one or more of: a hierarchically structured variable length identifier (HSVLI) which comprises contiguous name modules ordered from a most general level to a most specific level, wherein the HSVLI is applicable in a portal instance corresponding to the network stack;a flat name that does not indicate any hierarchy;a role of the module of the network stack; anda unique identifier which is specific to the module of the network stack.
US Referenced Citations (604)
Number Name Date Kind
817441 Niesz Apr 1906 A
4309569 Merkle Jan 1982 A
4921898 Lenney May 1990 A
5070134 Oyamada Dec 1991 A
5110856 Oyamada May 1992 A
5214702 Fischer May 1993 A
5377354 Scannell Dec 1994 A
5506844 Rao Apr 1996 A
5629370 Freidzon May 1997 A
5845207 Amin Dec 1998 A
5870605 Bracho Feb 1999 A
6021464 Yao Feb 2000 A
6047331 Medard Apr 2000 A
6052683 Irwin Apr 2000 A
6085320 Kaliski, Jr. Jul 2000 A
6091724 Chandra Jul 2000 A
6128623 Mattis Oct 2000 A
6128627 Mattis Oct 2000 A
6173364 Zenchelsky Jan 2001 B1
6209003 Mattis Mar 2001 B1
6226618 Downs May 2001 B1
6233617 Rothwein May 2001 B1
6233646 Hahm May 2001 B1
6289358 Mattis Sep 2001 B1
6292880 Mattis Sep 2001 B1
6332158 Risley Dec 2001 B1
6363067 Chung Mar 2002 B1
6366988 Skiba Apr 2002 B1
6427171 Craft Jul 2002 B1
6574377 Cahill Jun 2003 B1
6654792 Verma Nov 2003 B1
6667957 Corson Dec 2003 B1
6681220 Kaplan Jan 2004 B1
6681326 Son Jan 2004 B2
6732273 Byers May 2004 B1
6769066 Botros Jul 2004 B1
6772333 Brendel Aug 2004 B1
6775258 vanValkenburg Aug 2004 B1
6834272 Naor Dec 2004 B1
6862280 Bertagna Mar 2005 B1
6901452 Bertagna May 2005 B1
6915307 Mattis Jul 2005 B1
6917985 Madruga Jul 2005 B2
6957228 Graser Oct 2005 B1
6968393 Chen Nov 2005 B1
6981029 Menditto Dec 2005 B1
7007024 Zelenka Feb 2006 B2
7013389 Srivastava Mar 2006 B1
7031308 Garcia-Luna-Aceves Apr 2006 B2
7043637 Bolosky May 2006 B2
7061877 Gummalla Jun 2006 B1
7080073 Jiang Jul 2006 B1
RE39360 Aziz Oct 2006 E
7149750 Chadwick Dec 2006 B2
7152094 Jannu Dec 2006 B1
7177646 ONeill Feb 2007 B2
7206860 Murakami Apr 2007 B2
7206861 Callon Apr 2007 B1
7210326 Kawamoto May 2007 B2
7233948 Shamoon Jun 2007 B1
7246159 Aggarwal Jul 2007 B2
7257837 Xu Aug 2007 B2
7287275 Moskowitz Oct 2007 B2
7315541 Housel Jan 2008 B1
7339929 Zelig Mar 2008 B2
7350229 Lander Mar 2008 B1
7362727 ONeill Apr 2008 B1
7382787 Barnes Jun 2008 B1
7395507 Robarts Jul 2008 B2
7430755 Hughes Sep 2008 B1
7444251 Nikovski Oct 2008 B2
7466703 Arunachalam Dec 2008 B1
7472422 Agbabian Dec 2008 B1
7496668 Hawkinson Feb 2009 B2
7509425 Rosenberg Mar 2009 B1
7523016 Surdulescu Apr 2009 B1
7535926 Deshpande May 2009 B1
7542471 Samuels Jun 2009 B2
7543064 Juncker Jun 2009 B2
7552233 Raju Jun 2009 B2
7555482 Korkus Jun 2009 B2
7555563 Ott Jun 2009 B2
7564812 Elliott Jul 2009 B1
7567547 Mosko Jul 2009 B2
7567946 Andreoli Jul 2009 B2
7580971 Gollapudi Aug 2009 B1
7623535 Guichard Nov 2009 B2
7636767 Lev-Ran Dec 2009 B2
7647507 Feng Jan 2010 B1
7660324 Oguchi Feb 2010 B2
7685290 Satapati Mar 2010 B2
7698463 Ogier Apr 2010 B2
7698559 Chaudhury Apr 2010 B1
7769887 Bhattacharyya Aug 2010 B1
7779467 Choi Aug 2010 B2
7801069 Cheung Sep 2010 B2
7801177 Luss Sep 2010 B2
7816441 Elizalde Oct 2010 B2
7831733 Sultan Nov 2010 B2
7873619 Faibish Jan 2011 B1
7908337 Garcia-Luna-Aceves Mar 2011 B2
7924837 Shabtay Apr 2011 B1
7953014 Toda May 2011 B2
7953885 Devireddy May 2011 B1
7979912 Roka Jul 2011 B1
8000267 Solis Aug 2011 B2
8010691 Kollmansberger Aug 2011 B2
8069023 Frailong Nov 2011 B1
8074289 Carpentier Dec 2011 B1
8117441 Kurien Feb 2012 B2
8160069 Jacobson Apr 2012 B2
8204060 Jacobson Jun 2012 B2
8214364 Bigus Jul 2012 B2
8224985 Takeda Jul 2012 B2
8225057 Zheng Jul 2012 B1
8239331 Shanmugavelayutham Aug 2012 B2
8271578 Sheffi Sep 2012 B2
8271687 Turner Sep 2012 B2
8312064 Gauvin Nov 2012 B1
8332357 Chung Dec 2012 B1
8375420 Farrell Feb 2013 B2
8386622 Jacobson Feb 2013 B2
8447851 Anderson May 2013 B1
8462781 McGhee Jun 2013 B2
8467297 Liu Jun 2013 B2
8473633 Eardley Jun 2013 B2
8553562 Allan Oct 2013 B2
8572214 Garcia-Luna-Aceves Oct 2013 B2
8654649 Vasseur Feb 2014 B2
8665757 Kling Mar 2014 B2
8667172 Ravindran Mar 2014 B2
8677451 Bhimaraju Mar 2014 B1
8688619 Ezick Apr 2014 B1
8699350 Kumar Apr 2014 B1
8718055 Vasseur May 2014 B2
8750820 Allan Jun 2014 B2
8761022 Chiabaut Jun 2014 B2
8762477 Xie Jun 2014 B2
8762570 Qian Jun 2014 B2
8762707 Killian Jun 2014 B2
8767627 Ezure Jul 2014 B2
8817594 Gero Aug 2014 B2
8826381 Kim Sep 2014 B2
8832302 Bradford Sep 2014 B1
8836536 Marwah Sep 2014 B2
8861356 Kozat Oct 2014 B2
8862774 Vasseur Oct 2014 B2
8868779 ONeill Oct 2014 B2
8874842 Kimmel Oct 2014 B1
8880682 Bishop Nov 2014 B2
8903756 Zhao Dec 2014 B2
8923293 Jacobson Dec 2014 B2
8934496 Vasseur Jan 2015 B2
8937865 Kumar Jan 2015 B1
8972969 Gaither Mar 2015 B2
8977596 Montulli Mar 2015 B2
9002921 Westphal Apr 2015 B2
9032095 Traina May 2015 B1
9071498 Beser Jun 2015 B2
9112895 Lin Aug 2015 B1
9137152 Xie Sep 2015 B2
9253087 Zhang Feb 2016 B2
9270598 Oran Feb 2016 B1
9280610 Gruber Mar 2016 B2
20020002680 Carbajal Jan 2002 A1
20020010795 Brown Jan 2002 A1
20020038296 Margolus Mar 2002 A1
20020048269 Hong Apr 2002 A1
20020054593 Morohashi May 2002 A1
20020077988 Sasaki Jun 2002 A1
20020078066 Robinson Jun 2002 A1
20020138551 Erickson Sep 2002 A1
20020152305 Jackson Oct 2002 A1
20020176404 Girard Nov 2002 A1
20020188605 Adya Dec 2002 A1
20020199014 Yang Dec 2002 A1
20030004621 Bousquet Jan 2003 A1
20030009365 Tynan Jan 2003 A1
20030033394 Stine Feb 2003 A1
20030046396 Richter Mar 2003 A1
20030046421 Horvitz et al. Mar 2003 A1
20030046437 Eytchison Mar 2003 A1
20030048793 Pochon Mar 2003 A1
20030051100 Patel Mar 2003 A1
20030061384 Nakatani Mar 2003 A1
20030074472 Lucco Apr 2003 A1
20030088696 McCanne May 2003 A1
20030097447 Johnston May 2003 A1
20030099237 Mitra May 2003 A1
20030140257 Paterka Jul 2003 A1
20030229892 Sardera Dec 2003 A1
20040024879 Dingman Feb 2004 A1
20040030602 Rosenquist Feb 2004 A1
20040064737 Milliken Apr 2004 A1
20040071140 Jason Apr 2004 A1
20040073617 Milliken Apr 2004 A1
20040073715 Folkes Apr 2004 A1
20040139230 Kim Jul 2004 A1
20040196783 Shinomiya Oct 2004 A1
20040218548 Kennedy Nov 2004 A1
20040221047 Grover Nov 2004 A1
20040225627 Botros Nov 2004 A1
20040233916 Takeuchi Nov 2004 A1
20040246902 Weinstein Dec 2004 A1
20040252683 Kennedy Dec 2004 A1
20040267902 Yang Dec 2004 A1
20050003832 Osafune Jan 2005 A1
20050028156 Hammond Feb 2005 A1
20050043060 Brandenberg Feb 2005 A1
20050050211 Kaul Mar 2005 A1
20050066121 Keeler Mar 2005 A1
20050074001 Mattes Apr 2005 A1
20050132207 Mourad Jun 2005 A1
20050149508 Deshpande Jul 2005 A1
20050159823 Hayes Jul 2005 A1
20050198351 Nog Sep 2005 A1
20050249196 Ansari Nov 2005 A1
20050259637 Chu Nov 2005 A1
20050262217 Nonaka Nov 2005 A1
20050281288 Banerjee Dec 2005 A1
20050286535 Shrum Dec 2005 A1
20050289222 Sahim Dec 2005 A1
20060010249 Sabesan Jan 2006 A1
20060029102 Abe Feb 2006 A1
20060039379 Abe Feb 2006 A1
20060051055 Ohkawa Mar 2006 A1
20060072523 Richardson Apr 2006 A1
20060099973 Nair May 2006 A1
20060129514 Watanabe Jun 2006 A1
20060133343 Huang Jun 2006 A1
20060146686 Kim Jul 2006 A1
20060173831 Basso Aug 2006 A1
20060193295 White Aug 2006 A1
20060203804 Whitmore Sep 2006 A1
20060206445 Andreoli Sep 2006 A1
20060215684 Capone Sep 2006 A1
20060223504 Ishak Oct 2006 A1
20060242155 Moore Oct 2006 A1
20060256767 Suzuki Nov 2006 A1
20060268792 Belcea Nov 2006 A1
20060288237 Goodwill Dec 2006 A1
20070019619 Foster Jan 2007 A1
20070073888 Madhok Mar 2007 A1
20070094265 Korkus Apr 2007 A1
20070112880 Yang May 2007 A1
20070124412 Narayanaswami May 2007 A1
20070127457 Mirtorabi Jun 2007 A1
20070156998 Gorobets Jul 2007 A1
20070160062 Morishita Jul 2007 A1
20070162394 Zager Jul 2007 A1
20070171828 Dalal Jul 2007 A1
20070189284 Kecskemeti Aug 2007 A1
20070195765 Heissenbuttel Aug 2007 A1
20070204011 Shaver Aug 2007 A1
20070209067 Fogel Sep 2007 A1
20070239892 Ott Oct 2007 A1
20070240207 Belakhdar Oct 2007 A1
20070245034 Retana Oct 2007 A1
20070253418 Shiri Nov 2007 A1
20070255677 Alexander Nov 2007 A1
20070255699 Sreenivas Nov 2007 A1
20070255781 Li Nov 2007 A1
20070274504 Maes Nov 2007 A1
20070275701 Jonker Nov 2007 A1
20070276907 Maes Nov 2007 A1
20070283158 Danseglio Dec 2007 A1
20070294187 Scherrer Dec 2007 A1
20080005056 Stelzig Jan 2008 A1
20080005223 Flake Jan 2008 A1
20080010366 Duggan Jan 2008 A1
20080037420 Tang Feb 2008 A1
20080043989 Furutono Feb 2008 A1
20080046340 Brown Feb 2008 A1
20080059631 Bergstrom Mar 2008 A1
20080080440 Yarvis Apr 2008 A1
20080082662 Dandliker Apr 2008 A1
20080095159 Suzuki Apr 2008 A1
20080101357 Iovanna May 2008 A1
20080107034 Jetcheva May 2008 A1
20080107259 Satou May 2008 A1
20080123862 Rowley May 2008 A1
20080133583 Artan Jun 2008 A1
20080133755 Pollack Jun 2008 A1
20080151755 Nishioka Jun 2008 A1
20080159271 Kutt Jul 2008 A1
20080165775 Das Jul 2008 A1
20080186901 Itagaki Aug 2008 A1
20080200153 Fitzpatrick Aug 2008 A1
20080215669 Gaddy Sep 2008 A1
20080216086 Tanaka Sep 2008 A1
20080243992 Jardetzky Oct 2008 A1
20080250006 Dettinger Oct 2008 A1
20080256138 Sim-Tang Oct 2008 A1
20080256359 Kahn Oct 2008 A1
20080270618 Rosenberg Oct 2008 A1
20080271143 Stephens Oct 2008 A1
20080287142 Keighran Nov 2008 A1
20080288580 Wang Nov 2008 A1
20080291923 Back Nov 2008 A1
20080298376 Takeda Dec 2008 A1
20080320148 Capuozzo Dec 2008 A1
20090006659 Collins Jan 2009 A1
20090013324 Gobara Jan 2009 A1
20090022154 Kiribe Jan 2009 A1
20090024641 Quigley Jan 2009 A1
20090030978 Johnson Jan 2009 A1
20090037763 Adhya Feb 2009 A1
20090052660 Chen Feb 2009 A1
20090067429 Nagai Mar 2009 A1
20090077184 Brewer Mar 2009 A1
20090092043 Lapuh Apr 2009 A1
20090097631 Gisby Apr 2009 A1
20090103515 Pointer Apr 2009 A1
20090113068 Fujihira Apr 2009 A1
20090116393 Hughes May 2009 A1
20090117922 Bell May 2009 A1
20090132662 Sheridan May 2009 A1
20090135728 Shen May 2009 A1
20090144300 Chatley Jun 2009 A1
20090157887 Froment Jun 2009 A1
20090185745 Momosaki Jul 2009 A1
20090193101 Munetsugu Jul 2009 A1
20090198832 Shah Aug 2009 A1
20090222344 Greene Sep 2009 A1
20090228593 Takeda Sep 2009 A1
20090254572 Redlich Oct 2009 A1
20090268905 Matsushima Oct 2009 A1
20090274158 Sharp Nov 2009 A1
20090276396 Gorman Nov 2009 A1
20090285209 Stewart Nov 2009 A1
20090287835 Jacobson Nov 2009 A1
20090287853 Carson Nov 2009 A1
20090288076 Johnson Nov 2009 A1
20090288143 Stebila Nov 2009 A1
20090288163 Jacobson Nov 2009 A1
20090292743 Bigus Nov 2009 A1
20090293121 Bigus Nov 2009 A1
20090296719 Maier Dec 2009 A1
20090300079 Shitomi Dec 2009 A1
20090300407 Kamath Dec 2009 A1
20090300512 Ahn Dec 2009 A1
20090307286 Laffin Dec 2009 A1
20090307333 Welingkar Dec 2009 A1
20090323632 Nix Dec 2009 A1
20100005061 Basco Jan 2010 A1
20100027539 Beverly Feb 2010 A1
20100046546 Ram Feb 2010 A1
20100057929 Merat Mar 2010 A1
20100058346 Narang Mar 2010 A1
20100088370 Wu Apr 2010 A1
20100094767 Miltonberger Apr 2010 A1
20100094876 Huang Apr 2010 A1
20100098093 Ejzak Apr 2010 A1
20100100465 Cooke Apr 2010 A1
20100103870 Garcia-Luna-Aceves Apr 2010 A1
20100124191 Vos May 2010 A1
20100125911 Bhaskaran May 2010 A1
20100131660 Dec May 2010 A1
20100150155 Napierala Jun 2010 A1
20100165976 Khan Jul 2010 A1
20100169478 Saha Jul 2010 A1
20100169503 Kollmansberger Jul 2010 A1
20100180332 Ben-Yochanan Jul 2010 A1
20100182995 Hwang Jul 2010 A1
20100185753 Liu Jul 2010 A1
20100195653 Jacobson Aug 2010 A1
20100195654 Jacobson Aug 2010 A1
20100195655 Jacobson Aug 2010 A1
20100217874 Anantharaman Aug 2010 A1
20100217985 Fahrny Aug 2010 A1
20100232402 Przybysz Sep 2010 A1
20100232439 Dham Sep 2010 A1
20100235516 Nakamura Sep 2010 A1
20100246549 Zhang Sep 2010 A1
20100250497 Redlich Sep 2010 A1
20100250939 Adams Sep 2010 A1
20100257149 Cognigni Oct 2010 A1
20100268782 Zombek Oct 2010 A1
20100272107 Papp Oct 2010 A1
20100281263 Ugawa Nov 2010 A1
20100284309 Allan Nov 2010 A1
20100284404 Gopinath Nov 2010 A1
20100293293 Beser Nov 2010 A1
20100316052 Petersen Dec 2010 A1
20100322249 Thathapudi Dec 2010 A1
20100332595 Fullagar Dec 2010 A1
20110013637 Xue Jan 2011 A1
20110019674 Iovanna Jan 2011 A1
20110022812 vanderLinden Jan 2011 A1
20110029952 Harrington Feb 2011 A1
20110055392 Shen Mar 2011 A1
20110055921 Narayanaswamy Mar 2011 A1
20110060716 Forman Mar 2011 A1
20110060717 Forman Mar 2011 A1
20110090908 Jacobson Apr 2011 A1
20110106755 Hao May 2011 A1
20110131308 Eriksson Jun 2011 A1
20110137919 Ryu Jun 2011 A1
20110145597 Yamaguchi Jun 2011 A1
20110145858 Philpott Jun 2011 A1
20110149858 Hwang Jun 2011 A1
20110153840 Narayana Jun 2011 A1
20110158122 Murphy Jun 2011 A1
20110161408 Kim Jun 2011 A1
20110202609 Chaturvedi Aug 2011 A1
20110219093 Ragunathan Sep 2011 A1
20110219427 Hito Sep 2011 A1
20110219727 May Sep 2011 A1
20110225293 Rathod Sep 2011 A1
20110231578 Nagappan Sep 2011 A1
20110239256 Gholmieh Sep 2011 A1
20110258049 Ramer Oct 2011 A1
20110264824 Venkata Subramanian Oct 2011 A1
20110265159 Ronda Oct 2011 A1
20110265174 Thornton Oct 2011 A1
20110271007 Wang Nov 2011 A1
20110280214 Lee Nov 2011 A1
20110286457 Ee Nov 2011 A1
20110286459 Rembarz Nov 2011 A1
20110295783 Zhao Dec 2011 A1
20110299454 Krishnaswamy Dec 2011 A1
20120011170 Elad Jan 2012 A1
20120011551 Levy Jan 2012 A1
20120023113 Ferren Jan 2012 A1
20120036180 Thornton Feb 2012 A1
20120045064 Rembarz Feb 2012 A1
20120047361 Erdmann Feb 2012 A1
20120066727 Nozoe Mar 2012 A1
20120079056 Turanyi et al. Mar 2012 A1
20120102136 Srebrny Apr 2012 A1
20120106339 Mishra May 2012 A1
20120110159 Richardson May 2012 A1
20120114313 Phillips May 2012 A1
20120120803 Farkas May 2012 A1
20120127994 Ko May 2012 A1
20120136676 Goodall May 2012 A1
20120136936 Quintuna May 2012 A1
20120136945 Lee May 2012 A1
20120137367 Dupont May 2012 A1
20120141093 Yamaguchi Jun 2012 A1
20120155464 Kim Jun 2012 A1
20120158973 Jacobson Jun 2012 A1
20120163373 Lo Jun 2012 A1
20120166433 Tseng Jun 2012 A1
20120170913 Isozaki Jul 2012 A1
20120179653 Araki Jul 2012 A1
20120197690 Agulnek Aug 2012 A1
20120198048 Ioffe Aug 2012 A1
20120221150 Arensmeier Aug 2012 A1
20120224487 Hui Sep 2012 A1
20120226902 Kim Sep 2012 A1
20120257500 Lynch Oct 2012 A1
20120284791 Miller Nov 2012 A1
20120290669 Parks Nov 2012 A1
20120290919 Melnyk Nov 2012 A1
20120291102 Cohen Nov 2012 A1
20120300669 Zahavi Nov 2012 A1
20120307629 Vasseur Dec 2012 A1
20120314580 Hong Dec 2012 A1
20120317307 Ravindran Dec 2012 A1
20120317655 Zhang Dec 2012 A1
20120322422 Frecks Dec 2012 A1
20120323933 He Dec 2012 A1
20120331112 Chatani Dec 2012 A1
20130024560 Vasseur Jan 2013 A1
20130041982 Shi Feb 2013 A1
20130047168 Shah et al. Feb 2013 A1
20130051392 Filsfils Feb 2013 A1
20130054971 Yamaguchi Feb 2013 A1
20130060962 Wang Mar 2013 A1
20130061084 Barton Mar 2013 A1
20130066823 Sweeney Mar 2013 A1
20130073552 Rangwala Mar 2013 A1
20130073882 Inbaraj Mar 2013 A1
20130074155 Huh Mar 2013 A1
20130090942 Robinson Apr 2013 A1
20130091237 Ambalavanar Apr 2013 A1
20130091539 Khurana Apr 2013 A1
20130110987 Kim May 2013 A1
20130111063 Lee May 2013 A1
20130128786 Sultan May 2013 A1
20130132719 Kobayashi May 2013 A1
20130139245 Thomas May 2013 A1
20130151584 Westphal Jun 2013 A1
20130151646 Chidambaram Jun 2013 A1
20130152070 Bhullar Jun 2013 A1
20130163426 Beliveau Jun 2013 A1
20130166668 Byun Jun 2013 A1
20130173822 Hong Jul 2013 A1
20130182568 Lee Jul 2013 A1
20130182931 Fan Jul 2013 A1
20130185406 Choi Jul 2013 A1
20130191412 Kitamura Jul 2013 A1
20130197698 Shah Aug 2013 A1
20130198119 Eberhardt, III Aug 2013 A1
20130212185 Pasquero Aug 2013 A1
20130219038 Lee Aug 2013 A1
20130219081 Qian Aug 2013 A1
20130219478 Mahamuni Aug 2013 A1
20130223237 Hui Aug 2013 A1
20130227048 Xie Aug 2013 A1
20130227114 Vasseur Aug 2013 A1
20130227166 Ravindran Aug 2013 A1
20130242996 Varvello Sep 2013 A1
20130250809 Hui Sep 2013 A1
20130262365 Dolbear Oct 2013 A1
20130262698 Schwan Oct 2013 A1
20130275544 Westphal Oct 2013 A1
20130282854 Jang Oct 2013 A1
20130282860 Zhang Oct 2013 A1
20130282920 Zhang Oct 2013 A1
20130304758 Gruber Nov 2013 A1
20130304937 Lee Nov 2013 A1
20130325888 Oneppo Dec 2013 A1
20130329696 Xu Dec 2013 A1
20130332971 Fisher Dec 2013 A1
20130336103 Vasseur Dec 2013 A1
20130336323 Srinivasan Dec 2013 A1
20130339481 Hong Dec 2013 A1
20130343408 Cook Dec 2013 A1
20140003232 Guichard Jan 2014 A1
20140003424 Matsuhira Jan 2014 A1
20140006354 Parkison Jan 2014 A1
20140006565 Muscariello Jan 2014 A1
20140029445 Hui Jan 2014 A1
20140032714 Liu Jan 2014 A1
20140033193 Palaniappan Jan 2014 A1
20140040505 Barton Feb 2014 A1
20140040628 Fort Feb 2014 A1
20140043987 Watve Feb 2014 A1
20140047513 vantNoordende Feb 2014 A1
20140074730 Arensmeier Mar 2014 A1
20140075567 Raleigh Mar 2014 A1
20140082135 Jung Mar 2014 A1
20140082661 Krahnstoever Mar 2014 A1
20140089454 Jeon Mar 2014 A1
20140096249 Dupont Apr 2014 A1
20140098685 Shattil Apr 2014 A1
20140108313 Heidasch Apr 2014 A1
20140108474 David Apr 2014 A1
20140115037 Liu Apr 2014 A1
20140119367 Han et al. May 2014 A1
20140122587 Petker et al. May 2014 A1
20140129736 Yu May 2014 A1
20140136814 Stark May 2014 A1
20140140348 Perlman May 2014 A1
20140143370 Vilenski May 2014 A1
20140146819 Bae May 2014 A1
20140149733 Kim May 2014 A1
20140237095 Petker May 2014 A1
20140156396 deKozan Jun 2014 A1
20140165207 Engel Jun 2014 A1
20140172783 Suzuki Jun 2014 A1
20140172981 Kim Jun 2014 A1
20140173034 Liu Jun 2014 A1
20140173076 Ravindran Jun 2014 A1
20140181140 Kim Jun 2014 A1
20140192677 Chew Jul 2014 A1
20140192717 Liu Jul 2014 A1
20140195328 Ferens Jul 2014 A1
20140195641 Wang Jul 2014 A1
20140195666 Dumitriu Jul 2014 A1
20140204945 Byun Jul 2014 A1
20140214942 Ozonat Jul 2014 A1
20140233575 Xie Aug 2014 A1
20140237085 Park Aug 2014 A1
20140245359 DeFoy Aug 2014 A1
20140254595 Luo Sep 2014 A1
20140280823 Varvello Sep 2014 A1
20140281489 Peterka Sep 2014 A1
20140281505 Zhang Sep 2014 A1
20140282816 Xie Sep 2014 A1
20140289325 Solis Sep 2014 A1
20140289790 Wilson Sep 2014 A1
20140298248 Kang Oct 2014 A1
20140314093 You Oct 2014 A1
20140337276 Iordanov Nov 2014 A1
20140365550 Jang Dec 2014 A1
20150006896 Franck Jan 2015 A1
20150018770 Baran Jan 2015 A1
20150032892 Narayanan Jan 2015 A1
20150033365 Mellor Jan 2015 A1
20150039890 Khosravi Feb 2015 A1
20150063802 Bahadur Mar 2015 A1
20150089081 Thubert Mar 2015 A1
20150095481 Ohnishi Apr 2015 A1
20150095514 Yu Apr 2015 A1
20150120663 LeScouarnec Apr 2015 A1
20150169758 Assom Jun 2015 A1
20150188770 Naiksatam Jul 2015 A1
20150195149 Vasseur Jul 2015 A1
20150207633 Ravindran Jul 2015 A1
20150207864 Wilson Jul 2015 A1
20150279348 Cao Oct 2015 A1
20150288755 Mosko Oct 2015 A1
20150312300 Mosko Oct 2015 A1
20150349961 Mosko Dec 2015 A1
20150372903 Hui Dec 2015 A1
20150381546 Mahadevan Dec 2015 A1
20160019275 Mosko Jan 2016 A1
20160021172 Mahadevan Jan 2016 A1
20160062840 Scott Mar 2016 A1
20160110466 Uzun Apr 2016 A1
20160171184 Solis Jun 2016 A1
Foreign Referenced Citations (32)
Number Date Country
103873371 Jun 2014 CN
1720277 Jun 1967 DE
19620817 Nov 1997 DE
0295727 Dec 1988 EP
0757065 Jul 1996 EP
1077422 Feb 2001 EP
1383265 Jan 2004 EP
1384729 Jan 2004 EP
1473889 Nov 2004 EP
2120402 Nov 2009 EP
2120419 Nov 2009 EP
2120419 Nov 2009 EP
2124415 Nov 2009 EP
2214357 Aug 2010 EP
2299754 Mar 2011 EP
2323346 May 2011 EP
2552083 Jan 2013 EP
2214356 May 2016 EP
03005288 Jan 2003 WO
03042254 May 2003 WO
03049369 Jun 2003 WO
03091297 Nov 2003 WO
2005041527 May 2005 WO
2007113180 Oct 2007 WO
2007122620 Nov 2007 WO
2007144388 Dec 2007 WO
2011049890 Apr 2011 WO
2012077073 Jun 2012 WO
2013123410 Aug 2013 WO
2014023072 Feb 2014 WO
2014166551 Oct 2014 WO
2015084327 Jun 2015 WO
Non-Patent Literature Citations (77)
Entry
Lui et al. (A TLV-Structured Data Naming Scheme for Content-Oriented Networking, pp. 5822-5827, International Workshop on the Network of the Future, Communications (ICC), 2012 IEEE International Conference on Jun. 10-15, 2012).
Peter Dely et al. “OpenFlow for Wireless Mesh Networks” Computer Communications and Networks, 2011 Proceedings of 20th International Conference on, IEEE, Jul. 31, 2011 (Jul. 31, 2011), pp. 1-6.
Garnepudi Parimala et al “Proactive, reactive and hybrid multicast routing protocols for Wireless Mesh Networks”, 2013 IEEE International Conference on Computational Intelligence and Computing Research, IEEE, Dec. 26, 2013, pp. 1-7.
Akash Baid et al: “Comparing alternative approaches for networking of named objects in the future Internet”, Computer Communications Workshops (Infocom Wkshps), 2012 IEEE Conference on, IEEE, Mar. 25, 2012, pp. 298-303, *Paragraph [002]* *figure 1*.
Priya Mahadevan: “CCNx 1.0 Tutorial”, Mar. 16, 2014, pp. 1-11, Retrieved from the Internet: http://www.ccnx.org/pubs/hhg/1.2%20CCNx%201.0%20Tutorial.pdf [retrieved on Jun. 8, 2016] *paragraphs [003]- [006], [0011], [0013]* *figures 1,2*.
Cesar Ghali et al. “Elements of Trust in Named-Data Networking”, Feb. 13, 2014 Retrieved from the internet Jun. 17, 2016 http://arxiv.org/pdf/1402.3332v5.pdf *p. 5, col. 1* *p. 2, col. 1-2* * Section 4.1; p. 4, col. 2* *Section 4.2; p. 4, col. 2*.
Liu Wai-Xi et al: “Multisource Dissemination in content-centric networking”, 2013 Fourth International conference on the network of the future (NOF), IEEE, Oct. 23, 2013, pp. 1-5.
Marie-Jose Montpetit et al.: “Network coding meets information-centric networking”, Proceedings of the 1st ACM workshop on emerging Name-Oriented mobile networking design, architecture, algorithms, and applications, NOM '12, Jun. 11, 2012, pp. 31-36.
Asokan et al.: “Server-Supported Signatures”, Computer Security Esorics 96, Sep. 25, 1996, pp. 131-143, Section 3.
Mandl et al.: “A Fast FPGA Based Coprocessor Supporting Hard Real-Time Search”, New Frontiers of Information Technology, Proceedings of the 23rd Euromicro Conference Budapest, Sep. 1, 1997, pp. 499-506 *The Whole Document*.
Gelenbe et al.: “Networks With Cognitive Packets”, Modeling, Analysis and Simulation of Computer and Telecommunication Systems, 2000. IEEE, Aug. 29, 2000, pp. 3-10.
Vangelis et al.: “On the Role of Semantic Descriptions for Adaptable Protocol Stacks in the Internet of Things”, 2014 28th International Conference on Advanced Information Networking and Applications Workshops, IEEE, May 13, 2014, pp. 437-443, *last paragraph of section II.B*.
Microsoft Computer Dictionary, Fifth Edition, 2002, Microsoft Press, p. 23.
Mind—A Brief Introduction, John R. Searle, 2004, Oxford University Press, pp. 62-67.
Fall, K. et al., “DTN: an architectural retrospective”, Selected areas in communications, IEEE Journal on, vol. 28, No. 5, Jun. 1, 2008, pp. 828-835.
Gritter, M. et al., ‘An Architecture for content routing support in the Internet’, Proceedings of 3rd Usenix Symposium on Internet Technologies and Systems, 2001, pp. 37-48.
A. Broder and A. Karlin, “Multilevel Adaptive Hashing”, Jan. 1990, pp. 43-53.
A. Wolman, M. Voelker, N. Sharma N. Cardwell, A. Karlin, and H.M. Levy, “On the scale and performance of cooperative web proxy caching,” ACM SIGHOPS Operating Systems Review, vol. 33, No. 5, pp. 16-31, Dec. 1999.
B. Ahlgren et al., ‘A Survey of Information-centric Networking’ IEEE Commun. Magazine, Jul. 2012, pp. 26-36.
Bari, MdFaizul, et al. ‘A survey of naming and routing in information-centric networks.’ Communications Magazine, IEEE 50.12 (2012): 44-53.
Baugher, Mark et al., “Self-Verifying Names for Read-Only Named Data”, 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Mar. 2012, pp. 274-279.
Cho, Jin-Hee, Ananthram Swami, and Ray Chen. “A survey on trust management for mobile ad hoc networks.” Communications Surveys & Tutorials, IEEE 13.4 (2011): 562-583.
Detti et al., “Supporting the Web with an information centric network that routes by name”, Aug. 2012, Computer Networks 56, pp. 3705-3702.
Dijkstra, Edsger W., and Carel S. Scholten. ‘Termination detection for diffusing computations.’ Information Processing Letters 11.1 (1980): 1-4.
Dijkstra, Edsger W., Wim HJ Feijen, and A_J M. Van Gasteren. “Derivation of a termination detection algorithm for distributed computations.” Control Flow and Data Flow: concepts of distributed programming. Springer Berlin Heidelberg, 1986. 507-512.
Fayazbakhsh, S. K., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T., Maggs, B., & Shenker, S. (Aug. 2013). Less pain, most of the gain: Incrementally deployable ICN. In ACM SIGCOMM Computer Communication Review (vol. 43, No. 4, pp. 147-158). ACM.
G. Tyson, S. Kaune, S. Miles, Y. El-Khatib, A. Mauthe, and A. Taweel, “A trace-driven analysis of caching in content-centric networks,” in Proc. IEEE ICCCN 2012, Munich, Germany, Jul.-Aug. 2012, pp. 1-7.
G. Wang, Q. Liu, and J. Wu, “Hierarchical attribute-based encryption for fine-grained access control in cloud storage services,” in Proc. ACM CCS 2010, Chicago, IL, USA, Oct. 2010, pp. 735-737.
Herlich, Matthias et al., “Optimizing Energy Efficiency for Bulk Transfer Networks”, Apr. 13, 2010, pp. 1-3, retrieved for the Internet: URL:http://www.cs.uni-paderborn.de/fileadmin/informationik/ag-karl/publications/miscellaneous/optimizing.pdf (retrieved on Mar. 9, 2012).
Hoque et al., ‘NLSR: Named-data Link State Routing Protocol’, Aug. 12, 2013, ICN 2013, pp. 15-20.
I. Psaras, R.G. Clegg, R. Landa, W.K. Chai, and G. Pavlou, “Modelling and evaluation of CCN-caching trees,” in Proc. IFIP Networking 2011, Valencia, Spain, May 2011, pp. 78-91.
J. Bethencourt, A, Sahai, and B. Waters, ‘Ciphertext-policy attribute-based encryption,’ in Proc. IEEE Security & Privacy 2007, Berkeley, CA, USA, May 2007, pp. 321-334.
J. Hur, “Improving security and efficiency in attribute-based data sharing,” IEEE Trans. Knowledge Data Eng., vol. 25, No. 10, pp. 2271-2282, Oct. 2013.
Jacobson, Van et al., “Content-Centric Networking, Whitepaper Describing Future Assurable Global Networks”, Palo Alto Research Center, Inc., Jan. 30, 2007, pp. 1-9.
Jacobson et al., “Custodian-Based Information Sharing,” Jul. 2012, IEEE Communications Magazine: vol. 50 Issue 7 (p. 3843).
K. Liang, L. Fang, W. Susilo, and D.S. Wong, “A Ciphertext-policy attribute-based proxy re-encryption with chosen-ciphertext security,” in Proc. INCoS 2013, Xian, China, Sep. 2013, pp. 552-559.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part I.” HVAC&R Research 11.1 (2005): 3-25.
Katipamula, Srinivas, and Michael R. Brambley. “Review article: methods for fault detection, diagnostics, and prognostics for building systemsa review, Part II.” HVAC&R Research 11.2 (2005): 169-187.
Koponen, Teemu et al., “A Data-Oriented (and Beyond) Network Architecture”, SIGCOMM '07, Aug. 27-31, 2007, Kyoto, Japan, XP-002579021, p. 181-192.
L. Zhou, V. Varadharajan, and M. Hitchens, “Achieving secure role-based access control on encrypted data in cloud storage,” IEEE Trans. Inf. Forensics Security, vol. 8, No. 12, pp. 1947-1960, Dec. 2013.
Lopez, Javier, et al. “Trust management systems for wireless sensor networks: Best practices.” Computer Communications 33.9 (2010): 1086-1093.
M. Blaze, G. Bleumer, and M. Strauss, ‘Divertible protocols and atomic prosy cryptography,’ in Proc. EUROCRYPT 1998, Espoo, Finland, May-Jun. 1998, pp. 127-144.
M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Proc. ACNS 2007, Zhuhai, China, Jun. 2007, pp. 288-306.
M. Ion, J. Zhang, and E.M. Schooler, “Toward content-centric privacy in ICN: Attribute-based encryption and routing,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 39-40.
M. Naor and B. Pinkas “Efficient trace and revoke schemes,” in Proc. FC 2000, Anguilla, British West Indies, Feb. 2000, pp. 1-20.
M. Walfish, H. Balakrishnan, and S. Shenker, “Untangling the web from DNS,” in Proc. USENIX NSDI 2004, Oct. 2010, pp. 735-737.
Matocha, Jeff, and Tracy Camp. ‘A taxonomy of distributed termination detection algorithms.’ Journal of Systems and Software 43.3 (1998): 207-221.
Merindol et al., “An efficient algorithm to enable path diversity in link state routing networks”, Jan. 10, Computer Networks 55 (2011), pp. 1132-1140.
Narasimhan, Sriram, and Lee Brownston. “HyDE—A General Framework for Stochastic and Hybrid Modelbased Diagnosis.” Proc. DX 7 (2007): 162-169.
Omar, Mawloud, Yacine Challal, and Abdelmadjid Bouabdallah. “Certification-based trust models in mobile ad hoc networks: A survey and taxonomy.” Journal of Network and Computer Applications 35.1 (2012): 268-286.
Rosenberg, J. “Interactive Connectivity Establishment (ICE): A Protocol for Network Address Translator (NAT) Traversal for Offer/Answer Protocols”, Apr. 2010, pp. 1-117.
S. Jahid, P. Mittal, and N. Borisov, “EASiER: Encryption-based access control in social network with efficient revocation,” in Proc. ACM ASIACCS 2011, Hong Kong, China, Mar. 2011, pp. 411-415.
S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Proc. FC 2010, Tenerife, Canary Islands, Spain, Jan. 2010, pp. 136-149.
S. Kumar et al. “Peacock Hashing: Deterministic and Updatable Hashing for High Performance Networking,” 2008, pp. 556-564.
S. Misra, R. Tourani, and N.E. Majd, “Secure content delivery in information-centric networks: Design, implementation, and analyses,” in Proc. ACM SIGCOMM ICN 2013, Hong Kong, China, Aug. 2013, pp. 73-78.
S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and fine-grained data access control in cloud computing,” in Proc. IEEE INFOCOM 2010, San Diego, CA, USA, Mar. 2010, pp. 1-9.
Shani, Guy, Joelle Pineau, and Robert Kaplow. “A survey of point-based POMDP solvers.” Autonomous Agents and Multi-Agent Systems 27.1 (2013): 1-51.
Sheppard, John W., and Stephyn GW Butcher. “A formal analysis of fault diagnosis with d-matrices.” Journal of Electronic Testing 23.4 (2007): 309-322.
Shih, Eugene et al., ‘Wake on Wireless: An Event Driven Energy Saving Strategy for Battery Operated Devices’, Sep. 23, 2002, pp. 160-171.
Shneyderman, Alex et al., ‘Mobile VPN: Delivering Advanced Services in Next Generation Wireless Systems’, Jan. 1, 2003, pp. 3-29.
T. Dierts, “The transport layer security (TLS) protocol version 1.2,” IETF RFC 5246, 2008.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K.H. Kim, S. Shenker, and I. Stoica, ‘A data-oriented (and beyond) network architecture,’ ACM SIGCOMM Computer Communication Review, vol. 37, No. 4, pp. 181-192, Oct. 2007.
V. Goyal, 0. Pandey, A. Sahai, and B. Waters, “Attribute-based encryption for fine-grained access control of encrypted data,” in Proc. ACM CCS 2006, Alexandria, VA, USA, Oct.-Nov. 2006, pp. 89-98.
V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H. Briggs, and R.L. Braynard, ‘Networking named content,’ in Proc. ACM CoNEXT 2009, Rome, Italy, Dec. 2009, pp. 1-12.
W.-G. Tzeng and Z.-J. Tzeng, “A public-key traitor tracing scheme with revocation using dynamic shares,” in Proc. PKC 2001, Cheju Island, Korea, Feb. 2001, pp. 207-224.
Wang, Jiangzhe et al.,“DMND: Collecting Data from Mobiles Using Named Data”, Vehicular Networking Conference, 2010 IEEE, pp. 49-56.
Xylomenos, George, et al. “A survey of information-centric networking research.” Communications Surveys & Tutorials, IEEE 16.2 (2014): 1024-1049.
Yi, Cheng, et al. ‘A case for stateful forwarding plane.’ Computer Communications 36.7 (2013): 779-791.
Yi, Cheng, et al. ‘Adaptive forwarding in named data networking.’ ACM SIGCOMM computer communication review 42.3 (2012): 62-67.
Zahariadis, Theodore, et al. “Trust management in wireless sensor networks.” European Transactions on Telecommunications 21.4 (2010): 386-395.
Zhang, Lixia, et al. ‘Named data networking.’ ACM SIGCOMM Computer Communication Review 44.3 {2014): 66-73.
D. Trossen and G. Parisis, “Designing and realizing and information-centric internet,” IEEE Communications Magazing, vol. 50, No. 7, pp. 60-67, Jul. 2012.
Gasti, Paolo et al., ‘DoS & DDoS in Named Data Networking’, 2013 22nd International Conference on Computer Communications and Networks (ICCCN), Aug. 2013, pp. 1-7.
J. Hur and D.K. Noh, “Attribute-based access control with efficient revocation in data outsourcing systers,” IEEE Trans. Parallel Distrib. Syst, vol. 22, No. 7, pp. 1214-1221, Jul. 2011.
Wetherall, David, “Active Network vision and reality: Lessons form a capsule-based system”, ACM Symposium on Operating Systems Principles, Dec. 1, 1999. pp. 64-79.
Kulkarni A.B. et al., “Implementation of a prototype active network”, IEEE, Open Architectures and Network Programming, Apr. 3, 1998, pp. 130-142.
Extended European Search Report and Written Opinion in counterpart European Application No. 16174077.4, dated Oct. 24, 2016, 6 pages.
Related Publications (1)
Number Date Country
20160380945 A1 Dec 2016 US