Flexible composite bag for vacuum sealing

Information

  • Patent Grant
  • 7220053
  • Patent Number
    7,220,053
  • Date Filed
    Tuesday, December 14, 2004
    19 years ago
  • Date Issued
    Tuesday, May 22, 2007
    17 years ago
Abstract
A flexible composite bag for use with vacuum packaging appliances is disclosed. The flexible composite bag includes an inner bag that is enclosed by an outer bag. Two patterned panels make up the inner bag such that intercommunicating channels are formed when the two panels are superimposed on one another.
Description
FIELD OF THE INVENTION

This invention relates to packaging materials for use with vacuum packaging machines.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:



FIG. 1 is a perspective view illustrating a composite bag comprising an inner bag within the cavity of an outer bag.



FIG. 2 is an enlarged perspective view illustrating the outer surface of the panels of the inner bag.



FIG. 3 is a cross-sectional view illustrating the structure of the outer bag and the inner bag according to one embodiment.



FIG. 4 is a cross-sectional view illustrating the structure of the inner bag according to one embodiment.



FIG. 5 is a cross-sectional view illustrating the structure of the outer bag and the inner bag according to another embodiment.



FIG. 6 is a cross-sectional view illustrating the structure of the outer bag and the inner bag according to yet another embodiment.



FIG. 7, FIG. 8 and FIG. 9 illustrate various patterns according to certain embodiments.



FIG. 10 and FIG. 11 illustrate inner surfaces of panels of an inner bag.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIG. 1 shows a flexible composite bag 100 that has an outer flexible bag 122 and an inner flexible bag 102. Outer bag 122 has an open end 128. Inner bag 102 has an open end 108. When the open ends 128 and 108 are placed in an air tight vacuum channel (not shown) of a vacuum packaging machine (not shown), the air from the interior of the inner bag and from the space between the inner bag and the outer bag can be extracted by means of a vacuum pump that is operably connected to the vacuum channel. Vacuum packaging machines are well known in the art. Examples of vacuum packaging machines are FoodSaver® Appliances sold by Tilia, Inc.


Outer bag 122 has two panels, namely, a top panel 126 and a bottom panel 124. Inner bag 102 has two panels, namely, a top panel 106 and a bottom panel 104. Each panel of outer bag 122 and the inner bag 102 is made of two layers, according to certain embodiments. The two layers of a panel include an inner heat sealable layer with thermal properties, such as a thermoplastic material, and an outer gas-impermeable layer to provide a barrier against an influx of air to the interior of the bag. According to certain embodiments, the panels of the inner bag 102 and the outer bag 122 are joined together at opposite lateral sides thereof to define a chamber adapted to hold a product disposed therein.



FIG. 2 is an enlarged perspective view illustrating the outer surface of the panels of the inner bag 102, according to certain embodiments. FIG. 2 shows a crisscrossing channel design on the outer surface 152 of top panel 106. The outer surface 162 of bottom panel 104 has the same crisscrossing design but is not completely visible in FIG. 2.


For example, as shown by top panel 106, the crisscrossing channel design comprises a plurality of grooves 154 and a plurality of raised island-like protuberances 156. The plurality of grooves 154 define intercommunicating channels entirely around and between the raised island-like protuberances 156. Such a crisscrossing design is formed on both the inner surface 150 (inner layer) and outer surface 152 (outer layer) of top panel 106. The bottom panel 104 has a similar or same crisscrossing channel design that comprises a plurality of grooves 164 and a plurality of raised island-like protuberances 166. The plurality of grooves 164 define intercommunicating channels entirely around and between the raised island-like protuberances 166. Such a crisscrossing design is formed on both the inner surface 160 (inner layer) and outer surface 162 (outer layer) of bottom panel 104.


When the inner surface 160 of bottom panel 104 touches the inner surface 150 of top panel 106, the bottom of channels of inner surface 160 of bottom panel 104 more or less coincide with the bottom of channels of the inner surface 150 of top panel 106. The island-like-protuberances 166 of inner surface 160 of bottom panel 104 more or less forms a cup under the island-like-protuberances 156 of the inner surface 150 of top panel 106 when the inner surface 150 touch the inner surface 160. Thus, island-like-protuberances 166 of inner surface 160 and the island-like-protuberances 156 of the inner surface 150 together form pockets of spaces, shown as pockets 450 in FIG. 4. In FIG. 4, the top panel 106 of the inner bag touches the bottom panel 104 of the inner bag. For example, the bottom portion of the groove 154 touches the bottom portion of groove 164.


According to certain embodiments, when the inner bag 102 has a crisscrossing channel design as shown in FIG. 2, each panel of the outer bag 122 may be composed of flat layers of the same material as the layers of the panels of the inner bag. The outer bag is not shown in FIG. 2.



FIG. 3 is a cross-sectional view illustrating the structure of the outer bag and the inner bag according to one embodiment. FIG. 3 shows the top panel 106 and bottom panel 104 of the inner bag. FIG. 3 shows the cross-sectional views of the outer surface 152 (outer layer) and inner surface 150 (inner layer) that are both formed to make grooves 154 and the island-like-protuberances 156 of the crisscrossing channel design as previously described with reference to FIG. 2. FIG. 3 also shows the cross-sectional views of the outer surface 162 (outer layer) and inner surface 160 (inner layer) that are both formed to make grooves 164 and the island-like-protuberances 166 of the crisscrossing channel design. Each island-like protuberance and each channel is shown as being trapezoidal, when viewed in cross section. The protuberances are formed in the panel to form a plurality of raised ridges of the outer surface thereof that project outwardly therefrom to define the channels therein. In the embodiment shown of FIG. 3, the outer surface areas of the ridges are at least generally flat and co-planar relative to each other.



FIG. 3 also shows the cross-sectional view of the top panel 320 of the outer bag and the bottom panel 310 of the outer bag. Top panel 320 is composed of a flat outer surface 322 (outer layer) and a flat an inner surface 324 (inner layer). Bottom panel 310 is composed of a flat outer surface 312 (outer layer) and a flat an inner surface 314 (inner layer).



FIG. 5 is a cross-sectional view illustrating the structure of the outer bag and the inner bag according to another embodiment. FIG. 5 shows an embodiment where the top panel 106 and bottom panel 104 of the inner bag is as previously described with reference to FIG. 3. However, in FIG. 5, the top and bottom panels of the outer bag are not flat as described with reference to FIG. 3. In certain embodiments, as shown in FIG. 5, the top and bottom panels of the outer bag possess a crisscrossing channel design. However, as shown in FIG. 5, the crisscrossing channel design of the top and bottom panels of the outer bag is a mirror image of the crisscrossing channel design of the top and bottom panels of the inner bag as shown in FIG. 5.


To explain, the top panel 550 of the outer bag is composed of inner surface 558, outer surface 560, grooves 554 and island-like-protuberances 556. The bottom panel 590 of the outer bag is composed of inner surface 568, outer surface 570, grooves 564 and island-like-protuberances 566. When the inner surface 558 of top panel 550 of the outer bag touches the outer surface 152 of top panel 106 of the inner bag, the bottom of the island-like-protuberances of inner surface 558 will touch the bottom of the island-like-protuberances of outer surface 152. The groove 554 of inner surface 558 more or less forms a cup over the groove 154 of the outer surface 152 when the outer surface 152 touches the inner surface 558. Thus, grooves 554 and the grooves 154 together form pockets of spaces when the outer surface 152 touches the inner surface 558.


Similarly, when the inner surface 568 of bottom panel 590 of the outer bag touches the outer surface 162 of bottom panel 104 of the inner bag, the bottom of the island-like-protuberances of inner surface 568 will touch the bottom of the island-like-protuberances of outer surface 162. The groove 564 of inner surface 568 more or less forms a cup under the groove 164 of the outer surface 162 when the outer surface 162 touches the inner surface 568. Thus, grooves 564 and the grooves 164 together form pockets of spaces when the outer surface 162 of bottom panel 104 of the inner bag touches the inner surface 568 of bottom panel 590 of the outer bag.



FIG. 6 is a cross-sectional view illustrating the structure of the outer bag and the inner bag according to yet another embodiment. In FIG. 6, the top surface areas of the island-like protuberances appear on the inner surfaces of the panels of the inner bag. Similarly, the channels also appear on the inner surfaces of the panels of the inner bag.


For example, when the inner surface 170 of top panel 179 of the inner bag touches the inner surface 180 of bottom panel 189 of the inner bag, the surface area of the island-like-protuberances 176 of inner surface 170 will touch the surface area of the island-like-protuberances of outer surface 186 of inner surface 180. The groove 174 of inner surface 170 more or less forms a cup over the groove 184 of the inner surface 180 when the inner surface 170 of top panel 179 touches the inner surface 180 of bottom panel 189. Thus, grooves 174 and the grooves 184 together form pockets of spaces when the inner surface 170 of top panel 179 touches the inner surface 180 of bottom panel 189 of the inner bag.


When the inner surface 688 of top panel 655 of the outer bag touches the outer surface 172 of top panel 179 of the inner bag, the bottom of channels of inner surface 688 of top panel 655 more or less coincide with the bottom of channels of the outer surface 172 of top panel 179. Top panel 655 of the outer bag also has an outer surface 680. The island-like-protuberances 686 of inner surface 688 of top panel 655 more or less forms a cup over the island-like-protuberances 176 of the outer surface 172 of top panel 179 when the inner surface 688 touches the outer surface 172. Thus, island-like-protuberances 686 and the island-like-protuberances 176 together form pockets of spaces when the inner surface 688 touches the outer surface 172. Similarly, the island-like-protuberances 676 of inner surface 678 of bottom panel 675 of the outer bag more or less forms a cup under the island-like-protuberances 186 of the outer surface 182 of bottom panel 189 of the inner bag when the inner surface 678 touches the outer surface 182. Bottom panel 675 of the outer bag also has an outer surface 680. Also the bottom of groove 184 touches the bottom of groove 674 when the inner surface 678 touches the outer surface 182.



FIG. 7, FIG. 8 and FIG. 9 illustrate various patterns according to certain embodiments. In FIG. 7 groves 704 are represented by the thick lines. The island like-protuberances 702 are represented by the white spaces. In FIG. 8 groves 804 are represented by the thick lines. The island like-protuberances 802 are represented by the white spaces. In FIG. 9 groves 904 are represented by the thick lines. The island like-protuberances 902 are represented by the white spaces. The patterns as shown in FIG. 7, FIG. 8 and FIG. 9 can be used for either the inner bag and/or the outer bag. The patterns that are used for the inner bag and the outer bag will vary from implementation to implementation . The embodiments are not restricted to any particular pattern. Any arbitrary pattern can be used as long as there are raised portions interspersed among channels on at least one surface of the of the panel. The raised portion and channels can be of arbitrary shape. The flip surface of the panel can be a mirror image of the other surface of the panel. For example, there are raised ridges on the flip surface corresponding to the channels of the other surface and there are wells on the flip surface corresponding to the raised portions of the other surface.



FIG. 10 and FIG. 11 illustrate inner surfaces of panels of an inner bag. FIG. 10 shows inner surface 1022 of panel 1050. Inner surface 1022 includes raised rings 1002, raised ridges 1010, wells 1006 and wells 1008. Panel 1060 has an inner surface 1020. There are straw-like channels on inner surface 1020. The inner surface 1020 will overlie inner surface 1022 to form an inner bag.


According to certain embodiments, panel 1002 can be the inner surface of an outer bag that overlies outer surface of an inner bag where such an outer surface looks like the inner surface of panel 1060. According to certain other embodiments, panel 1060 can be the inner surface of an outer bag that overlies outer surface of an inner bag where such an outer surface looks like the inner surface of panel 1002.



FIG. 11 shows inner surface 1122 of panel 1150. Inner surface 1122 is composed of raised rings 1102 with ring-like wells 1106 formed between the raised rings. Panel 1160 has similar raised rings 1112 with ring-like wells 1116 formed between the raised rings 1112. The inner surface 1160 will overlie inner surface 1150 to form an inner bag.


According to certain embodiments, panel 1150 can be the inner surface of an outer bag that overlies outer surface of an inner bag where such an outer surface looks like the inner surface of panel 1160.


The embodiments are not restricted to any one method of manufacturing the patterned composite flexible bags. One example of manufacturing flexible bags is described in application Ser. No. 10/169,485, entitled, “Method for Preparing Air Channel-Equipped Film For Use In Vacuum Package, by Kyul-Joo Lee, filed on Jun. 6, 2002, and which is hereby incorporated by reference in its entirety.


In the foregoing specification, embodiments of the invention have been described with reference to numerous specific details that may vary from implementation to implementation. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims
  • 1. A flexible composite bag for vacuum packaging, said bag comprising: a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andeach of said first and second panels having a pattern such that interconnecting channels are formed between said first panel and a third panel and between said second panel and a fourth panel wherein said third and fourth panels form an outer bag enclosing said first and second flexible panels;wherein an outer surface of said first panel has a corresponding pattern that includes a plurality of columns of raised rings and wherein an inner surface of said third panel has a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said third panel is superimposed over said first panel.
  • 2. The bag of claim 1, wherein said third and fourth flexible panels each has substantially smooth inner surfaces that come in contact with said corresponding first and second panels.
  • 3. The bag of claim 1, wherein said third and fourth flexible panels each has patterned surfaces that come in contact with said corresponding first and second panels.
  • 4. The bag of claim 1, wherein said first and second panels each comprise multilayers.
  • 5. The bag of claim 4, wherein one of said multilayers includes a heat sealable layer.
  • 6. The bag of claim 1, wherein said pattern includes a plurality of protuberances formed in a generally regular and waffle-like pattern and said plurality of protuberances define a plurality of interconnecting channels around and between said protuberances.
  • 7. The bag of claim 6, wherein a top surface area of each of said protuberances is substantially rectangular in shape.
  • 8. The bag of claim 6, wherein a top surface area of each of said protuberances is substantially triangular in shape.
  • 9. A flexible composite bag for vacuum packaging, said bag comprising; a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andeach of said first and second panels having a pattern such that interconnecting channels are formed between said first panel and a third panel and between said second panel and a fourth panel wherein said third and fourth panels form an outer bag enclosing said first and second flexible panels;wherein an outer surface of said second panel has a corresponding pattern that includes a plurality of columns of raised rings and wherein an inner surface of said fourth panel has a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said fourth panel is superimposed over said second panel.
  • 10. A flexible composite bag for vacuum packaging, said bag comprising: a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andeach of said first and second panels having a pattern such that interconnecting channels are formed between said first panel and a third panel and between said second panel and a fourth panel wherein said third and fourth panels form an outer bag enclosing said first and second flexible panels;wherein an outer surface of said first panel has a corresponding pattern that includes a plurality of concentric raised rings and wherein an inner surface of said third panel has a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said concentric raised rings for allowing intercommunication between said concentric raised rings when said third panel is superimposed over said first panel.
  • 11. A flexible composite bag for vacuum packaging, said bag comprising:a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andeach of said first and second panels having a pattern such that interconnecting channels are formed between said first panel and a third panel and between said second panel and a fourth panel wherein said third and fourth panels form an outer bag enclosing said first and second flexible panels;wherein an outer surface of said second panel has a corresponding pattern that includes a plurality of concentric raised rings and wherein an inner surface of said fourth panel has a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said concentric raised rings for allowing intercommunication between said concentric raised rings when said fourth panel is superimposed over said second panel.
  • 12. A flexible composite bag for vacuum packaging, said bag comprising: a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andeach of said first and second panels having a pattern such that interconnecting channels are formed between said first and second panels when said first and second panels are superimposed on each other;wherein said inner surface of said first panel has a corresponding pattern that includes a plurality of columns of raised rings and wherein an inner surface of said second panel has a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said first panel is superimposed over said second panel.
  • 13. The bag of claim 12, further comprising: a third and fourth flexible panels forming an outer bag that encloses said first and second panels.
  • 14. The bag of claim 13, wherein said third and fourth flexible panels each has substantially smooth inner surfaces that come in contact with said corresponding first and second panels.
  • 15. The bag of claim 13, wherein said third and fourth flexible panels each has patterned surfaces that come in contact with said corresponding first and second panels.
  • 16. The bag of claim 12 wherein said first and second panel each comprise multilayer.
  • 17. The bag of claim 16, wherein one of said multilayers includes a heat sealable layer.
  • 18. The bag of claim 12, wherein said pattern includes a plurality of protuberances formed in a generally regular and waffle-like pattern and said protuberances define a plurality of interconnecting channels around and between said protuberances.
  • 19. The bag of claim 18, wherein a top surface area of each of said protuberances is substantially rectangular in shape.
  • 20. The bag of claim 18, wherein a top surface area of each of said protuberances is substantially triangular in shape.
  • 21. A flexible composite bag for vacuum packaging, said bag comprising: a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andeach of said first and second panels having a patter such that interconnecting channels are formed between said first and second panels when said first and second panels are superimposed on each other;wherein said inner surface of said first panel has a corresponding pattern that includes a plurality of concentric raised rings and wherein an inner surface of said second panel has a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said concentric raised rings for allowing intercommunication between said concentric raised rings when said first panel is superimposed over said second panel.
  • 22. A method for making a flexible composite bag for vacuum packaging, wherein forming a pattern further comprises forming on an outer surface of said second panel a corresponding pattern that includes a plurality of columns of raised rings and further forming on an inner surface of said fourth panel a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said fourth panel is superimposed over said second panel, said bag comprising: using a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andforming a pattern on said first and second panels such that interconnecting channels are formed between said first panel and a third panel and between said second panel and a fourth panel wherein said third and fourth panels form an outer bag enclosing said first and second flexible panels;wherein forming a pattern further comprises forming on an outer surface of said second panel a corresponding pattern that includes a plurality of columns of raised rings and further forming on an inner surface of said fourth panel a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said fourth panel is superimposed over said second panel.
  • 23. The method of claim 22, further comprising forming substantially smooth inner surfaces for said third and fourth flexible panels that come in contact with said corresponding first and second panels.
  • 24. The method of claim 22, further comprising forming patterned inner surfaces for said third and fourth flexible panels that come in contact with said corresponding first and second panels.
  • 25. The method of claim 22, wherein said pattern includes a plurality of protuberances formed in a generally regular and waffle-like pattern and said plurality of protuberances define a plurality of interconnecting channels around and between said protuberances.
  • 26. The method of claim 25, wherein a top surface area of each of said protuberances is substantially rectangular in shape.
  • 27. The method of claim 25, wherein a top surface area of each of said protuberances is substantially triangular in shape.
  • 28. The method of claim 22, wherein forming a pattern includes forming a plurality of columns of raised rings on an outer surface of said first panel and further forming on an inner surface of said third panel a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said third panel is superimposed over said first panel.
  • 29. The method of claim 22, A method for making a flexible composite bag for vacuum packaging, wherein forming a pattern further comprises forming on an outer surface of said second panel a corresponding pattern that includes a plurality of columns of raised rings and further forming on an inner surface of said fourth panel a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said fourth panel is superimposed over said second panel, said bag comprising: using a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andforming a pattern on said first and second panels such that interconnecting channels are formed between said first panel and a third panel and between said second panel and a fourth panel wherein said third and fourth panels form an outer bag enclosing said first and second flexible panels;wherein forming a pattern further comprises forming on an outer surface of said second panel a corresponding pattern that includes a plurality of concentric raised rings and further forming on an inner surface of said fourth panel a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said concentric raised rings for allowing intercommunication between said concentric raised rings when said fourth panel is superimposed over said second panel.
  • 30. A method for making a flexible composite bag for vacuum packaging, wherein forming a pattern further comprises forming on an outer surface of said second panel a corresponding pattern that includes a plurality of columns of raised rings and further forming on an inner surface of said fourth panel a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said raised rings for allowing intercommunication between said raised rings when said fourth panel is superimposed over said second panel, said bag comprising: using a first and second flexible panels, joined together at opposite lateral sides thereof to define a chamber adapted to have a product disposed therein; andforming a pattern on said first and second panels such that interconnecting channels are formed between said first panel and a third panel and between said second panel and a fourth panel wherein said third and fourth panels form an outer bag enclosing said first and second flexible panels;wherein forming a pattern further includes forming on an outer surface of said first panel a corresponding pattern that includes a plurality of concentric raised rings and further forming on an inner surface of said third panel a corresponding pattern that includes a plurality of straw-like channels that are adapted to overlie said concentric raised rings for allowing intercommunication between said concentric raised rings when said third panel is superimposed over said first panel.
RELATED APPLICATION

This application claims priority to U.S. Provisional Patent Application No. 60/529,784, entitled, “FLEXIBLE COMPOSITE BAG FOR VACUUM SEALING” by HONGYU WU, filed on Dec. 16, 2003, and which is hereby incorporated by reference in its entirety. This application is related to application number 7,850, which issued as U.S. Pat. No. Re. 34,929, filed Jan. 22,1993 by inventor Hanns J. Kristen, the entire contents of which is hereby incorporated by reference as if fully set forth herein.

US Referenced Citations (239)
Number Name Date Kind
274447 Kennish Mar 1883 A
1938593 Jarrier Dec 1933 A
2085766 Potdevin et al. Jul 1937 A
2105376 Scott Jan 1938 A
2265075 Knuetter Dec 1941 A
2387812 Sonneborn et al. Oct 1945 A
2429482 Munters Oct 1947 A
2480316 Blair et al. Aug 1949 A
2607712 Sturken Aug 1952 A
2609314 Engel et al. Sep 1952 A
2633442 Caldwell Mar 1953 A
2642372 Chittick Jun 1953 A
2670501 Michiels Mar 1954 A
2690206 Mueller Sep 1954 A
2695741 Haley Nov 1954 A
2759866 Seymour Aug 1956 A
2772712 Post Dec 1956 A
2776452 Chavannes Jan 1957 A
2778173 Taunton Jan 1957 A
2789609 Post Apr 1957 A
2821338 Metzger Jan 1958 A
2856323 Gordon Oct 1958 A
2858247 De Swart Oct 1958 A
2913030 Fisher Nov 1959 A
2916411 Villoresi Dec 1959 A
2960144 Graf Nov 1960 A
3026231 Chavannes Mar 1962 A
3060985 Vance et al. Oct 1962 A
3077262 Gaste Feb 1963 A
3077428 Heuser et al. Feb 1963 A
3098563 Skees Jul 1963 A
3102676 Danelli et al. Sep 1963 A
3113715 Pangrac Dec 1963 A
3135411 Osborne Jun 1964 A
3141221 Faulls, Jr. Jul 1964 A
3142599 Chavannes Jul 1964 A
3149772 Olsson Sep 1964 A
3160323 Weisberg Dec 1964 A
3224574 McConnell et al. Dec 1965 A
3237844 Hughes Mar 1966 A
3251463 Bodet May 1966 A
3325084 Ausnit Jun 1967 A
3334805 Halbach Aug 1967 A
3381887 Lowry May 1968 A
3411698 Reynolds Nov 1968 A
3423231 Lutzmann Jan 1969 A
3516217 Gildersleeve Jun 1970 A
3533548 Taterka Oct 1970 A
3565147 Ausnit Feb 1971 A
3575781 Pezely Apr 1971 A
3595467 Goglio Jul 1971 A
3595722 Dawbarn Jul 1971 A
3595740 Gerow Jul 1971 A
3600267 McFedries, Jr. Aug 1971 A
3661677 Wang May 1972 A
3785111 Pike Jan 1974 A
3799427 Goglio Mar 1974 A
3809217 Harrison May 1974 A
3833166 Murray Sep 1974 A
3895153 Johnston et al. Jul 1975 A
3908070 Marzolf Sep 1975 A
3937395 Lawes Feb 1976 A
3958391 Kujubu May 1976 A
3958693 Greene May 1976 A
3980226 Franz Sep 1976 A
3998499 Chiarotto Dec 1976 A
4018253 Kaufman Apr 1977 A
4066167 Hanna et al. Jan 1978 A
4098404 Markert Jul 1978 A
4104404 Bieler et al. Aug 1978 A
4105491 Haase et al. Aug 1978 A
4155453 Ono May 1979 A
4164111 Di Bernardo Aug 1979 A
4179862 Landolt Dec 1979 A
4186786 Kirkpatrick Feb 1980 A
4212337 Kamp Jul 1980 A
4215725 Callet et al. Aug 1980 A
4295566 Vincek Oct 1981 A
4310118 Kisida et al. Jan 1982 A
4340558 Hendrickson Jul 1982 A
4370187 Katagiri et al. Jan 1983 A
4372921 Sanderson et al. Feb 1983 A
4449243 Platel May 1984 A
4486923 Briggs Dec 1984 A
4532652 Herrington Jul 1985 A
4551379 Kerr Nov 1985 A
4569712 Shibano et al. Feb 1986 A
4575990 Von Bismarck Mar 1986 A
4576283 Fafournox Mar 1986 A
4576285 Goglio Mar 1986 A
4579756 Edgel Apr 1986 A
4583347 Nielsen Apr 1986 A
4658434 Murray Apr 1987 A
4669124 Kimura May 1987 A
4672684 Barnes et al. Jun 1987 A
4683702 Vis Aug 1987 A
4705174 Goglio Nov 1987 A
4712574 Perrott Dec 1987 A
4747702 Scheibner May 1988 A
4756422 Kristen Jul 1988 A
4756629 Tilman et al. Jul 1988 A
4778282 Borchardt et al. Oct 1988 A
4786285 Jambor Nov 1988 A
4812056 Zieke Mar 1989 A
4834554 Stetler, Jr. et al. May 1989 A
4841603 Ragni Jun 1989 A
4871264 Robbins, III et al. Oct 1989 A
4877334 Cope Oct 1989 A
4887912 Stumpf Dec 1989 A
4890637 Lamparter Jan 1990 A
4892414 Ausnit Jan 1990 A
4903718 Sullivan Feb 1990 A
4906108 Herrington et al. Mar 1990 A
4913561 Beer Apr 1990 A
4917506 Scheibner Apr 1990 A
4917844 Komai et al. Apr 1990 A
4941310 Kristen Jul 1990 A
4953708 Beer et al. Sep 1990 A
4973171 Bullard Nov 1990 A
5006056 Mainstone et al. Apr 1991 A
5040904 Cornwell Aug 1991 A
5048269 Deni Sep 1991 A
D320549 McKellar et al. Oct 1991 S
5053091 Giljam et al. Oct 1991 A
5063639 Boeckmann et al. Nov 1991 A
5080155 Crozier Jan 1992 A
5097956 Davis Mar 1992 A
5098497 Brinley Mar 1992 A
5106688 Bradfute et al. Apr 1992 A
5111838 Langston May 1992 A
5116444 Fox May 1992 A
5121590 Scanlan Jun 1992 A
5142970 ErkenBrack Sep 1992 A
5203458 Cornwell Apr 1993 A
5209264 Koyanagi May 1993 A
D338399 Conte, Jr. Aug 1993 S
5240112 Newburger Aug 1993 A
5242516 Custer et al. Sep 1993 A
5246114 Underwood Sep 1993 A
5252379 Kuribayashi et al. Oct 1993 A
5332095 Wu Jul 1994 A
5333736 Kawamura Aug 1994 A
5339959 Cornwell Aug 1994 A
5352323 Chi Oct 1994 A
5362351 Karszes Nov 1994 A
5368394 Scott et al. Nov 1994 A
5371925 Sawatsky Dec 1994 A
5373965 Halm et al. Dec 1994 A
5397182 Gaible et al. Mar 1995 A
5402906 Brown et al. Apr 1995 A
RE34929 Kristen May 1995 E
D360578 Dees Jul 1995 S
5445275 Curley et al. Aug 1995 A
5450963 Carson Sep 1995 A
5480030 Sweeney et al. Jan 1996 A
5526843 Wolf et al. Jun 1996 A
5540500 Tanaka Jul 1996 A
5542902 Richison et al. Aug 1996 A
5544752 Cox Aug 1996 A
5549944 Abate Aug 1996 A
5551213 Koelsch et al. Sep 1996 A
5554423 Abate Sep 1996 A
5584409 Chemberlen Dec 1996 A
5592697 Young Jan 1997 A
5618111 Porchia et al. Apr 1997 A
5620098 Boos et al. Apr 1997 A
5638664 Levsen et al. Jun 1997 A
5655273 Tomic et al. Aug 1997 A
5656209 Benz et al. Aug 1997 A
5665456 Kannankeril et al. Sep 1997 A
5689866 Kasai et al. Nov 1997 A
5699936 Sakamoto Dec 1997 A
5701996 Goto et al. Dec 1997 A
5709467 Galliano, II Jan 1998 A
5735395 Lo Apr 1998 A
5749493 Boone et al. May 1998 A
5765608 Kristen Jun 1998 A
5772034 Lin Jun 1998 A
5812188 Adair Sep 1998 A
5829884 Yeager Nov 1998 A
5839582 Strong et al. Nov 1998 A
5873217 Smith Feb 1999 A
5874155 Gehrke et al. Feb 1999 A
5881881 Carrington Mar 1999 A
5893822 Deni et al. Apr 1999 A
5898113 Vercere Apr 1999 A
5908245 Bost et al. Jun 1999 A
5915596 Credle, Jr. Jun 1999 A
5927336 Tanaka et al. Jul 1999 A
5928762 Aizawa et al. Jul 1999 A
D413258 Voller Aug 1999 S
5931189 Sweeney et al. Aug 1999 A
5941421 Overman et al. Aug 1999 A
5941643 Linkiewicz Aug 1999 A
5954196 Lin Sep 1999 A
5957831 Adair Sep 1999 A
5971613 Bell Oct 1999 A
5996800 Pratt Dec 1999 A
6021624 Richison et al. Feb 2000 A
6023914 Richison et al. Feb 2000 A
6029810 Chen Feb 2000 A
6030652 Hanus Feb 2000 A
6035769 Nomura et al. Mar 2000 A
6039182 Light Mar 2000 A
6045006 Fraxier et al. Apr 2000 A
6045264 Miniea Apr 2000 A
6053606 Yamaguchi et al. Apr 2000 A
D425786 Voller May 2000 S
6059457 Sprehe et al. May 2000 A
6070728 Overby et al. Jun 2000 A
6074677 Croft Jun 2000 A
6076967 Beaudette Jun 2000 A
6077373 Fletcher et al. Jun 2000 A
6089271 Tani Jul 2000 A
6105821 Christine et al. Aug 2000 A
6116781 Skeens Sep 2000 A
6161716 Oberhofer et al. Dec 2000 A
6164826 Petkovsek Dec 2000 A
6202849 Graham Mar 2001 B1
6220702 Nakamura et al. Apr 2001 B1
6224528 Bell May 2001 B1
6227706 Tran May 2001 B1
6231234 Gebhardt May 2001 B1
6231236 Tilman May 2001 B1
6274181 Richison et al. Aug 2001 B1
D451542 Ishizawa et al. Dec 2001 S
6357915 Anderson Mar 2002 B2
6402873 Fujii et al. Jun 2002 B1
6408872 Skeens et al. Jun 2002 B1
6423356 Richison et al. Jul 2002 B2
6520071 Lanza Feb 2003 B1
6715644 Wilford Apr 2004 B2
6799680 Mak Oct 2004 B2
20010023572 Savage et al. Sep 2001 A1
20030089737 Wilford May 2003 A1
20040000501 Shah et al. Jan 2004 A1
20040000502 Shah et al. Jan 2004 A1
20040000503 Shah et al. Jan 2004 A1
20040007494 Popeil et al. Jan 2004 A1
Foreign Referenced Citations (22)
Number Date Country
0 723 915 Jul 1996 EP
0 836 927 Apr 1998 EP
1 053 945 Nov 2000 EP
55-90364 Jul 1980 JP
62-192779 Aug 1987 JP
7-299865 Nov 1995 JP
8-90740 Apr 1996 JP
9-131846 May 1997 JP
9-252919 Sep 1997 JP
10-34760 Feb 1998 JP
10-138377 May 1998 JP
10-180846 Jul 1998 JP
11-77903 Mar 1999 JP
11-151142 Jun 1999 JP
11-254631 Sep 1999 JP
2000-15767 Jan 2000 JP
2000-218746 Aug 2000 JP
WO 0071422 Nov 2000 WO
WO 0228577 Apr 2002 WO
WO 02066227 Aug 2002 WO
WO 02074522 Sep 2002 WO
WO 2004078609 Sep 2004 WO
Related Publications (1)
Number Date Country
20050220373 A1 Oct 2005 US
Provisional Applications (1)
Number Date Country
60529784 Dec 2003 US